View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Institutional Knowledge at Singapore Management University

Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

6-1996

Specitying Object-oriented Federated Database

from Existing Databases

Ee Peng LIM

Singapore Management University, eplim@smu.edu.sg

M.L.LIM

J. SRIVASTAVA

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Databases and Information Systems Commons, and the Numerical Analysis and
Scientific Computing Commons

Citation

LIM, Ee Peng; LIM, M. L.; and SRIVASTAVA, J.. Specifying Object-oriented Federated Database from Existing Databases. (1996).
Intelligent information management systems: Proceedings of the IASTED/ISMM International Conference, June S-7, 1996, Washington, DC.
Research Collection School Of Information Systems.

Available at: https://ink.library.smu.edu.sg/sis_research/908

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized

administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

https://core.ac.uk/display/13242693?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F908&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F908&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F908&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F908&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F908&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F908&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F908&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Specifying Object-Oriented Federated Databases from Existing
Databases

Ee-Peng Lim, Meng-Liang Lim, Jaideep Srivastava®
Sch. of Applied Science, Nanyang Technological Univ.
Nanyang Ave., Singapore 639798

1 Introduction

A major challenge in building an object-oriented
(00) federated database system (FDBS) is to be able
to define the OO federated DBs from the existing DBs
and to support queries on the federated DBs. In this
paper, we present a mapping strategy that is based
on a proposed set of DB integration operations. We
first define an OO federated DB as a virtual view on
multiple OO export DBs. Our DB mapping strategy
systematically derives each of the class extents, deep
class extents and relationships of the federated DB us-
ing an operator tree consisting of the integration oper-
ations. This mapping approach differs from the other
existing approaches in that it is algebraic based, and
is therefore very suitable for implementing federated
query processing.

In the case of classic relational model, a core set
of operations have been used to characterize the no-
tion of relational completeness. The core oper-
ations are then used to design relational query lan-
guages (e.g. SQL), and to verify their correctness. In
FDBS, we believe that a similar approach should be
adopted. Hence, we begin with designing integration
operations which are used in our proposed mapping
strategy. With these integration operations, it will be
easier to design declarative DB integration languages
to construct a federated DB, as well as to compare the
expressiveness of different integration approaches.

In our work, we adopt a 3-level schema architecture.
The local schemas describe the local DBs in their re-
spective data models. The export schemas describe
the subsets of local DBs made available to the feder-
ated DB users. The export schemas, unlike the local
schemas, are in the common OO data model. One
or more export schemas may be defined upon a local
schema allowing different aspects of the local schema
to be tapped by different FDBSs. Each export schema
can participate in the construction of none or more
federated schemas'. At the federated schema level,
we reconcile the discrepancies among export DBs.

*Dept.
Minneapolis.

1We allow some export schemas to be directly accessed by
the global users.

of Computer Science, University of Minnesota,

managed_by
h
| DEPTa % Empa |—(&0)

Cprame > Ceost > Cueight)

©

Legend:

1-1 relationship
— I-mrelationship

Figure 1: Export DBs: (a) DB, (b) DBy (¢) DB,

2 Example of OO Export schemas

Throughout this paper, three OO export DBs are
used to demonstrate our DB mapping and query pro-
cessing approaches. These export DBs are shown in
Figure 1. DB,, DBy and DB, are three export DBs
modelling information about a company. Their classes
and attributes are self-explanatory. In DB,, each em-
ployee has a unique name and is assigned a unique
employee number. DB maintains information about
the customers and the products they purchased in the
past. DB, is a warehouse DB that keeps all the prod-
uct information. The cost attribute in PRODUCTy is
the amount the customer paid in the last transaction.
The amount may be different from the cost provided
by DB. since small discounts on certain products may
be given to customers in order to keep the company
competitive.

3 Mapping from OO Export Schemas
to OO Global Schema

0OO-Myriad adopts an algebraic approach to ex-
press the DB mapping. In this approach, the feder-
ated schema can be freely specified as long as its ob-
jects can be computed from the participating export
DBs. This achieves independence between the global
schema structures and the local schema structures.

3.1 Deriving Global Classes

In deriving the global classes, the three main issues
to be dealt with are: entity identification [2, 3],
attribute value conflict resolution [4], and global
oid generation. Entity identification is the process
of identifying export objects that model the same real-
world objects and hence to be merged. Attribute value
conflict resolution determines how the attributes of
global objects can be derived from the attributes of
their export objects.

Entity Identification
We consider three ways in which a global class is de-
rived from the export schemas: (i) A global class can
be directly derived from an export class. In this case,
a global class object corresponds to a single export
DB object. (ii) A global class can be derived from
multiple export classes where each global class ob-
ject corresponds to a single export DB object. (iii)
A global class can be derived from multiple export
classes where each global class object corresponds to
multiple export DB objects. Since each global object
representing a real-world entity can be derived from
a single or multiple export DB objects, it is essential
that the export classes be merged together share some
common attribute(s), which determines whether their
objects correspond to the same real-world entities. We
call these common attribute(s) the entity key.

Attribute Value Conflict Resolution
Once the export DB objects corresponding to the same
real-world entities have been identified, 1t is often nec-
essary to resolve any conflict in their attribute values
before merging them into a global object. In this re-
spect, OO-Myriad adheres quite closely to the Dayal’s
approach of using aggregate functions as attribute
derivation functions[1]. To carry the idea further, OO-
Myriad allows the functions to be user-defined.

Global Object 1d
In OO-Myriad, each global object has a unique iden-
tifier. To ensure the uniqueness of oids across global
classes, any oid generation method selected to yield
global oids must be applied throughout all global
classes in a federated DB.

e Method 1: The global oids can be computed by
combining the entity key values and name of the
global class. If the global class is involved in a
class lattice, it is necessary to designate a rep-
resentative global class for the lattice and use it
(together with entity key values) to generate the
global oids of objects which belong to the class
lattice?. This is achieved by applying an oid gen-
eration function on the entity key and the repre-
sentative global class name.

e Method 2: The global oids can be computed by
combining the export oids and export DB name.
If more than one export object models the same
real-world entity, only an export oid - export DB
name pair 1s needed to generate the global object

id.

2To be formally correct, it should be class poset instead of
class lattice.

While the merit of the first method is to accommo-
date pseudo-object oids, i1t forbids a global object to
migrate from one global class to another. If a global
object has to migrate, it will have to assume a differ-
ent global oid. The second approach does not suffer
from the above limitation but it requires the export
DBs to support unique oids.

3.2 Deriving Global Relationship

A relationship attribute links one class to another.
Let R4 be a relationship attribute that links a global
class C'4 to another global class C'g. There are several
possible ways R4 can be derived. For example:

e (U4 and Cp directly correspond to two export
classes FC'4 and ECp respectively, both of which
are in the same export DB. R4 corresponds to
a relationship attribute KR4 that links £C4 to
ECE.

e (U4 and Cp directly correspond to two export
classes FC'4 and ECp respectively, both of which
are in the same export DB. R4 corresponds to the

reverse of a relationship attribute £ Rp that links
ECB to ECA.

e (U4 and Cp directly correspond to two export
classes FC'4; and ECpgs respectively, each in a
different export DB. R4 corresponds to a simple
attribute of EC'4q such that the attribute domain
is the entity key of FCps.

e (4 is derived by merging export classes ECaq
and ECys. Cp is derived by merging export
classes F(C'g1 and ECpgys. ECy1 and ECpg, are
from export DB 1 and F (45 and FCpgy are from
export DB 2. R4 is a combination of relation-
ship attributes F R4, and ERps, where ER4y
and FRps link from EC4; to ECpgy and from
ECps to EC 45 respectively.

In OO-Myriad, each relationship attribute in a global
class is assigned an algebraic expression that computes
the object pairs linking the class to the destination
class. FEach object pair contains the oids or entity
keys of the global objects involved in the relationship.
Examples of deriving global relationships will be given
in Section 3.5.

3.3 Deriving Deep Class Extent

In OO-Myriad, a global object belongs to only a
global class. The set of objects that belong to a class
is known as the class extent. The deep extent of
a class refers to the union of the class extent and the
extent of all its direct and indirect subclasses. Given
a class C', we use C' to denote its class extent and C'*
to denote its deep extent. Despite the implicit mathe-
matical relationship between the deep extent of a class
and its extent, as well as the extent of all its subclasses,
OO-Myriad allows the derivation of deep class extent
to be based on integration semantics independent of
this mathematical relationship. For each global class,
we have to specify the algebraic expressions that com-
pute its class extent and deep class extent.

(oid = F_oid("PRODUCT" ,pname_b,pname_c),
pname = F_any(pname_b,pname_c) ,
GAD) cost =F_avg(cost_b,cost_c),
/P weight = F_i(weight_c))
N

P

P

PRODUCT, PRODUCTc
(oid_b,pname_b,cost_b) (oid_c,pname_c,cost_c,weight_c)

Figure 2: Example of using GAD operation

3.4 Integration Operations

In OO-Myriad, we focus on integration operations
that are often used. In the domain of relational
FDBS, the predecessor of OO-Myriad, i.e. Myriad,
has adopted the conventional relational operations,
eg. X o, m — and U as well as two additional in-
tegration operations, namely two-way outerjoin (de-

noted by ﬁ) and generalized attribute derivation op-

eration (denoted by GAD). The M operation assem-
bles multiple sets of objects from different export DBs
which model the same set of real-world entities. Pred-
icates are associated with the X to determine the ex-
port objects that correspond to the same real-world
entities and therefore can be merged together. GAD
is an unary operation that derives attributes of global
objects using any system- or user-defined resolution
functions.

Example: Suppose we wish to integrate the
objects from export classes PRODUCT, and
PRODUCT, given in Section 2. We can first outer-
join the objects from PRODUCT, and PRODUCT,
followed by a GAD operation that merges the match-
ing objects together. Figure 2 depicts this?.

In this example, F'_oid is an oid generation func-
tion. It computes oid from a class name and an entity
key value. In this case, we have adopted the oid gen-
eration method 1. F_any returns any non-null input
values, F'_avg returns average of input values and F'_¢
is the identity function. In general, attribute reso-
lution functions can be treated as black boxes. By
permitting them to be user-defined, we have made the
G AD operation flexible enough to resolve a wide va-
riety of attribute value conflicts.

Other than the extended GAD operation, we have
defined an outer-difference operation (denoted by)
to distinguish the export objects representing real-
world entities modeled by only one of the two export
classes that model overlapping sets of real-world enti-
ties.

Definition: (Outer-difference) Let O;(A) and
02(B) be two sets of export objects and p(X,Y) be a
predicate on X and Y attributes of O; and O respec-
tively (X C A, and Y C B). p is the predicate that
determines if two export objects represent the same
real-world entity.

04 @p(ny) 0, = {01|01 € 01 A—doy € O s.t.
plo1.X,02.Y)}

3We have renamed the attributes of classes to avoid attribute
name conflicts.

PERSON
(o

buy ‘

cust = | propucT |

work_in bought by
Cioor> >

Figure 3: Example Global Schema

managed_by

3.5 Example of Algebraic Approach to
DB Mapping

In this section, we demonstrate the algebraic ap-
proach to DB mapping using a federated DB exam-
ple. Suppose the federated schema the global users
wish to construct upon our export DB example (refer
to Section 2) is shown in Figure 3.

In this federated schema example, the real-world
employee and customer entities have been grouped
into EMP, CUST, PERSON and EC' classes. EC,
being a common subclass of EM P and CU ST, keeps
information about people who are both employees and
customers of the company.

In additional to the knowledge about federated
schema, we assume that the following integration se-
mantics are available:

e Each global object in DEPT corresponds to an
export object in DEPT, and the department
name dname 1s the entity key for department en-
tities.

e FMP, and CUST; are to be combined in a way
to form the global class lattice consisting EM P,
CUST, PERSON and EC. Suppose all enti-
ties modelled by these classes can be identified
by their names, 1.e. name is the entity key.

e PRODUCT, and PRODUCT, are to be com-
bined into PRODUCT
global class. Some PRODUCT objects corre-
spond to either PRODUCT, or PRODUC'T, ex-
port objects while other PRODUC'T objects can
be merged from PRODUCT, and PRODUCT,
export objects. Here, we assume that product
entities have product name as the entity key.

e The oid of each global class can be derived by a
function of the global class name and its respec-
tive entity key.

Apart from specifying the global and export schema
information, the OO-Myriad federated DB adminis-
trators must define the algebraic mappings that derive
(i) extent of global classes, (ii) deep extent of global
classes, and (iii) object pairs of global relationships.
Each algebraic mapping is represented as an operator
tree involving the integration operations supported by
00O-Myriad.

Figure 4 depicts the operator trees that define the
class extent of EM P, FC, and PRODUC'T. Since
PERSON, EMP, CUST and EC are involved in
a class lattice, we have chosen PERSON to be the

. GAD (oid = F_oid("PERSON" ename_a),

EMP: (namef iEename_a), -3
eno=F_i(eno_a),

phone =F_i(phone_a))

O ename_a=cname_b

TN

EMPa CUSTb
(oid_a,ename_a,eno_a,phone_a, (oid_b,cname_b,address_b,phone b,
work_in_a) buy_b)

EC: GAD(oid=F oidg" PERSON",ename_a),
: name =F_i(ename_a),
eno =F_i(eno_a),
phone =F_any(phone_aphone_b),
address=TF i addreﬁ:b)sj

/Nﬁzcname_b
) EMPa) CUSTb
(oid_a.ename _aeno_aphone_a, (oid_b,cname_b,address_b,phone_b,
work_in_a) buy_b)

GAD (oid=F _oid("PRODUCT" F_any(pname_b,pname _c)),
pname=F_any(pname_b,pname_c),

PRODUCT:
T cost=F_min(cost_b,cost_c),

weight=F_i(weight_c)) —

-
>J pname_b=pname ¢

UCTb PRODUCTC
(oid_b,pname_b,cost_b,bought_by_b) (oid_c,pname_c,cost_c,weight_c)

Figure 4: Algebraic Mappings for Global Class Extent

representative class of this collection of global classes
and use it in F;4 to generate oids for objects in these
global classes. Figure 5 depicts the operator trees that
define the deep extent of PERSON and EMP.
Figure 6 depicts the operator trees that define
the object pairs of the relationships managed_by and
has_emp. In this example, each object pair contains
the entity keys of the global entities involved in the
relationship. To de-reference a relationship attribute
of an export class such as managed_by in DEPT,,
we have introduced a new operation DREF which
replaces one or more relationship attributes by some
attributes of the destination classes.
Definition: (De-reference - DREF) Let O be a set
of objects. Let Ry,---, Ry, be relationship attributes
of O and X be the remaining attributes. For each ¢,

GAD (oid = F_oid("PERSON",F_any(ename_a,cname_b)),
PERSON*: name = F_any(ename_a,cname _b),
T phone = F_any(phone_a,phone b))

ename_a=cname_b

-
>
EMPa CUSTDb

(oid_a,ename_a,eno_a,phone_a, (oid_b,cname_b,address _b,phone b,
work_in_a) buy_b)

. GAD (0id=F_oid("PERSON" ename_a),
EMP*: name=F igenamefa),
eno=F i(eno_a),
phone=F_i(phone_a))

EMPa
(oid_a,ename_a,eno_a,phone_a,
work_in_a)

Figure 5: Algebraic Mappings for the Deep Extent of
Global Classes

managed_by: DREF (managed_by_a -> managed_by_aename)

TT(dname_amanaged_by_a)

DEPTa
(oid_a,dname_a,floor_amanaged by _ahas emp_a)

has_emp: DREF (has_emp_a -> has_emp_a.ename)

Tt(dname_ahas emp_a)

DEPTa
(oid_a,dname_a,floor_amanaged_by_ahas emp_a)

Figure 6: Algebraic Mappings for Global Relation-
ships

let R;.A; be the attributes accessible through R;.
DREF(O, Ry — Rl.Al, sy R,, — RmAm) = {<
0.X, O.Rl.Al, sy 0.R1.A,, > |O S O}

4 Conclusions

In this paper, we begin with a careful examination
of different object-oriented schema constructs in a fed-
erated DB and their derivation from the participating
export DBs. The schema constructs that can be de-
rived include the global object ids, the extent and deep
extent of global classes, and global relationships. To
derive a federated DB, we propose a set of integra-
tion operations to be used in an algebraic mapping
approach that is designed to merge export DBs to-
gether. The proposed integration operations include
two-way outerjoin, outer-difference(&), generalized at-
tribute derivation(GAD), de-reference(DREF'), and
other usual relational operations such as join, project
and selection. This mapping approach is known to be
flexible and extensible. We also illustrate the useful-
ness of the proposed DB mapping using an example
federated DB and its component export DBs.

References

[1] U. Dayal and H-Y. Hwang. View definition and
generalization for database integration in multi-
base: A system for heterogeneous distributed
databases. IEEE Trans. Software Eng., SE-10(6),
November 1984.

[2] W. Kent. The entity join. In Proc. of the 5th
VLDB Conf., 1979.

[3] E-P. Lim, J. Srivastava, S. Prabhakar, and
J. Richardson. Entity identification problem in
database integration. 9th International Conference
on Data Engineering, 1993.

[4] E-P. Lim, J. Srivastava, and S. Shekhar. Resolving
attribute incompatibility in database integration:
An evidential reasoning approach. 10th Interna-
tional Conference on Data Engineering, 1994.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	6-1996

	Specifying Object-oriented Federated Database from Existing Databases
	Ee Peng LIM
	M. L. LIM
	J. SRIVASTAVA
	Citation

	tmp.1452237643.pdf.jWh6d

