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Abstract: We consider a container terminal discharging containers from a ship and locating
them in the terminal yard. Each container has a number of potential locations in the yard where
it can be stored. Containers are moved from the ship to the yard using a fleet of vehicles, each of
which can carry one container at a time. The problem is to assign each container to a yard location
and dispatch vehicles to the containers so as to minimize the time it takes to download all the
containers from the ship. We show that the problem is NP-hard and develop a heuristic algorithm
based on formulating the problem as an assignment problem. The effectiveness of the heuristic is
analyzed from both worst-case and computational points of view. c© 2001 John Wiley & Sons, Inc.
Naval Research Logistics 48: 363–385, 2001

1. INTRODUCTION

In the last few years we have seen the breakdown of many trade barriers and the globalization
of trade. These developments have increased the importance of logistics and transportation, and
in particular the importance of marine transportation systems. These systems include a network
of terminals around the globe that allow manufacturers and shippers to deliver goods quickly to
their customers. These terminals serve as hubs for the transshipment of containers from ship to
ship or to other modes of transportation, e.g., rail and trucks.

It is well known that in today’s transportation industry, speed is everything, and it is no different
in marine transportation. Thus, an efficient terminal is one that allows speedy transshipment of
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containers to and from the ships. Such a speedy operation is important to both the carrier, since it
provides significant operational efficiencies, and to the terminal which can handle a large number
of ships per day. Unfortunately, in many regions around the globe, the terminals are now working
at, or close to, capacity and there is a significant pressure from the political and business sectors to
increase terminal throughput and, in particular, decrease ship turnaround time at the terminal. In
most cases, this requires the development of methodology and tools which will allow the efficient
coordination of activities within the terminal area.

When a ship arrives at the terminal, containers are first discharged from the ship onto vehicles
by the quay cranes; the vehicles then transport the containers to various storage locations. The
terminal handles a (typically small) number of ships at a time and each ship is served by a
number of quay cranes. A few hours before the arrival of an incoming ship, the terminal receives
detailed information about its contents, i.e., containers that are to be discharged into the yard.
This information allows the terminal dispatchers to generate the so-called crane job sequence—a
detailed sequence for each quay crane serving the ship, specifying the order of the containers
that are to be discharged from the ship. Thus, at any point in time, the quay crane operator has
information on the next container he/she is going to work on. For each such container, the crane
list will identify a number of potential storage locations in the yard, typically two to four.

It is of no surprise that managing, controlling and operating such a system is very complex.
At the operational level the questions are clear: How should vehicles be dispatched to containers,
what is an optimal storage location for each container discharged from the ship, how should
vehicles be routed in the terminal area, and what is an effective traffic control mechanism?

Evidently, these issues are interrelated. Unfortunately, solving a single integrated model that
addresses all the operational decisions is well beyond today’s computing capability. For that
reason, in this research we decompose the problem into several related models: dispatching
vehicles to containers, assigning discharged containers to specific locations, and routing vehicles
(see [3]). Our objective is to analyze each model separately in order to gain an insight into the
system. In this paper we focus on the problem of assigning discharged containers to yard locations
and dispatching vehicles to containers.

Specifically, we consider a single quay crane with a list containing n containers to be unloaded
from the ship. We refer to each container as a job. Each unloaded job has to be taken to a location
in the storage yard, where it will be stored until its transfer to another ship. Associated with
each unloaded job is a set of locations it can be assigned to. These sets of locations for different
jobs may overlap. Associated with the single quay crane are k vehicles, k < n, which unload
and transfer the jobs from the ship to the yard. Each vehicle can carry one job at a time. After
delivering the job to a location in the yard, the vehicle will return to the ship to serve other jobs.

Due to the large sizes of the containers, it is only practical for a crane to unload a container onto
a vehicle; unloading to the ground would require another crane operation to take the container
from the ground and load it onto a vehicle. This constraint requires a vehicle to be available by the
crane throughout the unloading operation. The time required to unload a job by the quay crane
is denoted by s. We assume that s is deterministic, and is the same for all jobs. Without loss of
generality, we assume that each vehicle travels at unit speed, i.e., each vehicle travels one unit of
distance per unit time, and all k vehicles are available at the ship at time 0.

As observed earlier, the crane job sequence is always determined before the unloading process
starts. This predetermined sequence imposes start-start type of precedence constraints on the jobs.
That is, a job cannot be unloaded by the quay crane until all the jobs preceding it in the crane job
sequence are unloaded. This implies that a job cannot be taken by a vehicle before its predecessors
are taken by the vehicles. We will number the jobs such that the ith job in the crane job sequence
will be referred to as job i.
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Let N = {1, 2, . . . , n} be the set of all the jobs and L = {l1, l2, . . . , lm} be the set of all the
locations in the yard. Let λj be the distance of location lj from the quay crane (j = 1, . . . , m).
In practice, containers are not homogeneous in terms of weight and content. Thus, in some cases
it may be desirable to store some containers in specific storage locations, taking into account
factors such as the container’s next destination, weight and contents. For i = 1, . . . , n and j =
1, . . . , m, let

aij =

{
1, if job i can be assigned to location lj ,
0, otherwise,

Xij =

{
1, if job i is assigned to location lj ,

0, otherwise.

Here, aij is a given parameter and Xij is a decision variable. Since each job must be assigned a
location, we have

m∑
j=1

aijXij = 1 (i = 1, . . . , n). (1)

Also, each location cannot be assigned to more than one job, which implies that

n∑
i=1

aijXij ≤ 1 (j = 1, . . . , m). (2)

Thus, the vehicle-scheduling-location problem is to determine Xij (i = 1, . . . , n, j = 1, . . . , m)
which satisfies constraints (1) and (2), and to schedule the vehicles to carry the jobs to their
assigned locations so as to minimize the makespan, which is the time the last vehicle returns to
the ship after all n jobs are unloaded and are taken to their locations in the yard. We refer to this
problem as the vehicle-scheduling-location problem.

When the assignment of jobs to locations is given, it is clear that the following greedy algorithm
minimizes the makespan: ‘‘The next unloaded job in the crane sequence is taken by any waiting
vehicle or is taken by the first arriving vehicle if no vehicle is waiting" (see Chen et al. [7]).
Unfortunately, the vehicle-scheduling-location problem, where the assignment of jobs to locations
is also to be determined, is significantly more difficult than the problem analyzed by Chen et al.
Indeed, in Section 3, we analyze the computational complexity of the vehicle-scheduling-location
problem and show that the problem is NP-hard. This implies that it is unlikely that an efficient,
polynomial time algorithm will ever be developed for this problem. Thus, in Section 4. we present
a heuristic algorithm, called the Assignment Problem Based (APB) heuristic, which, as its name
implies, is based on formulating the problem as an assignment problem.

To analyze the performance of the APB heuristic, we need to define two performance measures.
The first is the asymptotic worst-case performance ratio of a heuristic which is defined as the
maximum deviation from optimality for all instances that are sufficiently ‘‘large.’’ On the other
hand, the absolute worst-case performance ratio of a heuristic is defined as the heuristic solution’s
maximum deviation from optimality for all instances, not necessarily those that are large.

Note that, in practice, the number of containers to be discharged from a ship is usually fairly
large, ranging from 100 to 500 containers. Hence, we are especially interested in the performance
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of the heuristic for large problem sizes, which implies that the asymptotic analysis of the heuristic
performance may prove to be helpful. Thus, in Sections 5. and 6. we characterize the absolute
and the asymptotic worst-case performance of the APB heuristic. Computational experiments are
conducted and the results are reported in Section 7.

In the next section we provide a brief overview of the related literature.

2. LITERATURE REVIEW

Problems associated with dispatching and routing vehicles and locating items or facilities
arise frequently in logistics systems (see, for instance, Bramel and Simchi-Levi [5]). Thus, these
problems have been extensively studied in the operations research/management science literature
under different settings including, but not limited to, vehicle fleet management, truck routing, and
warehouse management.

Unfortunately, most of this research is not directly applicable to a container terminal operation
due to its unique characteristics. This, in turn, requires the development of algorithms that take
into account the special characteristics and constraints associated with container terminals. In the
following, we restrict the literature review to a review of research related to three topics: container
terminals, material handling systems control, and resource-constrained scheduling. This literature
deals with issues and problems similar to the one discussed in this paper. This review is not meant
to be exhaustive, but rather indicative of the different areas related to the problem analyzed in the
current paper.

2. 1. Container Terminals

As mentioned in the previous section, issues related to ship terminal operations have gained
attention only recently due to the increased importance of marine transportation systems. Since
the most important objective for a container terminal is to increase its throughput, or in particular,
to decrease ship turnaround times (see, for instance, McKinsey and Company, Inc. [30]), most of
the research has focused on that objective. Atkins [1] was one of the first to provide a detailed
description of ship terminal operations, including comparisons of container handling equipment
and storage yard strategies. Although there was some published work prior to the eighties that used
operations research techniques to analyze terminal operations, it was not until the mid-eighties
that researchers started focusing on terminal productivity issues (see Kiesling and Walton [20]).

Most of the literature on container terminals has used queuing theory to analyze terminal
operations. These queuing models focus on strategic issues such as determining the equipment
capacity, both on the water side (such as berth capacity), and on the land side (such as the number of
quay cranes, vehicles, and yard cranes); see, for instance, Daganzo [11], Easa [13], Edmond [14],
Gransberg and Basilotto [18], Jones [19], Kiesling and Walton [20], Kozan [28], Mettam [31],
Miller [32], Noritake and Kimura [33, 34], Plumlee [36], Stavros [39], and Zoran [42]. Several
researchers focus on the operational level issues, such as scheduling the cranes and determining
storage locations for the unloaded containers. Kim and his colleagues [22, 24] analyze the problem
of determining a storage location for each unloaded container so as to minimize the expected total
number of rehandling and propose various approaches, including dynamic programming. Kim and
Kim [23, 25] also analyze the problem of routing the cranes in the yard storage area; they formulate
the problem as a Mixed Integer Problem and propose optimization algorithms. Kim [21] and
Castilho and Daganzo [6] develop methodologies to estimate the number of relocation movements
in the yard. Daganzo and Peterkofsky study how quay crane operating strategies affect berth
throughput; they propose various heuristics and exact algorithms to solve the crane scheduling
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problem taking into account berth capacity limitations (see Daganzo [10, 12] and Peterkofsky and
Daganzo [35]). Van Hee and Wijbrands [41] propose a decision support system for the capacity
planning of container terminals; the decision support system combines several heuristic rules and
analyzes the interactions between different elements of a container terminal.

Ship container terminals also share similarities with rail container transportation systems. Un-
fortunately, the literature that uses mathematical optimization techniques for rail transportation
has also been limited (see Cordeau, Toth, and Vigo [9] for a review of optimization models for rail
transportation). Powell and Carvalho [37] analyze the problem of dispatching flatcars (vehicles)
to containers and trailers in a rail terminal; the model allows for a large variety of flatcars in the
terminal, each with different capacities. Bostel and Dejax [4] analyze the operational problems in
a rail terminal. They decompose operational decisions into two levels: (1) container location prob-
lem, and (2) equipment scheduling problem, and solve these problems separately. They formulate
problem (1) as a multicommodity network flow problem with binary variables and apply heuristic
algorithms due to the problem size. Kozan [29] analyzes the equipment assignment problem at a
rail container terminal and proposes a simulation model that utilizes various heuristics.

In this research, we take a different approach from that of the previous research: We analyze the
container location and vehicle dispatching problems simultaneously at a ship container terminal,
while explicitly considering quay crane capacity and job precedence constraints; our objective is
to develop algorithms that are easy to implement for large problem sizes, and whose effectiveness
can be characterized analytically.

2. 2. Material Handling Systems Control

Vehicle dispatching and routing strategies have been extensively analyzed, mainly in the context
of Material Handling Systems (MHS) control. Assuming a fixed shop layout with predetermined
material handling flow paths and fixed transporter fleet size, the MHS control problem deals
with the assignment of transportation equipment to service requests on the shop floor. Most of the
related work has focused on Automated Guided Vehicle Systems (AGVS); see Co and Tanchoco [8]
and King and Wilson [26] for extensive reviews.

Thus, an important problem in AGVS management is the vehicle dispatching problem. Indeed,
vehicle dispatching problems have been analyzed under various assumptions including different
carriers (unit-load or multiple-load), path layout and configurations, demand patterns (static or
stochastic), and mostly in job shop environments (see, for instance, Bilge and Tanchoco [2],
Egbelu [15], Egbelu and Tanchoco [16], Sinriech and Palni [38], and the references within).

A container terminal is similar to an AGVS with a single pickup point, many delivery points,
and unit-load AGVs. Evidently, the single pickup point in the AGVS corresponds to the ship
area in the container terminal, the delivery points correspond to the container locations and the
unit-load AGVs in the AGVS correspond to vehicles in the container terminal.

The main difference between AGVS and a container terminal is that in a container termi-
nal, containers have precedence and storage location constraints, and they compete for a set of
resources, the cranes: Each container needs to be unloaded from ships by the cranes.

The crane constraint also relates the vehicle-scheduling-location problem to resource-constrained
scheduling, discussed in the following section.

2. 3. Resource-Constrained Scheduling

Another problem that is of particular relevance to our research is the machine interference
problem, which involves scheduling a set of jobs (each with a given processing time) on a set of
machines. Before the processing of each job can start, the corresponding machine needs service
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(setup, loading, unloading, etc.) by an operator who can serve one machine at a time (see, for
instance, Kravchenko and Werner [27], Stecke and Aronson [40], and the references within). This
problem is mostly studied in robot-served manufacturing environments and in the textile industry.
The vehicle-scheduling-location problem is similar to the machine interference problem: Crane
operations represent the setups, crane represents the operator, each container corresponds to a
job and vehicles to machines. However, the assignment of locations to containers (and thus,
the job processing times in the machine interference problem) is part of the decision in the
vehicle-scheduling-location problem, not a parameter as is the case for the machine interference
problem.

3. COMPUTATIONAL COMPLEXITY

In this section we analyze the computational complexity of the vehicle-scheduling-location
problem.

THEOREM 1: The vehicle-scheduling-location problem is NP-hard.

PROOF: We transform the Even–Odd Partition problem, which is known to be NP-complete
[17], to the vehicle-scheduling-location problem. The Even–Odd Partition problem is defined as
follows.

Even–Odd Partition: Given a set of 2r elements Y = {1, 2, . . . , 2r} and a size xi ∈ Z+ for each
i ∈ Y , and B = 1

2

∑
i∈Y xi, does there exist Y ′ ⊂ Y such that

∑
i∈Y ′ xi =

∑
i∈Y \Y ′ xi = B

and exactly one element of {2i−1, 2i} belongs to Y ′ for i = 1, . . . , r?

Given an arbitrary instance of Even–Odd Partition, we construct a corresponding instance of
the vehicle-scheduling-location problem with

k = 2,

n = 2r,

m = 2r,

s = 0,

λi = xi + 2B, for i = 1, . . . , 2r,

a2i−1,2i−1 = a2i−1,2i = a2i,2i−1 = a2i,2i = 1, for i = 1, . . . , r (other aij values are 0).

Let M = 2(1 + 2r)B. We set the crane job sequence in this problem instance as (1, 2, . . . , 2r).
Note that in this construction, either X2i−1,2i−1 = X2i,2i = 1 or X2i−1,2i = X2i,2i−1 = 1,
for i = 1, . . . , r. We will show that there exists an even–odd partition of the set Y if and only if
there exists a schedule for the vehicle-scheduling-location problem with a makespan no greater
than M .

Suppose there exists an even-odd partition {Y ′, Y \ Y ′} of the set Y . Then, we will form a
schedule with no inserted vehicle idle time as follows. For j = 1, . . . , 2r, vehicle 1 will take a job
to location lj if j ∈ Y ′, and vehicle 2 will take a job to this location if j ∈ Y \ Y ′. Specifically,
for i = 1, . . . , r, we set X2i−1,2i−1 = X2i,2i = 1 if 2i − 1 ∈ Y ′ and vehicle 1 finishes serving
its previous job earlier than vehicle 2 or if 2i ∈ Y ′ and vehicle 2 finishes serving its previous
job earlier than vehicle 1. Otherwise, we set X2i−1,2i = X2i,2i−1 = 1. The makespan of this
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schedule is

max


 ∑

j∈Y ′
2λj ,

∑
j∈Y \Y ′

2λj


 = max


 ∑

j∈Y ′
2(xj + 2B),

∑
j∈Y \Y ′

2(xj + 2B)




= max {2(1 + 2r)B, 2(1 + 2r)B}
= M.

Conversely, suppose there exists a schedule for the vehicle-scheduling-location problem with
makespan no greater than M . Note that

∑
j∈Y 2λj = 2M , that is, the total travel time of the two

vehicles is equal to 2M . This implies that the total travel time of each vehicle must be exactly M
and there is no idle time for the vehicles. Next, we show that for i = 1, . . . , r, jobs 2i − 1 and
2i must not be carried by the same vehicle. Suppose, to the contrary, that they are carried by the
same vehicle, then let

i′ = min{i | jobs 2i − 1 and 2i are carried by the same vehicle}.

Without loss of generality, we assume that jobs 2i′ − 1 and 2i′ are carried by vehicle 1. Then, by
definition of i′, among jobs 1, 2, . . . , 2i′−2, exactly half of them must be carried by vehicle 1, and
vehicle 1 spends more than 4(i′ − 1)B units of time delivering these jobs (since λj > 2B, each
job requires a round-trip travel time of more than 4B). Furthermore, vehicle 1 spends more than
4B units of time to transport job 2i′ − 1. Let S2i′ denote the time that the crane starts unloading
job 2i′. Then, we have S2i′ > 4i′B (see Fig. 1). On the other hand, because λi = xi + 2B and∑2r

i=1 xi = 2B and there is no idle time in the vehicle schedule, vehicle 2 will finish transporting
its first i′ − 1 jobs no later than time 4i′B. In other words, vehicle 2 will finish transporting its
first i′ − 1 jobs earlier than S2i′ . This implies that either there is an idle time on vehicle 2 after
it finishes transporting the first i′ − 1 jobs (if vehicle 2 continues to transport some other jobs
afterward) or the total travel time of vehicle 2 is less than that of vehicle 1 (if vehicle 2 only
transports these i′ − 1 jobs), which is a contradiction. Hence, for i = 1, . . . , r, jobs 2i − 1 and 2i
must be carried by two different vehicles.

Recall that for i = 1, . . . , r, jobs 2i − 1 and 2i must be assigned to locations {l2i−1, l2i}. For
i = 1, . . . , r, we assign element 2i − 1 to set Y ′ and element 2i to set Y \ Y ′ if vehicle 1 carries
a job to location l2i−1 and vehicle 2 carries a job to location l2i; we assign element 2i to set Y ′

and element 2i − 1 to set Y \ Y ′ if vehicle 1 carries a job to location l2i and vehicle 2 carries a
job to location l2i−1. Thus, total travel time of vehicle 1 is

∑
j∈Y ′ 2λj and the total travel time

of vehicle 2 is
∑

j∈Y \Y ′ 2λj . Therefore,

∑
j∈Y ′

2λj =
∑

j∈Y \Y ′
2λj = M,

implying ∑
j∈Y ′

2(xj + 2B) =
∑

j∈Y \Y ′
2(xj + 2B) = 2(1 + 2r)B,

which in turn implies that ∑
j∈Y ′

xj =
∑

j∈Y \Y ′
xj = B.
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Hence, {Y ′, Y \Y ′} is an even-odd partition of Y . This completes the proof of the theorem.

Note that in the problem instance that we constructed in the proof of Theorem 1, the unloading
time s is set equal to 0. This implies that the special case where s = 0 is also NP-hard (a discussion
of this case appears in Section 5. ). Furthermore, in the problem instance that we used in the above
proof, two locations are allowed for each job (i.e.,

∑m
j=1 aij = 2 for i = 1, . . . , n). Thus, the

special case where only a small number of possible locations are available for each job remains
NP-hard.

4. AN ASSIGNMENT PROBLEM BASED HEURISTIC ALGORITHM

As proven in the previous section, the vehicle-scheduling-location problem is NP-hard, which
indicates that the existence of an efficient algorithm to solve the problem optimally is unlikely.
Thus, we need to develop an efficient heuristic to solve this problem.

Recall that λj is the distance of location lj from the quay crane. Let λmax = maxj=1,...,m{λj}
and λmin = minj=1,...,m{λj} > 0. Since the yard area is bounded, λmax is also bounded. The
following Assignment Problem (AP) formulation will be used in our heuristic solution procedure:

minimize
n∑

i=1

m∑
j=1

λjXij

subject to
m∑

j=1

aijXij = 1 (i = 1, . . . , n),

n∑
i=1

aijXij ≤ 1 (j = 1, . . . , m),

Xij = 0 or 1 (i = 1, . . . , n; j = 1, . . . , m).

(3)

Figure 1. Vehicle schedule when jobs 2i′ − 1 and 2i′ are both carried by Vehicle 1.
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Note that the assignment problem differs from the vehicle-scheduling-location problem in that
it completely ignores the vehicle schedule and assigns jobs to locations purely based on their
travel distances from the ship.

Given any feasible solution Xij (i = 1, . . . , n, j = 1, . . . , m) to the AP, let di =
∑m

j=1 λjXij

for i ∈ N . That is, di is the distance between the ship and the location assigned to job i. Thus, any
feasible job-location assignment will be represented by a job distance vectord = (d1, d2, . . . , dn).
Since the unloading time of a job is s and the vehicles travel at unit speed, the total time for a
vehicle to serve job i and return to the ship is s + 2di. Let dmax = maxi=1,...,n{di}, which is
bounded.

As observed earlier, for each feasible job-location assignment, i.e., a feasible solution to AP,
with a job distance vector d, there is a schedule that minimizes the makespan. Such a minimum
makespan schedule corresponding to any given feasible job-location assignment is obtained by
the Greedy Algorithm, where the next unloaded job in the crane job sequence is taken by the
vehicle that arrives at the crane the earliest after finishing its previous job (see Chen et al. [7]).

For any given feasible job-location assignment with a job distance vector d, we let C∗
j (d)

denote the time when vehicle j (j = 1, . . . , k) finishes serving all its jobs and returns to the
ship in the minimum makespan schedule. Let C∗

min(d) = minj=1,...,k

{
C∗

j (d)
}

and C∗
max(d) =

maxj=1,...,k

{
C∗

j (d)
}

. Thus, C∗
max(d) is the optimal makespan corresponding to a feasible job-

location assignment with a job distance vector d.
Consider the optimal solution X0

ij (i = 1, . . . , n, j = 1, . . . , m) to the AP, and let L0 = {lj |∑n
i=1 X0

ij = 1; j = 1, . . . , m}, that is, L0 is the set of locations that are assigned to jobs in this
solution. The locations in set L0 will be called used locations. Let d0 = (d0

1, d
0
2, . . . , d

0
n) be the

job distance vector corresponding to this optimal solution of the AP, that is, d0
i =

∑m
j=1 λjX

0
ij

for i = 1, . . . , n. Let d0
max = maxi=1,...,n{d0

i } and D0 =
∑n

i=1 d0
i .

Also, consider the job-location assignment in the optimal solution to the vehicle-scheduling-
location problem. Let d∗ = (d∗

1, d
∗
2, . . . , d

∗
n) be the job distance vector corresponding to this

optimal solution, and let d∗
max = maxi=1,...,n{d∗

i } and D∗ =
∑n

i=1 d∗
i . Thus, the optimal

makespan of the problem is given as Z∗ = C∗
max(d

∗). By the optimality of the AP, we have

D0 ≤ D∗. (4)

Since all the vehicles are identical, we may assume that if there is more than one vehicle waiting
at the ship for the unloading of their jobs, then the vehicle that arrives at the crane the earliest
takes the next job. In other words, we assume that the queuing discipline of the vehicles at the
crane is first-come first-served.

Recall that for a given feasible job-location assignment, the Greedy Algorithm can be used
to obtain a minimum makespan schedule for the vehicles to deliver the jobs. We now suggest
the following Assignment Problem Based (APB) heuristic algorithm for solving the vehicle-
scheduling-location problem.

STEP 1: Solve the Assignment Problem in (3) and assign locations to jobs based on the AP
solution X0

ij (i = 1, . . . , n, j = 1, . . . , m).
STEP 2: Apply the Greedy Algorithm to the jobs in the set N , with a job distance vector

d0 = (d0
1, d

0
2, . . . , d

0
n). In the Greedy Algorithm, the first k jobs are assigned, each to a single

vehicle. We then assign the next job in the list to the first available vehicle that arrives at the crane
after completing its previous job.
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The idea of this heuristic is to decompose the vehicle-scheduling-location problem into two
isolated steps, where the first step determines the location assignments by ignoring the vehicle
schedule and the second step determines the vehicle schedule for the location arrangements
obtained from the first step. Let ZH denote the makespan of the schedule obtained by the APB
heuristic, that is, ZH = C∗

max(d
0). In what follows we discuss some basic properties of the

heuristic solution.
Recall that L is the set of all locations in the yard. We start by arranging all the locations in

the set L in nondecreasing order of distances from the ship, and denote the ith location in this
sequence as l[i] and its distance from the ship as d[i]. We assume that d[i] 6= d[j], for all i, j ∈ L
with i 6= j. However, the proofs of the following lemmas can easily be extended to the case
where some locations have the same distances. Let L(p) = {l[1], l[2], . . . , l[p]}, for p = 1, . . . , m.
Consider the optimal solution X0

ij (i = 1, . . . , n, j = 1, . . . , m) to the AP, with an objective value
of D0, and the corresponding set of locations L0. We let l[f ] be the location that is farthest away
from the ship in the set L0.

LEMMA 2: There exists no feasible solution to the AP which uses only locations in the set
L(f−1).

PROOF: Suppose, to the contrary, that there exists at least one feasible solution to the AP which
uses only locations in the set L(f −1). By the optimality of X0

ij (i = 1, . . . , n; j = 1, . . . , m),
the objective value of any such feasible solution must be greater than or equal to D0. Also, by
definition of l[f ], we have d[j] < d[f ], for all l[j] ∈ L(f−1).

Suppose that job i0 has been assigned to l[f ] in the optimal solution X0
ij (i = 1, . . . , n, j =

1, . . . , m) of the AP. In order to have a feasible solution in L(f −1), job i0 has to be assigned
to another location in L(f −1). There exists at least one location, say location l[j1] ∈ L(f −1),
to which job i0 can be assigned, i.e., ai0,[j1] = 1, since otherwise no feasible solution exists in
L(f−1). Clearly, location l[j1] is used by another job, say job i1, in the optimal solution X0

ij , since
otherwise a solution with less cost (D0 − d[f ] + d[j1] < D0) could be obtained by reassigning
job i0 to location l[j1] with no conflicts.

If job i0 is assigned to l[j1], then job i1 should be assigned to another location in L(f −1)
to obtain a feasible solution. All locations in L(f −1) to which job i1 can be assigned must be
used by other jobs in the optimal solution X0

ij , since otherwise a solution with less cost could be
obtained by assigning job i0 to l[j1] and job i1 to one of the unused locations in L(f−1), say l[j2],
with no conflicts, and the cost would be D0 − d[f ] + d[j2] < D0. So job i1 should be assigned
to a used location l[j2] in L(f −1) when job i0 is assigned to l[j1] to obtain a feasible solution in
L(f−1).

We can repeat the same argument for all the jobs, that is, if job is is assigned to the location
used by job is+1 in the optimal solution X0

ij , then job is+1 should be assigned to another used
location. Therefore, in this feasible solution to the AP, all n jobs are assigned to the used locations
in L(f−1). However, by definition of L(f−1), there are only n − 1 used locations in L(f−1),
which is a contradiction. Hence, a feasible solution in the set L(f −1) does not exist, which
completes the proof of the property.

The following corollary is a direct consequence of Lemma 2.

COROLLARY 3: d0
max ≤ d∗

max.

In the following sections, we use these properties to characterize the performance of the APB
heuristic. Specifically, in Section 5. we analyze the case where crane unloading times are very
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small. Section 6. extends this analysis to the general case where crane unloading times can be
any positive value.

5. THE ZERO UNLOADING TIME CASE

In this section we analyze the performance of the APB heuristic when the unloading time at
the crane, s, is equal to 0. This case applies to the practical situation where the unloading time at
the crane is much smaller than travel times from the ship to the yard locations. Unfortunately, the
complexity analysis in Section 3. indicates that even the zero unloading time case is NP-hard.

To analyze the performance of the APB heuristic in this case, we start by introducing upper and
lower bounds on the makespan of any solution to the problem in Lemma 4. These bounds will
then be used to derive a lower bound on the optimal makespan and an upper bound on the heuristic
makespan in Theorems 5 and 7, when we characterize the performance of the APB heuristic.

In the following analysis, we assume that the problem is feasible, i.e., given any arbitrary subset
of jobs, there is always a feasible assignment of jobs to yard locations.

LEMMA 4: Given a job distance vector d = (d1, d2, . . . , dn), if s = 0, then the schedule
obtained by the Greedy Algorithm satisfies the following condition:

1
k

n∑
i=1

2di ≤ C∗
max(d) ≤ 1

k

n−1∑
i=1

2di + 2dmax.

PROOF: The total distance traveled by all the k vehicles is
∑n

i=1 2di. Thus, the makespan of
the schedule, C∗

max(d), is bounded from below by
∑n

i=1 2di/k. Now, consider the first n−1 jobs
and let d̂ = (d1, d2, . . . , dn−1) be the job distance vector of these jobs. Thus, C∗

j (d̂) is the time
when vehicle j finishes serving all its jobs in the minimum makespan schedule for the first n − 1
jobs, and C∗

min(d̂) = minj=1,...,k{C∗
j (d̂)}. From the Greedy Algorithm and because s = 0, we

have

C∗
max(d) ≤ C∗

min(d̂) + 2dmax.

Since s = 0, there is no vehicle idle time in any schedule generated by the Greedy Algorithm.
Hence,

∑k
j=1 C∗

j (d̂) =
∑n−1

i=1 2di, which implies that

C∗
min(d̂) = min

j=1,...,k

{
C∗

j (d̂)
} ≤ 1

k

k∑
j=1

C∗
j (d̂) =

1
k

n−1∑
i=1

2di.

Therefore,

C∗
max(d) ≤ 1

k

n−1∑
i=1

2di + 2dmax.

The next theorem states that the APB heuristic has an absolute worst-case performance ratio
of 2. That is, the heuristic will generate a solution for the zero unloading time case with no more
than 100% relative error.

THEOREM 5: If s = 0 then ZH/Z∗ ≤ 2.
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PROOF: In the optimal solution, the total distance traveled by all the k vehicles is
∑n

i=1 2d∗
i =

2D∗. Thus, the makespan of the optimal schedule, C∗
max(d

∗), is bounded from below by 2D∗/k.
Therefore, by (4),

Z∗ ≥ 2D0

k
. (5)

Clearly, Z∗ ≥ 2d∗
max. Hence, by Corollary 3,

Z∗ ≥ 2d0
max. (6)

We thus have

ZH = C∗
max(d

0)

≤ 1
k

n−1∑
i=1

2d0
i + 2d0

max (by Lemma 4)

≤ 2D0

k
+ 2d0

max

≤ Z∗ + Z∗ [by (5) and (6)].

Thus, ZH/Z∗ ≤ 2.

The next theorem indicates that this worst-case error bound is tight.

THEOREM 6: There exists an instance of the vehicle-scheduling-location problem with s = 0
in which the ratio ZH/Z∗ is arbitrarily close to 2.

PROOF: See Appendix A.

Next we analyze the asymptotic worst-case performance of the APB heuristic. As mentioned
previously, this case is of practical interest due to the large number of jobs involved in real cases.
The next theorem states that the asymptotic worst-case performance ratio of the APB heuristic
is 1 when s = 0. That is, when the crane unloading time is very small, the heuristic finds the
schedule that minimizes the makespan for a large number of jobs. Thus, the following result is
quite strong.

THEOREM 7: Given n jobs, let Z∗
n and ZH

n denote the optimal makespan and the APB
heuristic makespan, respectively. If s = 0 and k is constant, then

lim
n→∞ ZH

n /Z∗
n = 1.

PROOF: From Lemma 4, we have

ZH
n = C∗

max(d
0) ≤ 1

k

n−1∑
i=1

2d0
i + 2d0

max
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and

Z∗
n = C∗

max(d
∗) ≥ 1

k

n∑
i=1

2d∗
i .

Thus,

ZH
n

Z∗
n

≤
∑n−1

i=1 2d0
i /k + 2d0

max∑n
i=1 2d∗

i /k
≤ 2D0/k + 2d0

max

2D∗/k
=

D0

D∗ +
kd0

max

D∗ .

Note that ZH
n ≥ Z∗

n and D0 ≤ D∗ (from (4)). Hence,

1 ≤ ZH
n

Z∗
n

≤ 1 +
kd0

max

D∗ .

Since λmin > 0, D∗ → ∞ as n → ∞. This, together with the fact that d0
max is bounded, implies

that ZH
n /Z∗

n → 1 as n → ∞.

The next section extends this analysis to the more general case.

6. THE GENERAL CASE

In this section we consider the general case where the unloading time at the quay crane is
any positive value. Our objective is to characterize the performance of the APB heuristic for
the general case. For this purpose, we again determine bounds on the solution values of the
problem. Specifically, Lemma 8 provides a lower bound on the optimal makespan, whereas
Lemma 9 provides an upper bound on the heuristic makespan. These bounds will then be used in
Theorems 10 and 11 to analyze the absolute and asymptotic performance of the APB heuristic.

LEMMA 8: Z∗ ≥ max
{ 2D0

k + ns
k + (k−1)s

2 , 2d0
max + s, ns

}
.

PROOF: The total travel time and unloading time of the k vehicles in any feasible schedule
is at least 2D0 + ns. A vehicle has to wait for another vehicle to finish unloading before it can
perform its unloading. Since we are assuming that all the vehicles are available at the ship at
time 0, the first vehicle does not wait for the crane, the second vehicle waits for s units of time,
the third vehicle waits for 2s units of time, and so on. Thus, the total waiting time for the first k

jobs is given by
∑k

i=1(i − 1)s = k(k − 1)s/2. Therefore, the makespan of any feasible schedule
must be no less than 1

k

[
2D0 + ns + k(k − 1)s/2

]
, or, equivalently,

Z∗ ≥ 2D0

k
+

ns

k
+

(k − 1)s
2

.

Clearly, Z∗ ≥ 2d∗
max + s, and by Corollary 3, we have

Z∗ ≥ 2d0
max + s.

Finally, the total unloading time, at the ship, of all the jobs is ns, which implies that

Z∗ ≥ ns.

This completes the proof of the lemma.
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LEMMA 9: ZH ≤ 2D0

k + (n−1)s
k + (k−1)s

2 + (n−k−1)(k−1)s
k + s + 2d0

max + (k − 1)s.

PROOF: We first consider the first n − 1 jobs. Let d̂0 = (d0
1, . . . , d

0
n−1). The total travel

time and unloading time of the vehicles spent on these n − 1 jobs in the heuristic schedule is
2D0 + (n − 1)s. As explained in the proof of Lemma 8, the total waiting time of the vehicles
for the first k jobs is

∑k
i=1(i − 1)s = k(k − 1)s/2. Since the waiting time of a vehicle for

any particular job can be no more than (k − 1)s, the total waiting time of the vehicles for jobs
k + 1, k + 2, . . . , n − 1 is bounded from above by (n − k − 1)(k − 1)s. Thus,

k∑
j=1

C∗
j (d̂0) ≤ 2D0 + (n − 1)s + k(k − 1)s/2 + (n − k − 1)(k − 1)s,

which implies

C∗
min(d̂0) = min

j=1,...,k

{
C∗

j (d̂0)
} ≤ 1

k

k∑
j=1

C∗
j (d̂0)

≤ 1
k

[
2D0 + (n−1)s + k(k−1)s/2 + (n−k−1)(k−1)s

]
.

The unloading time, travel time, and waiting time of job n is no greater than s+2d0
max +(k−1)s.

Therefore,

ZH ≤ 1
k

[
2D0 +(n− 1)s+ k(k − 1)s/2+ (n− k − 1)(k − 1)s

]
+ s+2d0

max +(k − 1)s.

The next theorem states that the APB heuristic has an absolute worst-case ratio of 3. That is, it
will generate a solution with no more than 200% error for the general case.

THEOREM 10: ZH/Z∗ ≤ 3.

PROOF: From Lemmas 8 and 9, we have

ZH

Z∗ ≤
2D0

k + (n−1)s
k + (k−1)s

2

Z∗ +
s + 2d0

max

Z∗ +
(n−k−1)(k−1)s

k + (k − 1)s
Z∗

≤ 1 + 1 +
(n−k−1)(k−1)s

k + (k − 1)s
ns

≤ 3.

The next theorem states that the asymptotic worst-case ratio of the APB heuristic is 2 in the
general case.

THEOREM 11: limn→∞ ZH
n /Z∗

n ≤ 2, where Z∗
n and ZH

n denote the optimal makespan and
the APB heuristic makespan, respectively.
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PROOF: From Lemmas 8 and 9, we have

ZH
n

Z∗
n

≤
2D0

k + (n−1)s
k + (k−1)s

2

Z∗
n

+
(n−k−1)(k−1)s

k + s + 2d0
max + (k − 1)s

Z∗
n

≤ 1 +
(n−k−1)(k−1)s

k + s + 2d0
max + (k − 1)s

ns

≤ 1 +
ns + 2d0

max

ns

= 2 +
2d0

max

ns
→ 2, as n → ∞,

since d0
max is bounded.

Next, we consider the special case where all the locations in the storage yard are at least a
certain distance away from the ship. Namely, λmin ≥ (k − 1)s/4, that is, the time required to
travel from the ship to any location in the yard is no less than (k − 1)/4 times the unloading time.
This case is motivated by parameters typical of our industry partner. We will derive a tighter error
bound for the APB heuristic in this case. In what follows, we first determine an upper bound on
the vehicle waiting time at the cranes. We then use this result to derive an upper bound on the
heuristic makespan.

LEMMA 12: Let Wi (i = 1, . . . , n) be the vehicle waiting time at the crane corresponding to
job i in the schedule obtained by the APB heuristic. If λmin ≥ (k − 1)s/4, then

∑n−1
i=1 Wi ≤

(n−1)(k−1)s
2 .

PROOF: See Appendix B.

Observe that the upper bound on vehicle waiting times at the crane obtained in Lemma 12 is
stronger than that used in Lemma 9. Recall that Lemma 9 uses (k − 1)s to bound the vehicle
waiting time for each job k + 1, . . . , n. This can only be realized when each vehicle waits for all
the remaining k−1 vehicles in the crane queue. Next we use Lemma 12 to derive an upper bound
on the heuristic makespan for this special case.

LEMMA 13: If λmin ≥ (k − 1)s/4, then ZH ≤ 2D0

k + (n−1)s
k + (n−1)(k−1)s

2k + s+2d0
max +

(k − 1)s.

PROOF: By Lemma 12 and using the same argument as in the proof of Lemma 9.

Now we can characterize the asymptotic performance of the APB heuristic for this special case.

THEOREM 14: If λmin ≥ (k − 1)s/4 and k is constant, then limn→∞ ZH
n /Z∗

n ≤ 3
2 − 1

2k ,
where Z∗

n and ZH
n denote the optimal makespan and the APB heuristic makespan, respectively.

PROOF: From Lemma 13,

ZH
n ≤ 2D0

k
+

(n − 1)s
k

+
(n − 1)(k − 1)s

2k
+ s + 2d0

max + (k − 1)s

=
2D0

k
+

(n − 1)s
k

+
(k − 1)s

2
+

(n − k − 1)(k − 1)s
2k

+ s + 2d0
max + (k − 1)s.
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Hence, by Lemma 8, we have

ZH
n

Z∗
n

≤
2D0

k + (n−1)s
k + (k−1)s

2

Z∗
n

+
(n−k−1)(k−1)s

2k + s + 2d0
max + (k − 1)s

Z∗
n

≤ 1 +
(n−k−1)(k−1)s

2k + s + 2d0
max + (k − 1)s

ns

=
3
2

− 1
2k

+
k2 + 1
2nk

+
2d0

max

ns

→ 3
2

− 1
2k

, as n → ∞,

since d0
max is bounded.

It is interesting to find out whether this worst-case error bound is tight. A partial answer is
provided in [3] who showed that the bound proved in Theorem 14 is tight at least for all odd
values of k.

7. COMPUTATIONAL EXPERIMENTS

We now present the computational study carried out to analyze the empirical performance of
the APB heuristic.

The terminal area considered in the numerical study is depicted in Figure 2. In this diagram,
the black node represents the ship area, and each yard block in the yard area consists of a set of
container storage locations. All vehicles in the system are identical, and vehicle travel times in
the terminal area are deterministic and known.

In the computational study, we consider a ship with n discharged containers. A single quay
crane and k vehicles are assigned to the ship. For each discharged container we generate 2–4

Figure 2. Layout of the terminal area.
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Table 1. Average (maximum) deviations of ZH from the lower bound.

n k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

20 3.7% (9.2%) 8.1% (16.9%) 11.7% (24.4%) 15.4% (31.0%) 21.7% (42.9%) 26.7% (48.0%)
30 2.8% (5.8%) 5.4% (11.2%) 9.6% (21.2%) 11.2% (27.8%) 15.1% (28.3%) 18.0% (35.0%)
50 2.4% (5.0%) 5.6% (9.2%) 8.6% (14.9%) 13.1% (19.3%) 9.9% (15.7%) 11.7% (19.2%)

100 1.9% (3.2%) 4.5% (6.8%) 7.0% (10.0%) 11.1% (17.2%) 15.9% (20.0%) 9.6% (16.0%)
500 1.5% (2.0%) 3.4% (4.2%) 5.8% (7.2%) 9.5% (11.4%) 14.1% (15.8%) 5.4% (7.8%)

possible storage locations in the yard area. The travel time of each location is generated from a
uniform distribution between 2 and 20 minutes. The quay crane discharging time s is taken to be
deterministic and is 1.5 minutes per job. These parameters are based on data we received from
our industry partner, who is involved in managing a mega container terminal.

Before presenting the computational results, we remind the reader that in practice, n is typi-
cally between 100 and 500 while k is about 5. Of course, in the numerical study we tested the
performance of the heuristic under a wide range of parameter values.

To calculate the effectiveness of the APB heuristic, we need to compare its makespan to the
optimal one. Unfortunately, finding the optimal makespan requires solving a Mixed Integer Pro-
gram (MIP), which can be quite time-consuming for large-size problems (see [3] for the MIP
formulation). Consequently, we evaluate the performance of the heuristic relative to the lower
bound on the optimal makespan developed in Lemma 8. These results are reported in Table 1.

Specifically, for each combination of n and k, we randomly generate 100 instances and de-
termine the deviation of the heuristic makespan from the lower bound. Table 1 thus presents for
each combination of n and k, the average percentage deviation of the heuristic makespan from
the lower bound over all the 100 replications. The table also provides the maximum percentage
deviation of the heuristic makespan from the lower bound over all replications. These numbers
are given in parentheses.

Table 1 leads to the following conclusions: (i) For a given number of vehicles, the relative
error generally decreases as n, the number of containers, increases. This is consistent with the
asymptotic worst-case analysis results. (ii) All errors are reasonably small. Indeed, even for small
number of discharged containers, say 20 containers, the error is at most 26.7% on the averages and
no more than 48.0% over all instances. These results are consistent with our absolute worst-case
analysis result provided by Theorem 10. (iii) More importantly, in practice n is between 100 and

Table 2. Average deviation of ZH from Z∗ and Z∗ from
the lower bound.

Average Deviation of Average Deviation of
n = 20 ZH from Z∗ Z∗ from Lower Bound

k = 2 2.8% 0.9%
k = 3 2.0% 6.0%
k = 4 6.1% 5.3%
k = 5 8.3% 6.5%
k = 6 10.5% 10.1%
k = 7 13.3% 11.8%
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500 while k is about 5. The numerical study shows that in this case the relative errors are fairly
small; an error of at most 11.1% on the averages and at most 17.2% over all instances.

We must also note that all these percentage errors are determined relative to a lower bound on
the optimal makespan, which may be far away from the optimal makespan. Hence, in Table 2
we analyze the effectiveness of the lower bound relative to the optimal makespan as well as the
effectiveness of the heuristic relative to the optimal solution, for small-size problems with 20 jobs.
This is done by comparing the heuristic, the lower bound, and the optimal makespan determined
by solving the MIP formulation mentioned above. Specifically, the second column in Table 2
reports the average percentage deviation of the heuristic makespan from the optimal makespan
over all 100 replications, whereas the third column reports the average percentage deviation of
the optimal makespan from the lower bound over all 100 replications.

We have the following observations: (i) From the third column of Table 2, we observe that for
a given number of jobs (n = 20), the quality of the lower bound deteriorates as the number of
vehicles increases. This can be explained as follows. As the number of vehicles increases, vehicles
may wait for longer times in the quay crane queue, thus increasing the optimal makespan. Unfor-
tunately, the lower bound (see Lemma 8) does not include any vehicle waiting time component.
(ii) By comparing the second column of Table 2 with the case of n = 20 in Table 1, we observe
that the actual percentage errors reported in Table 2 are significantly less than those reported in
Table 1. This suggests that the true performance of the APB heuristic is in fact better than the
percentages given in Table 1, which are determined relative to the lower bound.

8. CONCLUSIONS

Our analysis of the vehicle-scheduling-location problem reveals that while the problem is indeed
quite difficult, effective heuristics can be developed. Of course, in practice, other issues need to be
incorporated into the analysis and addressed by the algorithms. These include identifying routes
for each vehicle so as to avoid congestion, coordinating yard crane work load, etc. These are
typically terminal specific issues that are addressed at a more detailed level. However, the insight
and algorithm developed in this research should be at the core of any solution method used for
container location.

APPENDIX A

PROOF OF THEOREM 6: Consider an instance with k vehicles, n = 2k jobs, m = 2k locations, s = 0, and the
following parameters:

λi = k, for i = 1, . . . , k,

λi = 1, for i = k + 1, . . . , 2k,

aii = 1, for i = 1, . . . , 2k,

ak,2k = a2k,k = 1,

and all other aij values are 0.
There are two optimal solutions to the AP for this problem. One of the optimal solutions to the AP is given by the

following assignments:

X0
k,2k = X0

2k,k = 1,

X0
ii = 1, for i = 1, . . . , k−1, k+1, . . . , 2k−1.

Hence,
d0 = (k, . . . , k︸ ︷︷ ︸

k−1

, 1, . . . , 1︸ ︷︷ ︸
k

, k).
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Figure 3. Example with s = 0.

When the Greedy Algorithm is applied to this assignment, we obtain the following schedule of jobs on the k vehicles:

Vehicle 1: jobs 1, 2k (total distance traveled = 4k),

Vehicle 2: job 2 (total distance traveled = 2k),

Vehicle 3: job 3 (total distance traveled = 2k),

· · ·
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Vehicle k − 1: job k − 1 (total distance traveled = 2k),

Vehicle k: jobs k, k + 1, . . . , 2k − 1 (total distance traveled = 2k).

Hence, ZH = C∗
max(d0) = 4k [see Fig. 3(a)].

The optimal solution has the following assignments:

X∗
ii = 1, for i = 1, . . . , 2k.

Hence,
d∗ = (k, . . . , k︸ ︷︷ ︸

k

, 1, . . . , 1︸ ︷︷ ︸
k

).

The optimal schedule of jobs on the k vehicles is:

Vehicle 1: jobs 1, k + 1 (total distance traveled = 2k + 2),

Vehicle 2: jobs 2, k + 2 (total distance traveled = 2k + 2),

· · ·
Vehicle k: jobs k, 2k (total distance traveled = 2k + 2).

Hence, Z∗ = C∗
max(d∗) = 2k + 2 [see Fig. 3(b)].

Therefore,
ZH

Z∗ =
4k

2k + 2
→ 2, as k → ∞.

APPENDIX B

To prove Lemma 12, we first introduce some notation and discuss some properties on the vehicle waiting times.
Consider the schedule obtained by the APB heuristic, let Si be the time that the crane starts unloading job i, for

i = 1, . . . , n−1. We define uninterrupted job sequence as a sequence of jobs that are served continuously by the crane,
that is, with no idle crane time in between. Thus, if we ignore job n, then a given crane job sequence (1, 2, . . . , n−1) is
partitioned into u ≥ 1 uninterrupted job sequences{

(1, . . . , i1), (i1+1, . . . , i2), . . . , (iu−1+1, . . . , iu)
}

,

where iu = n − 1. Let i0 = 0.
We consider the jth (j = 1, . . . , u) uninterrupted job sequence (ij−1+1, . . . , ij). Let q be the number of jobs in

this sequence, that is, q = ij − ij−1. We have the following properties on this uninterrupted job sequence.

PROPERTY 1: Wij−1+h ≤ (h − 1)s, for h = 1, . . . , q.

PROOF: Since the crane is available at time Sij−1+1, the vehicle that carries job ij−1 + 1 does not need to wait for
the crane, and for h = 1, . . . , q, the vehicle that carries job ij−1 + h will wait for the crane for no more than (h − 1)s
units of time.

PROPERTY 2: If q > k and λmin ≥ (k − 1)s/4, then Wij−1+h ≤ (k − 1)s/2 for h = k+1, . . . , q.

PROOF: Suppose, to the contrary, that there exists a job ij−1 +h (k+1 ≤ h ≤ q) with a vehicle waiting time greater
than (k − 1)s/2. Let

J =
{

ij−1+h−k, ij−1+ h−k+1, . . . , ij−1+h−1
}

,

which contains part of the jth uninterrupted job sequence. Thus, the jobs in J are continuously unloaded by the crane
during the time period [Sij−1+h−k, Sij−1+h]. Let v′ be the vehicle that serves job ij−1 +h, and let W ′ be the waiting
time of the vehicle for this job. Thus, vehicle v′ arrives at the crane at time Sij−1+h − W ′ and waits for W ′ time units
before the crane becomes available to unload job ij−1 + h. No job is being unloaded onto vehicle v′ during the time
period [Sij−1+h−W ′−(k−1)s/2, Sij−1+h]. Note that Sij−1+h − W ′ − (k − 1)s/2 < Sij−1+h − (k − 1)s =
Sij−1+h−k+1. Therefore, at least two of the jobs in J are served by the same vehicle because (i) J has k elements, (ii)
there are k vehicles, and (iii) no job in set J is served by vehicle v′. Let

g1 = max
{

î ∈ J

∣∣∣ job î is served by the same vehicle as one of the jobs in {̂i+1, . . . , ij−1+h−1}
}

.
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Let v′′ be the vehicle that serves job g1. Let g2 be the next job served by vehicle v′′ after vehicle v′′ serves job g1. The
time that vehicle v′′ finishes carrying job g1 to its location in the yard and returns to the ship is

Sg1 + s + 2dg1 ≥ Sij−1+h−k + s + 2λmin

= Sij−1+h − ks + s + 2λmin

≥ Sij−1+h − (k − 1)s/2

> Sij−1+h − W ′.

According to the first-come first-served queuing discipline, job g2 should be served by vehicle v′ instead of vehicle v′′,
which is a contradiction. This completes the proof of the property.

PROOF OF LEMMA 12: If q ≤ k, then, by Property 1,

q∑
h=1

Wij−1+h ≤
q∑

h=1

(h − 1)s =
q(q − 1)s

2
≤ q(k − 1)s

2
.

If q > k, then, by Properties 1 and 2,

q∑
h=1

Wij−1+h =
k∑

h=1

Wij−1+h +

q∑
h=k+1

Wij−1+h

≤
k∑

h=1

(h − 1)s +

q∑
h=k+1

(k − 1)s
2

=
k(k − 1)s

2
+

(q − k)(k − 1)s
2

=
q(k − 1)s

2
.

Thus, in both cases,
q∑

h=1

Wij−1+h ≤ q(k − 1)s
2

=
(ij − ij−1)(k − 1)s

2
.

Applying this result to all the uninterrupted job sequences, we have

n−1∑
i=1

Wi ≤
u∑

j=1

(ij − ij−1)(k − 1)s
2

=
(iu − i0)(k − 1)s

2
=

(n − 1)(k − 1)s
2

.
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