
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

5-2005

Live Data Views: Programming Pervasive
Applications that Use “Timely” and “Dynamic”
Data
Jay BLACK
IBM T. J. Watson Research Center

Paul CASTRO
IBM T. J. Watson Research Center

Archan MISRA
Singapore Management University, archanm@smu.edu.sg

Jerome WHITE
IBM T. J. Watson Research Center

DOI: https://doi.org/10.1145/1071246.1071294

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Software Engineering Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
BLACK, Jay; CASTRO, Paul; MISRA, Archan; and WHITE, Jerome. Live Data Views: Programming Pervasive Applications that Use
“Timely” and “Dynamic” Data. (2005). MDM '05: Proceedings of the 6th International Conference on Mobile Data Management: May
9-13, Ayia Napa, Cyprus. 294-298. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/691

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/1071246.1071294
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Live Data Views: Programming Pervasive Applications
That Use “Timely” and “Dynamic” Data

Jay Black,* Paul Castro, Archan Misra, Jerome White*1
IBM T.J. Watson Research Center, Hawthorne, NY

jpblack@uwaterloo.ca, castrop@us.ibm.com, archan@us.ibm.com, jerome@cs.caltech.edu

ABSTRACT
In the absence of generic programming abstractions for dynamic
data in most enterprise programming environments, individual
applications treat data streams as a special case requiring custom
programming. With the growing number of live data sources such
as RSS feeds, messaging and presence servers, multimedia
streams, and sensor data, a general-purpose client-server
programming model is needed to easily incorporate live data into
applications. In this paper, we present Live Data Views, a
programming abstraction that represents live data as a time-
windowed view over a set of data streams. Live Data Views allow
applications to create and retrieve stateful abstractions of dynamic
data sources in a uniform manner, via the application of intra- and
inter- stream operators. We provide details of our model and
evaluate a proof-of-concept Live Data Views implementation to
monitor traffic conditions on a highway. We also provide the
preliminary design of a J2EE-based implementation, and outline
some of the research challenges raised by this abstraction in a
distributed computing environment.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—data
abstraction, patterns; D.1.3 [Programming Techniques]:
Concurrent Programming—concurrent programming, distributed
programming

General Terms
Algorithms, Design, Measurement

Keywords
J2EE, dynamic data, stream operations, EJB, middleware

1. INTRODUCTION
A class of applications is emerging for effectively monitoring and
adapting to the dynamic state of physical or virtual environments.
This vision of large-scale monitoring applications has been
embraced in several domains of pervasive and mobile computing,
such as telematics, context-aware computing, business-process

optimization, and environmental tracking (e.g., forest fires,
intrusion detection). These applications obtain and harness data
from heterogeneous sources that have liveness properties. Live
data has a notion of currency, where recent values subsume older
ones. Live data values are also dynamic relative to the lifetime of
an application session. Liveness in data implies a notion of data
elements as ephemeral entities: when a data element becomes
sufficiently stale, it has negligible utility and may be entirely
disregarded. For example, an application that warns drivers of
traffic congestion needs only the most up-to-date status reports,
and may safely discard older status reports. (The obvious value of
mining historical data is beyond the scope of this paper).

Currently, applications that process live data use hard-coded logic
that is not shared by other applications. Since each live data
source requires unique logic for processing, any combination of
live data from different sources must be treated as a special case.
Moreover, enterprise-grade programming environments, such as
J2EE or .NET, lack direct infrastructural elements or
programming constructs to support the easy incorporation of live
data into applications. A suitable “data-services” middleware
component, exposing a portable and application-independent
programming model, would allow applications to delegate much
of the low-level data-processing logic to an opaque lower layer,
and use a common, and hopefully simple, programming
abstraction to easily incorporate live data of different types and
from multiple sources into applications.

In this paper,1 we present a programming abstraction for
applications using live data. Since conventional databases are not
optimized to support the high data-update rates often exhibited by
such data sources, live data is viewed through the prism of
streams. In this model, data sources frequently “push” typed data
onto the network (e.g., formatted in XML) to be used by
applications. Recent work, such as Telegraph [3] and Borealis [1],
has looked at generic system-level abstractions and performance
optimizations needed by data management systems that process
data streams. However, a programming abstraction for connecting
these systems to actual applications remains an open issue. We
bridge the gap between the system-level stream-processing
mechanisms and the programming tasks that application
developers perform to incorporate live data as a first-class data
type. Moreover, we introduce challenges related to scalability and

1 Authors listed alphabetically
* Work performed while authors were visiting IBM Research. Jay
Black is currently at the University of Waterloo. Jerome White is
currently at the California Institute of Technology.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MDM 2005 May 9–13, Ayia Napa, Cyprus
(c) 2005 ACM 1-59593-041-8/05/05....$5.00

294

consistency that a runtime infrastructure for such a programming
abstraction must address

Our programming model represents live data as a set of streams
over which we define a set of operators. Our fundamental data
abstraction is a Live Data View (LDV), which provides a time-
window view on a set of streams, each representing a distinct data
source. An LDV includes an explicitly timed and sequenced set
of data elements from individual streams; the set evolves with the
passage of time and the arrival of new stream elements. Live Data
Views provide the following:

• Dynamic state-based “views” of data streams. Applications
that use live data typically monitor the state of a certain set of
data sources that satisfy some functional criteria (such as
those hospital patients currently posting critical alarms or
those instant-messaging users currently in a particular office
location). The LDV allows applications to create a dynamic
state view, expressed via stream-based semantics. This is
similar to proposals for data-replica management using soft-
state protocols [10], except that our model generalizes the
state representation across multiple data sources.

• Expression (summarization) of state through intra- and inter-
stream operators. The application state is defined as the
result of an operator applied to the data sequence within each
individual stream, followed by an operator across streams to
summarize the collective state. For example, a stream that
reports the current temperature of a hot spring can be
summarized via average, max or min operators on
temperature values in the last half hour. This can drive a top-
k operator that reports the values (or IDs) of the 5 hottest
springs.

• Measures of divergence between dynamic state replicas.
Liveness implies that not only data values, but also the
freshness of the data, contribute to replica divergence.

As a proof of concept, we have developed two traffic-monitoring
applications that infer the current traffic levels on a highway using
processed images from live video feeds. Our sample applications
illustrate an important benefit: the LDV provides a generic and
reusable server-side component that significantly lowers the
communication overhead observed by application clients that use
the derived “state,” as opposed to custom clients that operate on
the raw streaming data. In the remainder of this paper, Section 2

formalizes the definition of the Live Data View, and presents the
parameters used to define a specific LDV. Section 3 then
describes how our model is incorporated into an application.
Next, Section 4 describes and evaluates our webcam-based traffic
monitoring applications. Section 5 then presents challenges with
implementing our model within an enterprise programming
environment, and with building consistency metrics for managing
replicas of Live Data Views. We present related work in
Section 6. Section 7 concludes the paper with a discussion of
future work.

2. OVERVIEW OF THE LDV MODEL
A live data view (LDV) provides access for clients to simple,
current state information, derived from a large, changing set of
independent message sources. An LDV is designed to impose
minimal temporal and reliability constraints on its sources, and to
be highly scalable. As shown in Figure 1, the model is based on
an abstract two-dimensional matrix, with time along one
dimension and sources along the other, a notion of “current”
information, and two orthogonal summarization operations
providing simple state that clients can obtain by direct queries or
subscription to change notifications.

We assume all sources of a particular type provide messages that
conform to a common XML schema, and that the LDV can
uniquely identify each source. Messages are stamped by the
source with a sequence number that increases monotonically;
sequence numbers from two different sources are incomparable,
and sources do not have synchronized clocks. Due to unreliable
message delivery, messages from a single source may be
reordered, delayed, or dropped. However, to provide some notion
of current data, all messages are also timestamped by the LDV on
receipt, that is, on entry at the top left corner of Figure 1. A
“membership specification” filters arriving messages based on
per-message attributes, resulting potentially in fewer sources and
messages.

After timestamping and filtering, each message is added to the
stream of recent messages for its source. The most recent message
arriving no more than τ seconds ago is considered the current
message for the stream, if any. Messages older than T seconds
expire and are discarded, as are empty streams. The messages in
unexpired streams are used to calculate intra-source summaries

Figure 1. Diagram of a Live Data View and example code. In the call to ‘getView’, the programmer defines SSpec, MSpec and
T. It is in the instantiation of the function object, f2, that the window duration, ττττ, is specified.

295

(function f1), and the client-visible state of the LDV is then
calculated by applying the inter-source summary, f2, to the results.

Formally, an application views its interaction with the LDV in
terms of the specification of the following components:

• Source Specification (SSpec) indicates the set of sources of
interest. This is usually defined as a specification of the
schema that each source exposes, and the semantic meaning
associated with the source data values (e.g., values from
TRAFFIC sensors in the figure).

• Membership Specification (MSpec) indicates which
messages should be processed by the LDV, and is defined as
a predicate on the values of various attributes of the message
(e.g., traffic sensors in PASADENA).

• T is the “time to live” of messages in the LDV, calculated
from the timestamp on entry, and τ is the time an arriving
message remains current unless it is superceded by a more
recent message from that stream.

• Intra-Stream Summary Operator (f1) indicates the
computation to be performed over the sequence of elements
in each unexpired stream. Examples of f1 include average or
exponential average (over all data elements), sum (over
all elements) or current (which provides the current element,
if any).

• Inter-Stream Summary Operator (f2) indicates the
computation to be performed over the results of f1. f2
captures the creation of state across streams, and may be used
either to reduce the set of relevant stream values (e.g., a top-
10 or max operator), or to fuse values of different sources
(e.g., derive a probabilistic estimate of “intruder detection”
using readings from multiple cameras).

• Specification operator (Spec) indicates what LDV state
events trigger a corresponding notification to the application.
This may include “active” (notification of any state change)
or “delta” (notification when the state changes by an
appropriate threshold or percentage), defined over the output
of f2.

The LDV model is clearly much simpler, compared to the
semantics of conventional messaging systems (e.g., [6]) or stream
operators. This is the outcome of a conscious effort to define a
“bare-minimum” abstraction that can be implemented within a
conventional enterprise programming environment such as J2EE,
while possessing enough semantic richness to support a large
class of “event-monitoring” live-data applications.

The LDV model has a rather loose definition of “time,” without
strict temporal or reliability guarantees. This is intentional—our
programming model is directed towards applications such as
environment monitoring that have no hard real-time constraints.
Moreover, in a practical implementation, each source would
presumably publish its data elements using best-effort APIs (e.g.,
the Java Messaging Service (JMS) Publish Subscribe Interface
[11]) with little or no coordination with other sources. Imposing
reliable delivery semantics (such as guaranteed, once-only
delivery) in a distributed environment requires fairly complex
messaging-systems infrastructure (e.g., Gryphon [2]), which
seemed to be overkill for many of our target applications. The
loose and very flexible use of timestamps makes the LDV model
useful mostly in general-purpose, “best-effort” enterprise

programming environments, and is too lax for applications where
fine-grained relative time differentiation is critical. Moreover, as
sequence numbers have no cross-stream significance, an LDV
cannot be used for precise temporal correlation of streams. The
LDV model implicitly assumes that both T and τ are reasonably
large compared to the stream arrival rate, so that phase effects
between streams are not a real concern. Thus, LDV provides a
much more relaxed notion of consistency than stateful messaging-
oriented middleware (e.g., SMILE [7]), and intuitively aims to
manipulate physical state that is certainly evolutionary, but not
singleton-transient. For example, in our sample traffic-monitoring
application, the occasional loss of a “congestion level” report
from a particular webcam source is not critical; the application is
really interested more in the medium-term state, rather than
singleton data elements. Moreover, while traffic congestion levels
change over minutes, they will certainly not change radically
between successive readings from a webcam reporting every 30
seconds, and clock offsets of a few seconds between different
camera readings are unimportant.

The explicit use of orthogonal summary functions f1 and f2
restricts an LDV to cases where the derived state is decomposable
along the two axes. Functions f1 and f2 are driven by observations
on the emerging category of sensor-driven applications. f1 can be
viewed as a smoothing operator that eliminates the impact of
noisy singletons, typically generated by error-prone or unreliable
sensors. f2, on the other hand, can be viewed not just as a means
of filtering to reduce the client traffic (e.g., selecting the top two
congested road sections), but also as a way to construct derived
state from individual sensor values.

3. CLIENT PROGRAMMING W ITH LIVE
DATA VIEWS
There are two distinct aspects to Live Data Views: the client-side
programming model and the server-side infrastructure needed to
maintain it. In this section, we describe the programmatic
abstraction for using an LDV to incorporate live data into an
application. We discuss server-side issues in Section 5.

From the application-client perspective, LDV programming is
similar to database programming, where a client establishes a
connection to a database, and then specifies a data structure (e.g.,
a rowset) that represents a view over data in the database. Unlike
database programming, however, the LDV client must remain in
communication with the server to receive updates. We assume this
is done through asynchronous messaging to reduce the number of
open network connections. To reduce the overhead of this
communication, an LDV client is updated only if the real LDV
state changes significantly, as expressed by the Spec parameter.

To complete the server-side specification of an LDV, the
programmer specifies the SSpec, the MSpec, the window duration
T, and τ (see Figure 1). As elements come into the LDV, they are
scheduled for removal after T seconds. The SSpec and the MSpec
define the type of information the client is interested in, and these
are passed on to the server, which is responsible for the initial
processing of streamed data. For example, the SSpec could be a
topic name and the MSpec could be a simple predicate over
attribute-value pairs, as in JMS.

The LDV server component collects data to represent the dynamic
state; the programmer can then summarize the state by specifying
f1 and f2. Common statistical operators over numerical values such

296

as average, max, and min, would be included as part of the
standard LDV operator package. Alternatively, for example, a
programmer can implement function objects that process XML
data from RSS feeds by extending the default f1 and f2 classes.
Thus, the decision to extend f1 or f2 depends solely on the
application. All function objects must implement an apply()
method, which is called by the LDV when a value is added to the
array. The apply() method in an f1 object is designed to work
over each stream of the entire LDV, while that of the f2 object is
designed to work over the return type of f1. During the operation
of the LDV, dynamic alterations to function objects and update
policies are allowed.

The client interacts with an instantiated LDV by either
synchronous calls for the state, or via subscriptions for specific
events in, or changes to, the LDV’s state. Examples of these
events include “current value for source s1 has changed,” “current
value for f2 has changed,” “current value for f1 for source s1 has
changed”, “data element for s1 has expired,” etc.

4. REAL-TIME HIGHWAY TRAFFIC
MONITORING
In this section, we describe our proof-of-concept, Java-based
implementation of an LDV system that keeps track of traffic
conditions on a highway. We have developed two related
applications: one that requires the conditions of the top 20% of
the “currently congested” roadways, and another that wishes to be
apprised of roadway sections where congestion is building up
(i.e., “average” recent delays that have a positive derivative).
Monitoring traffic is something that lends itself well to the LDV
concept, as road conditions change constantly and traffic
information is readily available.

In our prototype, we implemented a software-based traffic
“sensor” that periodically downloads the latest JPEG image of a
particular highway section from a public, web-based highway
camera. The sensor exists off-board from the client and “streams
out” status reports to LDVs. This report includes the location of
the traffic sensor, the relative level of traffic (high, medium, low),
and a co-efficient used internally by the traffic sensor to determine
traffic levels. Our sensor calculates traffic congestion levels by
employing edge detection and subtraction of successive images as
a measure of motion. For our purposes, we use cameras available
for highways in Connecticut [4] and Seattle [13], and download
images at various rates, though the maximum update rate for a
traffic camera is typically once every 30 to 90 seconds.

To find areas containing the most traffic, we used an f1 which kept
a moving average of traffic values for each camera, while f2
returned the top 20% of those moving averages. To find areas of
increasing traffic, f1 computed the difference between moving
average values of the sensor reports for each individual stream,
while f2 extracted all values that were positive. Both clients were
“active,” meaning they subscribed to automatic updates from the
LDV.

To measure the data passing through the system, we monitored the
three areas in which data is exchanged: at the filter, the LDV, and
the client. The filter was the first point of entry into the LDV for
information sent by sensors. It exists within the LDV framework,
and its purpose here was to ensure that error values from the
sensors did not make their way into the LDV. The filter also deals
with out-of-order messages. Measuring the data flow into the filter

is significant because it represents the input of raw data from the
sensor. Without the presence of the LDV, this data would go
directly to the client. With our nominal filtering, the traffic client
in both applications received, on average, 50% or less of the data
sent from the sensors.

5. LDV SERVER RUNTIME
IMPLEMENTATION AND CHALLENGES
A distributed server-side implementation of the LDV abstraction
is not a trivial task, and must address three particular challenges.

• Source Scalability: The LDV must be capable of scaling to a
very large number (O(10,000) and above) of potential data
sources.

• Many Packet Arrival and Timer Events: The LDV must also
be able to deal with the potentially high rate of timer-based
events (such as data expiration or staleness) imposed by the
time-based model.

• Time-Based Weak Consistency: Different clients or
application instances may have different tolerances for
divergence from the “current” state of the LDV.

We now outline an approach to dealing with the first two
challenges through the use of “industry-standard” runtime
environments, and return later to the third.

The J2EE programming model [12], including Enterprise Java
Beans (EJBs), defines a runtime architecture for component-based
enterprise applications. They execute in a server “container”
infrastructure that provides consistency, scalability, concurrency,
and distribution. The EJB model is presently geared towards
“static” data, principally stored in backend databases. However,
an appropriate combination of the functionality of various EJBs
allows us to develop a runtime component that supports the LDV
abstraction over data streams, while still leveraging the underlying
scalability of the J2EE container.

Figure 2 presents only one of several possible approaches to
optimizing an LDV implementation across multiple clients, where
multiple clients of the same type of dynamic data are likely to
possess identical notions of liveness (same T and τ), and differ
only in the choice of operators. The investigation and evaluation
of alternative J2EE-based runtime implementations (e.g., a
separate LDV for each client), required for other forms of client
heterogeneity, is part of ongoing work.

The Spec threshold in the LDV model allows a particular client’s
“view” of the state to diverge from the true “time-windowed” state
by a tolerance threshold D. This is really a form of weak
consistency that can reduce the traffic volume between an LDV
server and the client. For example, we measured the message

Figure 2. Server-side implementation of a Live Data View
using J2EE

297

volume of our “top 20%” traffic application for different values of
D, where D represents the minimum amount of change in
consecutive f2 results that warrants an update of the client. Even a
small value of D reduced the traffic volume by 20%, while larger
values of D provided savings up to 40%. This helps increase the
scalability of LDVs.

Moreover, defining tolerance over an LDV in terms of a
divergence measure introduces a new time-based weak-
consistency model across multiple clients. The consistency
semantics are also crucial for efficiently maintaining multiple
replicas of the same LDV on different servers in a distributed
runtime environment. We believe that research into this novel
concept of “consistency over time-derived views” will create new
consistency semantics that complement the extant work [5][13],
which supports multiple consistency models over either data from
individual streams or over time-independent database relations.

6. RELATED WORK
Applications centered on monitoring the physical environment are
prevalent in many domains, including the wireless sensor
community. Mainwaring et al. [8] presents a reference
architecture for habitat monitoring of microclimates, where
distributed sensors generate data streams that are processed by
backend servers. LDV should provide a useful programming tool
for clients that use such sensor information. Network monitoring
is another application area that could benefit from LDVs.

Using highly dynamic data requires specialized data-stream
processing architectures optimized for rapid updates. Researchers
are investigating scalability and modeling issues for stream
processing systems. Telegraph [3] and Borealis [1] both provide a
fundamental set of relational-like operators that can be applied to
streams and both look at adaptive techniques to optimize the
throughput of query processing. LDV extends this work to
provide a simplified application-level abstraction of dynamic data
as a set of streams. One main goal of LDV is to improve
programmer productivity when using live data in an application;
additionally, its server-side components can be used to reduce
communication costs as well as the overhead of a stream
processing system through judicious LDV replica management.

LDV not only attempts to model streams, but acts as the
representation of dynamic state. In this sense it is closely related
to messaging work such as Gryphon [2] and SMILE [7]. In
particular, SMILE is an overlay for a messaging network that
captures state using a relational model. SMILE is designed to
support applications that require a stricter notion of data fidelity
(e.g. banking applications) by providing somewhat ACID-like
guarantees. LDV differs from SMILE in its fundamental
modeling approach: LDV is designed for applications that can
tolerate some amount of imprecision as found in [9].

7. CONCLUSIONS AND FUTURE WORK
The LDV model is still in early stages of development. As part of
ongoing work, we are investigating the set of “standard” operators
that can support a large number of applications. Additionally, we
will try and uncover deeper primitives that may functions as
operators between LDVs (e.g. a join operator).

Scalability issues remain a major focus for our work. We plan to
investigate alternative server-side architectures that can work
seamlessly with clients to process live data. Overall, combining a

scalable architecture with intelligent replication support remains
an open and challenging research problem. In addition, we are
also interested in identifying and prototyping other applications
that will require our technology.

8. REFERENCES
[1] D. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M.

Cherniack , JH Hwang, W. Lindner, A. Maskey, A. Rasin, E.
Ryvkina, N. Tatbul, Y. Xing, S. Zdonik. The Design of the
Borealis Stream Processing Engine. In Proc. 2nd Biennial
Conference on Innovative Data Systems Research (CIDR),
2005.

[2] M. K. Aguilera, R. Strom, D. Sturman, M. Astley, T.
Chandra. Matching events in content-based subscription
systems. In Proc. 18th Annual ACM Symp. on Principles of
Distributed Computing (PODC), 1999, 53-61.

[3] S. Chandrasekaran, O. Cooper, A. Deshpande, M. Franklin,
J. Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, V.
Raman, F. Reiss, and M. Shah. TelegraphCQ: Continuous
Dataflow Processing for an Uncertain World. In Proc. 1st
Biennial Conf. on Innovative Data Systems Research (CIDR)
2003.

[4] Connecticut Department of Transportation,
http://www.conndot.ct.gov.

[5] S. Cuce and A. Zaslavsky, Supporting multiple consistency
models within a mobility enabled file system using a
component based framework. Mobile Networks and
Applications 8, 2003, pp 317-326.

[6] P. Eugster, P. Felber, R. Guerraoui, A. Kermarrec. The many
faces of publish/subscribe. ACM Comput. Surv. 35(2): 114-
131 (2003).

[7] Y. Jin and R. Strom. Relational subscription middleware for
internet-scale publish-subscribe. In Proc. 2nd International
Workshop on Distributed Event-based Systems (DEBS),
2003, pp 1-8.

[8] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J.
Anderson. Wireless sensor networks for habitat monitoring.
In Proc. 1st ACM Int. Workshop on Wireless Sensor
Networks and Applications (WSNA) 2002, 88-97.

[9] C. Olston, J. Jiang, and J. Widom. Adaptive filters for
continuous queries over distributed data streams. In Proc.
2003 ACM SIGMOD, 563-74.

[10] S. Raman, S. McCanne: A model, analysis, and protocol
framework for soft state-based communication. In Proc. of
the Conf. on Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM), 1999,
pp. 15-25.

[11] Sun Microsystems. Java Message Service.
http://java.sun.com/products/jms/

[12] Sun Microsystems. Java 2 Platform, Enterprise Edition.
http://java.sun.com/j2ee

[13] Washington State Department of Transportation,
http://www.wsdot.wa.gov

[14] H. Yu and A. Vahdat, Design and evaluation of a continuous
consistency model for replicated services, ACM Trans. on
Computer Systems 20(3), Aug 2002, 239-282.

298

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	5-2005

	Live Data Views: Programming Pervasive Applications that Use “Timely” and “Dynamic” Data
	Jay BLACK
	Paul CASTRO
	Archan MISRA
	Jerome WHITE
	Citation

	Proceedings Template - WORD

