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ABSTRACT 
In the absence of generic programming abstractions for dynamic 
data in most enterprise programming environments, individual 
applications treat data streams as a special case requiring custom 
programming. With the growing number of live data sources such 
as RSS feeds, messaging and presence servers, multimedia 
streams, and sensor data, a general-purpose client-server 
programming model is needed to easily incorporate live data into 
applications. In this paper, we present Live Data Views, a 
programming abstraction that represents live data as a time-
windowed view over a set of data streams. Live Data Views allow 
applications to create and retrieve stateful abstractions of dynamic 
data sources in a uniform manner, via the application of intra- and 
inter- stream operators. We provide details of our model and 
evaluate a proof-of-concept Live Data Views implementation to 
monitor traffic conditions on a highway. We also provide the 
preliminary design of a J2EE-based implementation, and outline 
some of the research challenges raised by this abstraction in a 
distributed computing environment. 

Categories and Subject Descriptors 
D.2.11 [Software Engineering]: Software Architectures—data 
abstraction, patterns; D.1.3 [Programming Techniques]:  
Concurrent Programming—concurrent programming, distributed 
programming 

General Terms 
Algorithms, Design, Measurement 

Keywords 
J2EE, dynamic data, stream operations, EJB, middleware 

1. INTRODUCTION 
A class of applications is emerging for effectively monitoring and 
adapting to the dynamic state of physical or virtual environments. 
This vision of large-scale monitoring applications has been 
embraced in several domains of pervasive and mobile computing, 
such as telematics, context-aware computing, business-process 

optimization, and environmental tracking (e.g., forest fires, 
intrusion detection). These applications obtain and harness data 
from heterogeneous sources that have liveness properties. Live 
data has a notion of currency, where recent values subsume older 
ones. Live data values are also dynamic relative to the lifetime of 
an application session. Liveness in data implies a notion of data 
elements as ephemeral entities:  when a data element becomes 
sufficiently stale, it has negligible utility and may be entirely 
disregarded. For example, an application that warns drivers of 
traffic congestion needs only the most up-to-date status reports, 
and may safely discard older status reports. (The obvious value of 
mining historical data is beyond the scope of this paper). 

Currently, applications that process live data use hard-coded logic 
that is not shared by other applications. Since each live data 
source requires unique logic for processing, any combination of 
live data from different sources must be treated as a special case. 
Moreover, enterprise-grade programming environments, such as 
J2EE or .NET, lack direct infrastructural elements or 
programming constructs to support the easy incorporation of live 
data into applications. A suitable “data-services” middleware 
component, exposing a portable and application-independent 
programming model, would allow applications to delegate much 
of the low-level data-processing logic to an opaque lower layer, 
and use a common, and hopefully simple, programming 
abstraction to easily incorporate live data of different types and 
from multiple sources into applications. 

In this paper,1 we present a programming abstraction for 
applications using live data. Since conventional databases are not 
optimized to support the high data-update rates often exhibited by 
such data sources, live data is viewed through the prism of 
streams. In this model, data sources frequently “push” typed data 
onto the network (e.g., formatted in XML) to be used by 
applications. Recent work, such as Telegraph [3] and Borealis [1], 
has looked at generic system-level abstractions and performance 
optimizations needed by data management systems that process 
data streams. However, a programming abstraction for connecting 
these systems to actual applications remains an open issue. We 
bridge the gap between the system-level stream-processing 
mechanisms and the programming tasks that application 
developers perform to incorporate live data as a first-class data 
type. Moreover, we introduce challenges related to scalability and 
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consistency that a runtime infrastructure for such a programming 
abstraction must address 

Our programming model represents live data as a set of streams 
over which we define a set of operators.  Our fundamental data 
abstraction is a Live Data View (LDV), which provides a time-
window view on a set of streams, each representing a distinct data 
source.  An LDV includes an explicitly timed and sequenced set 
of data elements from individual streams; the set evolves with the 
passage of time and the arrival of new stream elements. Live Data 
Views provide the following: 

•  Dynamic state-based “views” of data streams.   Applications 
that use live data typically monitor the state of a certain set of 
data sources that satisfy some functional criteria (such as 
those hospital patients currently posting critical alarms or 
those instant-messaging users currently in a particular office 
location). The LDV allows applications to create a dynamic 
state view, expressed via stream-based semantics.  This is 
similar to proposals for data-replica management using soft-
state protocols [10], except that our model generalizes the 
state representation across multiple data sources. 

•  Expression (summarization) of state through intra- and inter-
stream operators.  The application state is defined as the 
result of an operator applied to the data sequence within each 
individual stream, followed by an operator across streams to 
summarize the collective state. For example, a stream that 
reports the current temperature of a hot spring can be 
summarized via average, max or min operators on 
temperature values in the last half hour. This can drive a top-
k operator that reports the values (or IDs) of the 5 hottest 
springs.   

•  Measures of divergence between dynamic state replicas. 
Liveness implies that not only data values, but also the 
freshness of the data, contribute to replica divergence.  

As a proof of concept, we have developed two traffic-monitoring 
applications that infer the current traffic levels on a highway using 
processed images from live video feeds. Our sample applications 
illustrate an important benefit: the LDV provides a generic and 
reusable server-side component that significantly lowers the 
communication overhead observed by application clients that use 
the derived “state,” as opposed to custom clients that operate on 
the raw streaming data.  In the remainder of this paper, Section 2 

formalizes the definition of the Live Data View, and presents the 
parameters used to define a specific LDV. Section 3 then 
describes how our model is incorporated into an application. 
Next, Section 4 describes and evaluates our webcam-based traffic 
monitoring applications. Section 5 then presents challenges with 
implementing our model within an enterprise programming 
environment, and with building consistency metrics for managing 
replicas of Live Data Views. We present related work in 
Section 6. Section 7 concludes the paper with a discussion of 
future work. 

2. OVERVIEW OF THE LDV MODEL 
A live data view (LDV) provides access for clients to simple, 
current state information, derived from a large, changing set of 
independent message sources.  An LDV is designed to impose 
minimal temporal and reliability constraints on its sources, and to 
be highly scalable. As shown in Figure 1, the model is based on 
an abstract two-dimensional matrix, with time along one 
dimension and sources along the other, a notion of “current” 
information, and two orthogonal summarization operations 
providing simple state that clients can obtain by direct queries or 
subscription to change notifications. 

We assume all sources of a particular type provide messages that 
conform to a common XML schema, and that the LDV can 
uniquely identify each source.  Messages are stamped by the 
source with a sequence number that increases monotonically; 
sequence numbers from two different sources are incomparable, 
and sources do not have synchronized clocks.  Due to unreliable 
message delivery, messages from a single source may be 
reordered, delayed, or dropped.  However, to provide some notion 
of current data, all messages are also timestamped by the LDV on 
receipt, that is, on entry at the top left corner of Figure 1.  A 
“membership specification” filters arriving messages based on 
per-message attributes, resulting potentially in fewer sources and 
messages. 

After timestamping and filtering, each message is added to the 
stream of recent messages for its source.  The most recent message 
arriving no more than τ seconds ago is considered the current 
message for the stream, if any.  Messages older than T seconds 
expire and are discarded, as are empty streams.  The messages in 
unexpired streams are used to calculate intra-source summaries 

 

Figure 1. Diagram of a Live Data View and example code. In the call to ‘getView’, the programmer defines SSpec, MSpec and 
T. It is in the instantiation of the function object, f2, that the window duration, ττττ, is specified. 
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(function f1), and the client-visible state of the LDV is then 
calculated by applying the inter-source summary, f2, to the results. 

Formally, an application views its interaction with the LDV in 
terms of the specification of the following components: 

• Source Specification (SSpec) indicates the set of sources of 
interest. This is usually defined as a specification of the 
schema that each source exposes, and the semantic meaning 
associated with the source data values (e.g., values from 
TRAFFIC sensors in the figure).  

• Membership Specification (MSpec) indicates which 
messages should be processed by the LDV, and is defined as 
a predicate on the values of various attributes of the message 
(e.g., traffic sensors in PASADENA). 

• T is the “time to live” of messages in the LDV, calculated 
from the timestamp on entry, and τ is the time an arriving 
message remains current unless it is superceded by a more 
recent message from that stream. 

• Intra-Stream Summary Operator (f1) indicates the 
computation to be performed over the sequence of elements 
in each unexpired stream. Examples of f1 include average or 
exponential average (over all data elements), sum (over 
all elements) or current (which provides the current element, 
if any).  

• Inter-Stream Summary Operator (f2) indicates the 
computation to be performed over the results of f1. f2 
captures the creation of state across streams, and may be used 
either to reduce the set of relevant stream values (e.g., a top-
10 or max operator), or to fuse values of different sources 
(e.g., derive a probabilistic estimate of “intruder detection” 
using readings from multiple cameras).  

• Specification operator (Spec) indicates what LDV state 
events trigger a corresponding notification to the application. 
This may include “active” (notification of any state change) 
or “delta” (notification when the state changes by an 
appropriate threshold or percentage), defined over the output 
of f2. 

The LDV model is clearly much simpler, compared to the 
semantics of conventional messaging systems (e.g., [6]) or stream 
operators. This is the outcome of a conscious effort to define a 
“bare-minimum” abstraction that can be implemented within a 
conventional enterprise programming environment such as J2EE, 
while possessing enough semantic richness to support a large 
class of “event-monitoring” live-data applications.  

The LDV model has a rather loose definition of “time,” without 
strict temporal or reliability guarantees. This is intentional—our 
programming model is directed towards applications such as 
environment monitoring that have no hard real-time constraints. 
Moreover, in a practical implementation, each source would 
presumably publish its data elements using best-effort APIs (e.g., 
the Java Messaging Service (JMS) Publish Subscribe Interface 
[11]) with little or no coordination with other sources. Imposing 
reliable delivery semantics (such as guaranteed, once-only 
delivery) in a distributed environment requires fairly complex 
messaging-systems infrastructure (e.g., Gryphon [2]), which 
seemed to be overkill for many of our target applications.  The 
loose and very flexible use of timestamps makes the LDV model 
useful mostly in general-purpose, “best-effort” enterprise 

programming environments, and is too lax for applications where 
fine-grained relative time differentiation is critical. Moreover, as 
sequence numbers have no cross-stream significance, an LDV 
cannot be used for precise temporal correlation of streams. The 
LDV model implicitly assumes that both T and τ are reasonably 
large compared to the stream arrival rate, so that phase effects 
between streams are not a real concern. Thus, LDV provides a 
much more relaxed notion of consistency than stateful messaging-
oriented middleware (e.g., SMILE [7]), and intuitively aims to 
manipulate physical state that is certainly evolutionary, but not 
singleton-transient. For example, in our sample traffic-monitoring 
application, the occasional loss of a “congestion level” report 
from a particular webcam source is not critical; the application is 
really interested more in the medium-term state, rather than 
singleton data elements. Moreover, while traffic congestion levels 
change over minutes, they will certainly not change radically 
between successive readings from a webcam reporting every 30 
seconds, and clock offsets of a few seconds between different 
camera readings are unimportant. 

The explicit use of orthogonal summary functions f1 and f2 
restricts an LDV to cases where the derived state is decomposable 
along the two axes. Functions f1 and f2 are driven by observations 
on the emerging category of sensor-driven applications. f1 can be 
viewed as a smoothing operator that eliminates the impact of 
noisy singletons, typically generated by error-prone or unreliable 
sensors. f2, on the other hand, can be viewed not just as a means 
of filtering to reduce the client traffic (e.g., selecting the top two 
congested road sections), but also as a way to construct derived 
state from individual sensor values. 

3. CLIENT PROGRAMMING W ITH LIVE 
DATA VIEWS 
There are two distinct aspects to Live Data Views:  the client-side 
programming model and the server-side infrastructure needed to 
maintain it. In this section, we describe the programmatic 
abstraction for using an LDV to incorporate live data into an 
application. We discuss server-side issues in Section 5. 

From the application-client perspective, LDV programming is 
similar to database programming, where a client establishes a 
connection to a database, and then specifies a data structure (e.g., 
a rowset) that represents a view over data in the database. Unlike 
database programming, however, the LDV client must remain in 
communication with the server to receive updates. We assume this 
is done through asynchronous messaging to reduce the number of 
open network connections. To reduce the overhead of this 
communication, an LDV client is updated only if the real LDV 
state changes significantly, as expressed by the Spec parameter. 

To complete the server-side specification of an LDV, the 
programmer specifies the SSpec, the MSpec, the window duration 
T, and τ (see Figure 1). As elements come into the LDV, they are 
scheduled for removal after T seconds. The SSpec and the MSpec 
define the type of information the client is interested in, and these 
are passed on to the server, which is responsible for the initial 
processing of streamed data. For example, the SSpec could be a 
topic name and the MSpec could be a simple predicate over 
attribute-value pairs, as in JMS.  

The LDV server component collects data to represent the dynamic 
state; the programmer can then summarize the state by specifying 
f1 and f2. Common statistical operators over numerical values such 
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as average, max, and min, would be included as part of the 
standard LDV operator package. Alternatively, for example, a 
programmer can implement function objects that process XML 
data from RSS feeds by extending the default f1 and f2 classes. 
Thus, the decision to extend f1 or f2 depends solely on the 
application. All function objects must implement an apply() 
method, which is called by the LDV when a value is added to the 
array. The apply() method in an f1 object is designed to work 
over each stream of the entire LDV, while that of the f2 object is 
designed to work over the return type of f1.  During the operation 
of the LDV, dynamic alterations to function objects and update 
policies are allowed. 

The client interacts with an instantiated LDV by either 
synchronous calls for the state, or via subscriptions for specific 
events in, or changes to, the LDV’s state.  Examples of these 
events include “current value for source s1 has changed,” “current 
value for f2 has changed,” “current value for f1 for source s1 has 
changed”, “data element for s1 has expired,” etc.  

4. REAL-TIME HIGHWAY TRAFFIC 
MONITORING 
In this section, we describe our proof-of-concept, Java-based 
implementation of an LDV system that keeps track of traffic 
conditions on a highway. We have developed two related 
applications: one that requires the conditions of the top 20% of 
the “currently congested” roadways, and another that wishes to be 
apprised of roadway sections where congestion is building up 
(i.e., “average” recent delays that have a positive derivative). 
Monitoring traffic is something that lends itself well to the LDV 
concept, as road conditions change constantly and traffic 
information is readily available.  

In our prototype, we implemented a software-based traffic 
“sensor” that periodically downloads the latest JPEG image of a 
particular highway section from a public, web-based highway 
camera. The sensor exists off-board from the client and “streams 
out” status reports to LDVs. This report includes the location of 
the traffic sensor, the relative level of traffic (high, medium, low), 
and a co-efficient used internally by the traffic sensor to determine 
traffic levels.  Our sensor calculates traffic congestion levels by 
employing edge detection and subtraction of successive images as 
a measure of motion.  For our purposes, we use cameras available 
for highways in Connecticut [4] and Seattle [13], and download 
images at various rates, though the maximum update rate for a 
traffic camera is typically once every 30 to 90 seconds. 

To find areas containing the most traffic, we used an f1 which kept 
a moving average of traffic values for each camera, while f2 
returned the top 20% of those moving averages. To find areas of 
increasing traffic, f1 computed the difference between moving 
average values of the sensor reports for each individual stream, 
while f2 extracted all values that were positive. Both clients were 
“active,” meaning they subscribed to automatic updates from the 
LDV.  

To measure the data passing through the system, we monitored the 
three areas in which data is exchanged: at the filter, the LDV, and 
the client. The filter was the first point of entry into the LDV for 
information sent by sensors. It exists within the LDV framework, 
and its purpose here was to ensure that error values from the 
sensors did not make their way into the LDV. The filter also deals 
with out-of-order messages. Measuring the data flow into the filter 

is significant because it represents the input of raw data from the 
sensor. Without the presence of the LDV, this data would go 
directly to the client.  With our nominal filtering, the traffic client 
in both applications received, on average, 50% or less of the data 
sent from the sensors. 

5. LDV SERVER RUNTIME 
IMPLEMENTATION AND CHALLENGES  
A distributed server-side implementation of the LDV abstraction 
is not a trivial task, and must address three particular challenges. 

•  Source Scalability: The LDV must be capable of scaling to a 
very large number (O(10,000) and above) of potential data 
sources. 

•  Many Packet Arrival and Timer Events:  The LDV must also 
be able to deal with the potentially high rate of timer-based 
events (such as data expiration or staleness) imposed by the 
time-based model. 

•  Time-Based Weak Consistency:  Different clients or 
application instances may have different tolerances for 
divergence from the “current” state of the LDV. 

We now outline an approach to dealing with the first two 
challenges through the use of “industry-standard” runtime 
environments, and return later to the third. 

The J2EE programming model [12], including Enterprise Java 
Beans (EJBs), defines a runtime architecture for component-based 
enterprise applications. They execute in a server “container” 
infrastructure that provides consistency, scalability, concurrency, 
and distribution. The EJB model is presently geared towards 
“static” data, principally stored in backend databases. However, 
an appropriate combination of the functionality of various EJBs 
allows us to develop a runtime component that supports the LDV 
abstraction over data streams, while still leveraging the underlying 
scalability of the J2EE container. 

Figure 2 presents only one of several possible approaches to 
optimizing an LDV implementation across multiple clients, where 
multiple clients of the same type of dynamic data are likely to 
possess identical notions of liveness (same T and τ), and differ 
only in the choice of operators. The investigation and evaluation 
of alternative J2EE-based runtime implementations (e.g., a 
separate LDV for each client), required for other forms of client 
heterogeneity, is part of ongoing work. 

The Spec threshold in the LDV model allows a particular client’s 
“view” of the state to diverge from the true “time-windowed” state 
by a tolerance threshold D. This is really a form of weak 
consistency that can reduce the traffic volume between an LDV 
server and the client. For example, we measured the message 

Figure 2.  Server-side implementation of a Live Data View 
using J2EE 
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volume of our “top 20%” traffic application for different values of 
D, where D represents the minimum amount of change in 
consecutive f2 results that warrants an update of the client. Even a 
small value of D reduced the traffic volume by 20%, while larger 
values of D provided savings up to 40%.  This helps increase the 
scalability of LDVs.  

Moreover, defining tolerance over an LDV in terms of a 
divergence measure introduces a new time-based weak-
consistency model across multiple clients. The consistency 
semantics are also crucial for efficiently maintaining multiple 
replicas of the same LDV on different servers in a distributed 
runtime environment. We believe that research into this novel 
concept of “consistency over time-derived views” will create new 
consistency semantics that complement the extant work [5][13], 
which supports multiple consistency models over either data from 
individual streams or over time-independent database relations. 

6. RELATED WORK 
Applications centered on monitoring the physical environment are 
prevalent in many domains, including the wireless sensor 
community.  Mainwaring et al. [8] presents a reference 
architecture for habitat monitoring of microclimates, where 
distributed sensors generate data streams that are processed by 
backend servers. LDV should provide a useful programming tool 
for clients that use such sensor information. Network monitoring 
is another application area that could benefit from LDVs. 

Using highly dynamic data requires specialized data-stream 
processing architectures optimized for rapid updates. Researchers 
are investigating scalability and modeling issues for stream 
processing systems. Telegraph [3] and Borealis [1] both provide a 
fundamental set of relational-like operators that can be applied to 
streams and both look at adaptive techniques to optimize the 
throughput of query processing. LDV extends this work to 
provide a simplified application-level abstraction of dynamic data 
as a set of streams. One main goal of LDV is to improve 
programmer productivity when using live data in an application; 
additionally, its server-side components can be used to reduce 
communication costs as well as the overhead of a stream 
processing system through judicious LDV replica management. 

LDV not only attempts to model streams, but acts as the 
representation of dynamic state. In this sense it is closely related 
to messaging work such as Gryphon [2] and SMILE [7].  In 
particular, SMILE is an overlay for a messaging network that 
captures state using a relational model. SMILE is designed to 
support applications that require a stricter notion of data fidelity 
(e.g. banking applications) by providing somewhat ACID-like 
guarantees.  LDV differs from SMILE in its fundamental 
modeling approach:  LDV is designed for applications that can 
tolerate some amount of imprecision as found in [9]. 

7. CONCLUSIONS AND FUTURE WORK 
The LDV model is still in early stages of development. As part of 
ongoing work, we are investigating the set of “standard” operators 
that can support a large number of applications. Additionally, we 
will try and uncover deeper primitives that may functions as 
operators between LDVs (e.g. a join operator). 

Scalability issues remain a major focus for our work. We plan to 
investigate alternative server-side architectures that can work 
seamlessly with clients to process live data. Overall, combining a 

scalable architecture with intelligent replication support remains 
an open and challenging research problem. In addition, we are 
also interested in identifying and prototyping other applications 
that will require our technology. 
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