Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

5-2008

Live Data Views: Pro gramming Pervasive
Applications that Use “Timely” and “Dynamic”
Data

Jay BLACK
IBM T.]. Watson Research Center

Paul CASTRO
IBM T.]. Watson Research Center

Archan MISRA

Singapore Management University, archanm@smu.edu.sg

Jerome WHITE
IBM T.]. Watson Research Center

DOI: https://doi.org/10.1145/1071246.1071294

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Software Engineering Commons

Citation

BLACK, Jay; CASTRO, Paul; MISRA, Archan; and WHITE, Jerome. Live Data Views: Programming Pervasive Applications that Use
“Timely” and “Dynamic” Data. (2005). MDM '0S: Proceedings of the 6th International Conference on Mobile Data Management: May
9-13, Ayia Napa, Cyprus. 294-298. Research Collection School Of Information Systems.

Available at: https://ink.library.smu.edu.sg/sis_research/691

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized

administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/1071246.1071294
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Live Data Views: Programming Pervasive Applications
That Use “Timely” and “Dynamic” Data

Jay Black,” Paul Castro, Archan Misra, Jerome White™
IBM T.J. Watson Research Center, Hawthorne, NY
jpblack@uwaterloo.ca, castrop@us.ibm.com, archan@us.ibm.com, jerome@cs.caltech.edu

ABSTRACT

In the absence of generic programming abstractionglynamic
data in most enterprise programming environmemtdjvidual
applications treat data streams as a special egséring custom
programming. With the growing number of live dataices such
as RSS feeds, messaging and presence serversmetii
streams, and sensor data, a general-purpose stergr
programming model is needed to easily incorporigtedata into
applications. In this paper, we present Live Datews, a
programming abstraction that represents live dataaatime-
windowed view over a set of data streams. Live Da¢avs allow
applications to create and retrieve stateful abstnas of dynamic
data sources in a uniform manner, via the appdioatif intra- and
inter- stream operators. We provide details of madel and
evaluate a proof-of-concept Live Data Views implamg&on to
monitor traffic conditions on a highway. We alsooyide the
preliminary design of a J2EE-based implementatard outline
some of the research challenges raised by thigaatish in a
distributed computing environment.

Categories and Subject Descriptors

D.2.11 [Software Engineerind: Software Architectures—data
abstraction, patterns; D.1.3 Pfogramming Techniqueg:
Concurrent Programming—concurrent programming, itisted
programming

General Terms
Algorithms, Design, Measurement

Keywords

J2EE, dynamic data, stream operations, EJB, middkew

1. INTRODUCTION

A class of applications is emerging for effectivatpnitoring and
adapting to the dynamic state of physical or vireravironments.
This vision of large-scale monitoring applicatiomas been
embraced in several domains of pervasive and mabitguting,
such as telematics, context-aware computing, bssipeocess

Permission to make digital or hard copies of allpart of this
work for personal or classroom use is granted withfee
provided that copies are not made or distributed pimfit or
commercial advantage and that copies bear thiceatnd the
full citation on the first page. To copy otherwise republish, to
post on servers or to redistribute to lists, reggliprior specific
permission and/or a fee.

MDM 2005May 9-13, Ayia Napa, Cyprus

(c) 2005 ACM 1-59593-041-8/05/05....$5.00

294

optimization, and environmental tracking (e.g., efir fires,
intrusion detection). These applications obtain Aadhess data
from heterogeneous sources that héivenessproperties. Live
data has a notion @urrency where recent values subsume older
ones. Live data values are also dynamic relativihédifetime of
an application session. Liveness in data implie®t@#on of data
elements as ephemeral entities: when a data elebssomes
sufficiently stale, it has negligible utility andawy be entirely
disregarded. For example, an application that walmgers of
traffic congestion needs only the most up-to-da#¢us reports,
and may safely discard older status reports. (Hhwioos value of
mining historical data is beyond the scope of faper).

Currently, applications that process live data hesel-coded logic
that is not shared by other applications. Sincehdae data
source requires unique logic for processing, ampbioation of
live data from different sources must be treated apecial case.
Moreover, enterprise-grade programming environmesush as
J2EE or .NET, lack direct infrastructural elementy
programming constructs to support the easy incatfor of live
data into applications. A suitable “data-servicesfddleware
component, exposing a portable and applicationgaddent
programming model, would allow applications to defie much
of the low-level data-processing logic to an opatpweer layer,
and use a common, and hopefully simple, programming
abstraction to easily incorporate live data of etéht types and
from multiple sources into applications.

In this paper, we present a programming abstraction for
applications using live data. Since conventionahblases are not
optimized to support the high data-update ratemncaéixhibited by
such data sources, live data is viewed through ptiem of
streams. In this model, data sources frequentlgtiptyped data
onto the network (e.g., formatted in XML) to be dsbéy
applications. Recent work, such as Telegraph [@]Barealis [1],
has looked at generic system-level abstractionspamnfbrmance
optimizations needed by data management systerhgptbeess
data streams. However, a programming abstractiondionecting
these systems to actual applications remains an gsee. We
bridge the gap between the system-level streamepsity
mechanisms and the programming tasks that applicati
developers perform to incorporate live data asrst-6lass data
type. Moreover, we introduce challenges relatesctability and

! Authors listed alphabetically

" Work performed while authors were visiting IBM Rasch. Jay
Black is currently at the University of Waterlo@rdme White is
currently at the California Institute of Technology

Mambaership
Specification

Source

LiveDataView ldv =
LiveDataView.getView|
Broker . TRAFFIC,
Broker . PASADENA,
180 * 1000);
ldv.setListener(this,
new FunctionFl(),
Inter- new FunctionF2(20}),
Source LiveDatavView.ACTIVE);

Summary

Figure 1. Diagram of a Live Data View and exampleade. In the call to ‘getView’, the programmer defires SSpec, MSpec and
T. Itis in the instantiation of the function objed, f,, that the window duration, T, is specified.

consistency that a runtime infrastructure for saghrogramming
abstraction must address

Our programming model represents live data as @fsstreams
over which we define a set of operators. Our fumelstal data
abstraction is a Live Data View (LDV), which proesl a time-
window view on a set of streams, each represeatidigtinct data
source. An LDV includes an explicitly timed andjsenced set
of data elements from individual streams; the setves with the
passage of time and the arrival of new stream el&sneive Data
Views provide the following:

« Dynamic state-based “viewsif data streams. Applications
that use live data typically monitor the state ckaain set of
data sources that satisfy some functional critésizch as
those hospital patients currently posting critieddrms or
those instant-messaging users currently in a peatioffice
location). The LDV allows applications to createlymamic
state view, expressed via stream-based semanfibss is
similar to proposals for data-replica managemeirtgusoft-
state protocols [10], except that our model geimrsalthe
state representation across multiple data sources.

» Expression (summarization) of stateough intra- and inter-
stream operators. The application state is defiagdhe
result of an operator applied to the data sequeitbé each
individual stream, followed by an operator acraseasns to
summarize the collective state. For example, aastréhat
reports the current temperature of a hot spring baen
summarized viaaverage, max oOr min operators on
temperature values in the last half hour. Thisdid@wve atop-
k operator that reports the values (or IDs) of theoftest
springs.

* Measuresof divergence between dynamic state replicas.

Liveness implies that not only data values, bub aise
freshness of the data, contribute to replica dieecg.

As a proof of concept, we have developed two traffonitoring

applications that infer the current traffic levels a highway using
processed images from live video feeds. Our sampfdications
illustrate an important benefit: the LDV providesganeric and
reusable server-side component that significandwels the
communication overhead observed by applicatiomtdi¢hat use
the derived “state,” as opposed to custom cligmas dperate on
the raw streaming data. In the remainder of thjsep, Section 2

295

formalizes the definition of the Live Data View,dpresents the
parameters used to define a specific LDV. Sectioth@n

describes how our model is incorporated into anliegton.

Next, Section 4 describes and evaluates our welbeem®d traffic
monitoring applications. Section 5 then presentlehges with
implementing our model within an enterprise prograny

environment, and with building consistency metfmsmanaging
replicas of Live Data Views. We present related kvan

Section 6. Section 7 concludes the paper with audson of
future work.

2. OVERVIEW OF THE LDV MODEL

A live data view (LDV) provides access for cliertts simple,

current state information, derived from a largearging set of
independent message sources. An LDV is designdthpose

minimal temporal and reliability constraints on stsurces, and to
be highly scalable. As shown in Figure 1, the masiddased on
an abstract two-dimensional matrix, with time alompe

dimension and sources along the other, a notioficofrent”

information, and two orthogonal summarization ofiers

providing simple state that clients can obtain beat queries or
subscription to change notifications.

We assume all sources of a particular type promdssages that
conform to a common XML schema, and that the LDW ca
uniquely identify each source. Messages are stdnipyethe
source with a sequence number that increases muoally;
sequence numbers from two different sources areniparable,
and sources do not have synchronized clocks. Dumteliable
message delivery, messages from a single source Ineay
reordered, delayed, or dropped. However, to pesiaine notion
of current data, all messages are also timestatmpée LDV on
receipt, that is, on entry at the top left cornérFgure 1. A
“membership specification” filters arriving messagkased on
per-message attributes, resulting potentially imefesources and
messages.

After timestamping and filtering, each messageddea to the
stream of recent messages for its source. The n@csht message
arriving no more thart seconds ago is considered the current
message for the stream, if any. Messages older Theeconds
expire and are discarded, as are empty streams.mEssages in
unexpired streams are used to calculate intra-sosuenmaries

(function f), and the client-visible state of the LDV is then
calculated by applying the inter-source summatpfthe results.

Formally, an application views its interaction withe LDV in
terms of the specification of the following compatse

* Source SpecificatiofiSSpec) indicates the set of sources of
interest. This is usually defined as a specificataf the
schema that each source exposes, and the semaaiGng
associated with the source data values (e.g., walgm
TRAFFIC sensors in the figure).

« Membership Specification (MSpec) indicates which
messages should be processed by the LDV, andirededs
a predicate on the values of various attributethefmessage
(e.g., traffic sensors in PASADENA).

e T is the “time to live” of messages in the LD\alaulated
from the timestamp on entry, andis the time an arriving
message remains current unless it is supercede rhgre
recent message from that stream.

e Intra-Stream Summary Operator(f;) indicates the
computation to be performed over the sequenceenhehts
in each unexpired stream. Examples,;dh€ludeaverage or
exponential average (over all data elementsyum (over
all elements) ocurrent (which provides the current element,
if any).

e Inter-Stream Summary Operator(f,) indicates the
computation to be performed over the results pof ff
captures the creation of state across streamspawpde used
either to reduce the set of relevant stream valegs, atop-

10 or max operator), or to fuse values of different sources
(e.g., derive a probabilistic estimate of “intrudtatection”
using readings from multiple cameras).

» Specification operator(Spec) indicates what LDV state
events trigger a corresponding notification to apelication.
This may include “active” (notification of any stathange)
or “delta” (notification when the state changes bag
appropriate threshold or percentage), defined theeoutput
of f.

The LDV model is clearly much simpler, compared tte
semantics of conventional messaging systems (6]yor stream
operators. This is the outcome of a conscious tefodefine a
“bare-minimum” abstraction that can be implementethin a
conventional enterprise programming environmenhsag J2EE,
while possessing enough semantic richness to supgpdarge
class of “event-monitoring” live-data applications.

The LDV model has a rather loose definition of ‘#fhwithout
strict temporal or reliability guarantees. Thisirgentional—our
programming model is directed towards applicatisueh as
environment monitoring that have no hard real-ticoastraints.
Moreover, in a practical implementation, each seuwould
presumably publish its data elements using bestteffPIs (e.g.,
the Java Messaging Service (JMS) Publish Subsdritezface
[11]) with little or no coordination with other smes. Imposing
reliable delivery semantics (such as guaranteed;e-only
delivery) in a distributed environment requiresrlfaicomplex
messaging-systems infrastructure (e.g., Gryphon [2§hich
seemed to be overkill for many of our target aggtians. The
loose and very flexible use of timestamps maked.ib¥ model
useful mostly in general-purpose, “best-effort” erptise

296

programming environments, and is too lax for agpléns where
fine-grained relative time differentiation is ccitil. Moreover, as
sequence numbers have no cross-stream significamcé,DV

cannot be used for precise temporal correlatiostafams. The
LDV model implicitly assumes that both T amdare reasonably
large compared to the stream arrival rate, so phaise effects
between streams are not a real concern. Thus, LDViges a
much more relaxed notion of consistency than sibteéssaging-
oriented middleware (e.g., SMILE [7]), and intuély aims to

manipulate physical state that is certainly evolairy, but not
singleton-transient. For example, in our sampl#i¢ranonitoring

application, the occasional loss of a “congestiewel’ report

from a particular webcam source is not criticak #pplication is
really interested more in the medium-term statehera than

singleton data elements. Moreover, while traffiogestion levels
change over minutes, they will certainly not chamgdically

between successive readings from a webcam repoetingy 30

seconds, and clock offsets of a few seconds betwiféerent

camera readings are unimportant.

The explicit use of orthogonal summary functionsahd $
restricts an LDV to cases where the derived statiecomposable
along the two axes. Functionsand § are driven by observations
on the emerging category of sensor-driven apptioatif can be
viewed as a smoothing operator that eliminatesitmgact of
noisy singletons, typically generated by error-gram unreliable
sensors.,f on the other hand, can be viewed not just asanme
of filtering to reduce the client traffic (e.g.,|seting the top two
congested road sections), but also as a way taroehslerived
state from individual sensor values.

3. CLIENT PROGRAMMING W ITH LIVE
DATA VIEWS

There are two distinct aspects to Live Data Views client-side
programming model and the server-side infrastrecneeded to
maintain it. In this section, we describe the paogmatic
abstraction for using an LDV to incorporate livetalanto an
application. We discuss server-side issues in @eé&ti

From the application-client perspective, LDV pragmaing is
similar to database programming, where a clienabdishes a
connection to a database, and then specifies asttatdure (e.g.,
arowse) that represents a view over data in the datatésike
database programming, however, the LDV client nastain in
communication with the server to receive updates.agdsume this
is done through asynchronous messaging to redeceuimber of
open network connections. To reduce the overheadhisf
communication, an LDV client is updated only if treal LDV
state changes significantly, as expressed by tee Sarameter.

To complete the server-side specification of an |.Ditie
programmer specifies the SSpec, the MSpec, theowirdtlration
T, andT (see Figure 1). As elements come into the LDVy the
scheduled for removal after T seconds. The SSpa¢henMSpec
define the type of information the client is intgtesl in, and these
are passed on to the server, which is responsiisl¢hk initial
processing of streamed data. For example, the S&pdd be a

topic nameand the MSpec could be a simple predicate over

attribute-value pairs, as in JMS.

The LDV server component collects data to repregentlynamic
state; the programmer can then summarize the lsya$pecifying
f, and $. Common statistical operators over numerical \@hiech

as average, max, and min, would be included as part of the is significant because it represents the inputaef data from the
standard LDV operator package. Alternatively, foample, a sensor. Without the presence of the LDV, this datauld go

programmer can implement function objects that @secXML directly to the client. With our nominal filteringhe traffic client

data from RSS feeds by extending the defaulirfd § classes. in both applications received, on average, 50%ess bf the data
Thus, the decision to extend br f, depends solely on the sentfrom the sensors.

application. All function objects must implement appl y()

method, which is called by the LDV when a valuadsied to the 5. LDV SERVER RUNTIME
array. Theappl y() method in anjfobject is designed to work IMPLEMENTATION AND CHALLENGES

g\ézir iightst\r/\?;r: cc))\];et:]fhinrtgtirlr_thV,gh;lngnﬁtﬁs gbﬁgﬂgn A distributed server-side implementation of the LR¥WStraction
9 ype 0 9 P is not a trivial task, and must address three @adr challenges.

of the LDV, dynamic alterations to function objeetsd update

policies are allowed. e Source ScalabilityThe LDV must be capable of scaling to a
The client interacts with an instantiated LDV byther \Slg[jyrclggge number (O(10,000) and above) of potérwiaa

synchronous calls for the state, or via subscriggtifor specific
events in, or changes to, the LDV's state. Exampmlethese * Many Packet Arrival and Timer Event3he LDV must also

events include “current value for sourgenas changed,” “current be able to deal with the potentially high rate iofer-based
value for § has changed,” “current value for fbr source shas events (such as data expiration or staleness) mdpbyg the
changed”, “data element for kas expired,” etc. time-based model.

e Time-Based Weak Consistency Different clients or
4. REAL-TIME HIGHWAY TRAFFIC application instances may have different toleranfes
MONITORING divergence from the “current” state of the LDV.
In this section, we describe our proof-of-concejya-based ~ we now outline an approach to dealing with thet fitwo
implementation of an LDV system that keeps tracktraffic challenges through the use of “industry-standardghtime

conditions on a highway. We have developed twotedla environments, and return later to the third.
applications: one that requires the conditionshef top 20% of
the “currently congested” roadways, and anotherlishes to be
apprised of roadway sections where congestion iklibg up
(i.e., “average” recent delays that have a positiegivative).
Monitoring traffic is something that lends itselelvto the LDV
concept, as road conditions change constantly aaffict
information is readily available.

The J2EE programming model [12], including EntespriJava
Beans (EJBs), defines a runtime architecture fanpmment-based
enterprise applications. They execute in a senmmtainer”
infrastructure that provides consistency, scalghitoncurrency,
and distribution. The EJB model is presently gearedards
“static” data, principally stored in backend datdm However,
an appropriate combination of the functionalityvafious EJBs

In our prototype, we implemented a software-baseaffid allows us to develop a runtime component that stipghe LDV
“sensor” that periodically downloads the latest GPifnage of a abstraction over data streams, while still levergdghe underlying
particular highway section from a public, web-badgeghway scalability of the J2EE container.

camera. The sensor exists off-board from the clemt “streams
out” status reports to LDVs. This report includas tocation of
the traffic sensor, the relative level of trafffagh, medium, low),
and a co-efficient used internally by the traffemsor to determine
traffic levels. Our sensor calculates traffic cestipn levels by
employing edge detection and subtraction of suoseanages as
a measure of motion. For our purposes, we usereameailable
for highways in Connecticut [4] and Seattle [13}dadownload
images at various rates, though the maximum upgdseefor a
traffic camera is typically once every 30 to 90cs@ts. The Spec threshold in the LDV model allows a patéicclient’s
“view” of the state to diverge from the true “timéndowed” state
by a tolerance threshold D. This is really a forrh veeak
consistency that can reduce the traffic volume betwan LDV
server and the client. For example, we measuredntbssage

Figure 2 presents only one of several possible cgores to
optimizing an LDV implementation across multipléeals, where
multiple clients of the same type of dynamic data kkely to
possess identical notions of liveness (same Tw®@ndnd differ
only in the choice of operators. The investigatiomd evaluation
of alternative J2EE-based runtime implementatioesg.(a
separate LDV for each client), required for othemnfs of client
heterogeneity, is part of ongoing work.

To find areas containing the most traffic, we uaed; which kept

a moving average of traffic values for each camevhile f,
returned the top 20% of those moving averages.iricb dreas of
increasing traffic, f computed the difference between moving
average values of the sensor reports for each ithdiV stream,

while f, extracted all values that were positive. Bothrabewere A2 [Foston semer e ¥ i
“active,” meaning they subscribed to automatic upsldrom the = rm— | Been: } 5| "E
LDV. - .h__ ;.-I - Stateful Session ? = ‘

£ davm YeEY . ! ' vent | 3 .
To measure the data passing through the systemmonéored the ¥ r-;e:sm Iu N Jealle ¢ i _{.-—z’ *{' -
three areas in which data is exchanged: at ttez,filhe LDV, and m.'»'-,.--':m\._..-:r-"' - ey Y\—. r
the client. The filter was the first point of eninto the LDV for \ Bewn SarvorSito l_\ soan I\ o |
information sent by sensors. It exists within tHe_framework,

and its purpose here was to ensure that error yaham the
sensors did not make their way into the LDV. Tlteffialso deals Figure 2. Server-side implementation of a Live Dat View
with out-of-order messages. Measuring the data ffdavthe filter usina J2EE

297

volume of our “top 20%" traffic application for d&rent values of
D, where D represents the minimum amount of chaimge
consecutivefresults that warrants an update of the clientnkve
small value of D reduced the traffic volume by 20#hijle larger
values of D provided savings up to 40%. This hahgsease the
scalability of LDVs.

Moreover, defining tolerance over an LDV in term$ @
divergence measure
consistency model across multiple clients. The isterscy
semantics are also crucial for efficiently mainiagn multiple
replicas of the same LDV on different servers imlistributed
runtime environment. We believe that research ihis novel
concept of “consistency over time-derived viewsll wieate new
consistency semantics that complement the extank y&3[13],
which supports multiple consistency models overegidata from
individual streams or over time-independent databaktions.

6. RELATED WORK

Applications centered on monitoring the physicaliemment are
prevalent in many domains, including the wirelessnser
community. Mainwaring et al.[8] presents a reference
architecture for habitat monitoring of microclimatewhere
distributed sensors generate data streams thagpracessed by
backend servers. LDV should provide a useful pnognang tool
for clients that use such sensor information. Nekwaonitoring
is another application area that could benefit ftddv's.

Using highly dynamic data requires specialized -dateam
processing architectures optimized for rapid upla®esearchers
are investigating scalability and modeling issues $tream
processing systems. Telegraph [3] and Boreali®§ih provide a
fundamental set of relational-like operators thet be applied to
streams and both look at adaptive techniques tanaa the
throughput of query processing. LDV extends thisrkwdo
provide a simplified application-level abstractiohdynamic data
as a set of streams. One main goal of LDV is torawe
programmer productivity when using live data inapplication;
additionally, its server-side components can bed usereduce
communication costs as well as the overhead of rearst
processing system through judicious LDV replica agement.

LDV not only attempts to model streams, but acts tlaes
representation of dynamic state. In this sensg ddsely related
to messaging work such as Gryphon [2] and SMILE [7h

particular, SMILE is an overlay for a messagingweek that
captures state using a relational model. SMILE ésighed to
support applications that require a stricter notdrdata fidelity
(e.g. banking applications) by providing somewhatiB-like

guarantees. LDV differs from SMILE in its fundantn
modeling approach: LDV is designed for applicasidhat can
tolerate some amount of imprecision as found in [9]

7. CONCLUSIONS AND FUTURE WORK

The LDV model is still in early stages of developmhéAs part of
ongoing work, we are investigating the set of “dmal” operators
that can support a large number of applicationgitd@hally, we
will try and uncover deeper primitives that may dtions as
operators between LDVs (e.gjan operator).

Scalability issues remain a major focus for ourkvake plan to

investigate alternative server-side architectutest tcan work
seamlessly with clients to process live data. Ayezambining a

298

introduces a new time-based -weak

scalable architecture with intelligent replicatisapport remains
an open and challenging research problem. In adfditive are
also interested in identifying and prototyping atla@plications
that will require our technology.

8. REFERENCES

[1] D. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M
Cherniack , JH Hwang, W. Lindner, A. Maskey, A. Ra&.
Ryvkina, N. Tatbul, Y. Xing, S. Zdonik. The Desighthe
Borealis Stream Processing EnginePhoc. 2nd Biennial
Conference on Innovative Data Systems ResearchRiCID
2005.

[2] M. K. Aguilera, R. Strom, D. Sturman, M. Astley, T.
Chandra. Matching events in content-based suligmrip
systems. IProc. 18" Annual ACM Symp. on Principles of
Distributed Computing (PODC1999, 53-61.

[3] S. Chandrasekaran, O. Cooper, A. Deshpande, Mklran
J. Hellerstein, W. Hong, S. Krishnamurthy, S. Maddé.
Raman, F. Reiss, and M. Shah. TelegraphCQ: Conisuo
Dataflow Processing for an Uncertain World. Piroc.
Biennial Conf. on Innovative Data Systems Rese@ZtbR)
2003.

[4] Connecticut Department of Transportation,
http://lwww.conndot.ct.gov.

[5] S. Cuce and A. Zaslavsky, Supporting multiple cstesicy
models within a mobility enabled file system using
component based frameworkobile Networks and
Applications8, 2003, pp 317-326.

[6] P. Eugster, P. Felber, R. Guerraoui, A. Kermarfée many
faces of publish/subscribACM Comput. Surv. 33): 114-
131 (2003).

[7]1 Y. Jin and R. Strom. Relational subscription middiee for
internet-scale publish-subscribe. Rroc. 2'% International
Workshop on Distributed Event-based Systems (DEBS)
2003, pp 1-8.

[8] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culberd J.
Anderson. Wireless sensor networks for habitat tooinig.
In Proc. ' ACM Int. Workshop on Wireless Sensor
Networks and Applications (WSNA) 2088-97.

[9] C. Qlston, J. Jiang, and J. Widom. Adaptive filtiers
continuous queries over distributed data stredm&roc.
2003 ACM SIGMOD563-74.

[10] S. Raman, S. McCanne: A model, analysis, and pobtoc
framework for soft state-based communicatiorPitac. of
the Conf. on Applications, Technologies, Architezdyand
Protocols for Computer Communication (SIGCOMNM)99,
pp. 15-25.

[11] Sun Microsystems. Java Message Service.
http://java.sun.com/products/jms/

[12] Sun Microsystems. Java 2 Platform, Enterprisei&dit
http://java.sun.com/j2ee

[13] Washington State Department of Transportation,
http://www.wsdot.wa.gov

[14] H. Yu and A. Vahdat, Design and evaluation of aticmous
consistency model for replicated servick€M Trans. on
Computer Systen2)(3), Aug 2002, 239-282.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	5-2005

	Live Data Views: Programming Pervasive Applications that Use “Timely” and “Dynamic” Data
	Jay BLACK
	Paul CASTRO
	Archan MISRA
	Jerome WHITE
	Citation

	Proceedings Template - WORD

