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ABSTRACT

In an online rating system, raters assign ratings to objects
contributed by other users. In addition, raters can develop
trust and distrust on object contributors depending on a
few rating and trust related factors. Previous study has
shown that ratings and trust links can influence each other
but there has been a lack of a formal model to relate these
factors together. In this paper, we therefore propose Trust
Antecedent Factor (TAF) Model, a novel probabilistic model
that generate ratings based on a number of rater’s and con-
tributor’s factors. We demonstrate that parameters of the
model can be learnt by Collapsed Gibbs Sampling. We then
apply the model to predict trust and distrust between raters
and review contributors using a real data-set. Our experi-
ments have shown that the proposed model is capable of
predicting both trust and distrust in a unified way. The
model can also determine user factors which otherwise can-
not be observed from the rating and trust data.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Data Mining

General Terms

Algorithms, Measurement, Experimentation

Keywords

probability, statistics, trust prediction, social network

1. INTRODUCTION

1.1 Motivation
The popularity of Web 2.0 has transformed many users

from passive consumers to active contributors. Web users
today devote much more time and effort creating content
objects including photos, videos, blogs, and reviews so as to
share them with other users. While this brings about un-
precedented quantity and richness of user generated content,
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finding interesting and good quality content objects in Web
2.0 has also become increasingly challenging. To address the
content quality issue, manyWeb 2.0 sites including Youtube,
Amazon, and Flickr allow users to rate content objects con-
tributed by other users. For example, Youtube users may
give 5-star ratings to videos they like, or 1-star ratings oth-
erwise. Ratings on the same video therefore can be used
to determine its overall quality. Beyond ratings, some sites
also introduce Web of Trust which allows users to express
whom they trust (or like) or distrust (or dislike). A trust
link from a user to another can therefore be labeled trust or
distrust. In this way, users can choose to view content from
users they like and are familiar with, blocking or ignoring
content from disliked users.

Both ratings and Web of Trust are vital information for
personalized/social search and recommendation applications.
Ratings are exploited in collaborative filtering where inter-
user similarities determined by common rating patterns are
used to predict personalized ratings that have not yet been
given [11]. Collaborative filtering has also been extended to
incorporate trust links among users such that the ratings
given by trusted users are given more weights in computing
personalized ratings than the non-trusted ones [19]. Experi-
ments have shown that the predicted ratings by collaborative
filtering using trust are more accurate than not using trust
when the ratings on the objects do not converge [7].

Just as when researchers attempt to predict ratings using
trust information, it is equally interesting to predict trust
using rating data. Trust prediction refers to predicting the
existence of trust link between a given user pair. Unlike
rating prediction which is used in content object recommen-
dation, trust prediction is useful in friendship recommenda-
tion. In any Web 2.0 site, getting all users to express their
trust (or distrust) links explicitly so as to construct a web of
trust can be non-trivial due to (a) a lack of diligence on the
users’ part, or (b) unwillingness of users to share trust links
publicly. In order to get users better connected by trust
links so as derive a more tightly knitted user network, trust
prediction is necessary.

Trust prediction solution approaches can be unsupervised
and supervised. A survey of methods using these two ap-
proaches will be given in Section 2. The unsupervised ap-
proach first assigns each user pair to be predicted a score
based on some criteria (e.g., number of common neighbors)
so as to rank them from most likely trust pair to least likely
trust pair. The top ranked trust pairs are thus returned as
the prediction results. The supervised approach defines for
each user pair a set of features and trains some classifier us-
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ing known trust pairs. The unseen user pairs can then be
classified by the trained classifier.

While several trust prediction methods have been devel-
oped based on the two approaches, most of them suffer from
some common pitfalls listed below.

• Most of the existing works make very simple assump-
tions about trust formation and ignore well studied
trust antecedent framework developed in the manage-
ment and social science domain [21]. By not consider-
ing the antecedent factors of trust links, trust predic-
tion methods will not be able to identify the right fea-
tures and their dependencies in trust prediction. This
may then affect the prediction accuracy and restrict
the applicability of these methods to specific Web 2.0
sites. Furthermore, one would not be able to explain
trust links using these factors.

• Most existing methods consider prediction of trust only
or distrust only, but not both. When trust links are to
be predicted, these methods treat distrust and no-trust
under the same category and assign them the same la-
bel although they are conceptually different. Guha
and Kumar pointed out that distrust does not prop-
agate transitively like trust. Furthermore, they also
found out that one-step distrust propagation patterns
can be used for distrust prediction well [10].

• We know that not all trust links can be observed in
the data as many users may not have expressed them.
Hence, we have an incompletely labeled data-set issue.
Most trust prediction methods based on supervised ap-
proach however ignore this by assuming all user pairs
with unobserved trust links do not have trust links.

• Most existing methods are not developed based on for-
mal probabilistic framework. As a consequence, it is
not easy to associate confidence with the prediction
scores for a given user pair.

1.2 Objectives and Contributions
This paper proposes to predict both trust and distrust in

Web 2.0 sites that support both online rating and trust ex-
pressions. We model a Web 2.0 site as a network with raters,
contributors and content objects as shown in Figure 1. The
network allows raters to trust/distrust contributors, raters
to rate objects from contributors, and contributors to up-
load objects. There are non-raters trusting other users. For
example, a user may express trust on another user after
reading the latter’s contributed content. Such cases are not
easily tracked since most sites do not track viewing activ-
ities. We therefore exclude such users from taking trustor
roles. We also exclude non-contributors from being trusted
as such users may have gained trust from another user not
based on rating activities.

Given the rating and trust network in Figure 1, we aim
to model the antecedent factors of trust as latent (or unob-
served) variables and develop probabilistic graphical mod-
els [1] for predicting trust and distrust links. Our pro-
posed model, Trust Antecedent Factor (TAF) Model
overcome the pitfalls of existing methods mentioned in Sec-
tion 1.1 by adopting the Trust Antecedent Framework
well studied in the management and social science discipline
[21].

Rater Contributor

Object

trusts

contributesrates

Figure 1: Rating and Trust Data

Ability

Benevolence

Integrity

Trust

Perceived Risk

Risk Taking in 
Relationship

Outcomes

Trustor's
Propensity

Factors of
Perceived 

Trustworthiness

Figure 2: Trust Antecedent Framework

The framework essentially outlines trustee and trustor fac-
tors that influence the formation of trust links. Refer to Fig-
ure 2 for an overview of the Trust Antecedent Framework
from Mayer [21]. The trustee factors are:

• Ability : Trustee has skills and competence to deliver
desired outcome for the trustor;

• Benevolence: Trustee wants to do good with the trustor;
and

• Integrity : Trustee adheres to a set of good moral prin-
ciples.

The only trustor factor is trust propensity that refers to how
easy a trustor trusts someone. The Trust Antecedent Frame-
work says that a person trusts another person if the latter
has high ability, benevolence and integrity and the former
has the propensity to trust. In this paper, we will attempt to
model the ability and propensity factors as latent variables
of contributors and raters respectively in our probabilistic
model, and trust links as semi-latent variables dependent
on them. Both the benevolence and integrity factors are left
out as it is not obvious that they can be characterized in
this context. In our TAF model, ratings are represented as
observable variables. Our proposed model also introduces
other rater variables to model some rating related factors.
Both trust and distrust are modeled simultaneously by rep-
resenting the trust value of {0} as distrust and {1} as trust.

In Figure 2, the effects of trusting someone leads to events
that gives feedback loop to the trustee factors, we will ig-
nore them in this paper. The reason is because in online
networks, most of the content is free for anyone to view,
thus, making it difficult to assess the cost and risk involve
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in trusting someone. Social networks that involve monetary
transactions will need to account for such risks. However,
such data is hard to obtain for our research.

In the following, we summarize our contributions:

• We introduce a novel probabilistic graphical model for
trust prediction incorporating the well known trust an-
tecedent framework. The proposed model incorporates
important factors about raters and contributors, and
uses them to derive trust probability capturing the
confidence of trust. The model nicely bridges the qual-
itative research in management and social science with
quantitative statistical learning.

• Our proposed model TAF Model uses simple assump-
tions to perform the task of inferring the latent trust
network. To the best of our knowledge, this is the first
probabilistic model that infers trust links from explicit
user interactions.

• We tested our proposed model on a publicly available
trust and rating data-set from Epinions. This data set
was also used by Massa and Avesani [18]. We eval-
uated our proposed model on the Epinions data-set
using the naive model as baseline for comparison and
showed that we can perform trust prediction from users
to users. More generally, we are able to uncover the
latent trust network from the explicit user interactions.

Because the amount of data for inference and prediction is
often inconsistent for different users, our model allows us to
be confident about users’ preferences and behavior when we
observe more data and give us less confidence when we have
less data for prediction. We can measure such confidence by
evaluating the variance of probabilistic distributions.

2. RELATED WORK
A recent work prior to ours is Jamali’s TrustWalker [12].

TrustWalker augments the collaborative filtering objective
using an additional trust network. TrustWalker predicts
user ratings given a set of ratings and the trust network.

Kenegis analyzed the Slashdot social network with dual
polarity edges (i.e., trust and distrust edges) [13]. Kenegis
used traditional social network analysis measures such as
centrality measures, clustering coefficient, distance measures
and similarity measures in signed social networks to predict
links between users.

Massa proposed the notions of a global trust and a local
trust metrics[18]. A global trust score is assigned to each
user based on the user’s contribution to the community as
a whole while the local trust metric accounts for personal
controversial opinions.

Golbeck introduced TidalTrust that performs a breath
first search in the trust network from the source to all other
users. The trust value between two users is then computed
based on the aggregated ratings of these users [8]. Kuter and
Golbeck also attempted the usage of Bayesian Network for
trust inference in Sunny [14]. Kuter has showed that Sunny
is able to give more accurate estimates of trust prediction
as compared to TidalTrust. Yutaka also proposed a trust
measure claiming that trust and ratings have bidirectional
effects [20].

The trust prediction can also be seen as an instance of the
link prediction problem in social networks. Liben-Nowell

gave a comprehensive coverage of various link prediction
methods [16]. These link prediction methods take advan-
tage of the topological structure of social networks.

Yue Lu proposed a model based approach for review qual-
ity prediction [17]. The model is then formulated as a re-
gression problem and solved using gradient descent methods.
While their work focused on exploiting trust relationships for
inferring review quality, our work focus on review ratings for
inferring trust relationships.

Within the data mining and computer science community,
the work by Leskovec is most similar to our work here [15].
Leskovec draws inspiration from the social science discipline
based on the theory of balance and status. The social the-
ory is given a more quantitative explanation using a logistic
regression model. Leskovec also advocates that there are
latent links between pairs of users which is not explicitly
expressed.

All of these related works have not considered the dual po-
larity of trust networks and its dependency on ratings. We
present a more principled and detailed version of trust in-
ference using Bayesian Networks. Such models have shown
significant impact in the area of text clustering [2] and is
easily extensible by adding more latent variables with para-
metric distributions [4].

3. PRELIMINARIES
As our proposed trust prediction probabilistic graphical

model requires the use of distribution functions with hyper-
parameters to model variable parameters, we first briefly in-
troduce the concept of hyper-parameters and how they can
be learnt. We then introduce the common variable param-
eters to be used in our proposed model and relate them to
parameter learning.

3.1 Parameter Learning
Suppose we have a coin that can land either heads de-

noted by {1} or tails denoted by {0}. We let xi ∈ {0, 1}
be the random variable to denote the ith outcome of tossing
the coin and X represent the set {x0, x1, . . . , xi, . . . , xI−1}.
We use a variable parameter f to represent our prior belief
of the coin landing heads. We further assume that f follows
a symmetric Beta Distribution with θ as hyper-parameter.
Formally, the probability of any f value (P (f |θ)), the ex-
pected value of f (E(f |θ)) and the probability of getting a
toss outcome xi given f (P (xi|f)) are expressed as follows:

f ∼ Beta(θ)

P (f |θ) ∝ f
θ−1(1− f)θ−1

P (xi|f) = f
xi(1− f)1−xi

P (xi|θ) =
θ

2θ

In probabilistic graphical modeling, we use graphical plate
notation to describe a set of probabilistic equations. For the
above coin tossing example, the graphical plate notation is
shown in Figure 3. In the figure, the left side shows the
expanded graphical model where each event xi is dependent
on the parameter f and parameter f is dependent on its own
hyper-parameters θ. The right side of Figure 3 is the com-
pact equivalent of the expanded graphical model where the
rectangle with symbol I surrounding the shaded variable x,
compresses X. The shaded circles represent observable vari-
ables and unshaded circles represent unobservable or latent

891



variables. Inferring the values of unobservable variables is
the main objective of parameter learning.

I

θ f

x
0

x
1

x
i

x
I-1 x

θ f

Figure 3: Coin Toss Plate Notation

Suppose we throw the coin I times and observe the out-
comes X. Let H be the number of heads observed and T be
the number of tails observed. After I throws, we can make
a guess on the I + 1th outcome as follows,

P (xI+1|x1, . . . , xI , θ) =

∫

P (xI+1, f |x1, . . . , xI , θ) df

=

∫

P (xI+1|f)P (f |x1, . . . , xI , θ) df

∝

∫

P (xI+1|f)P (f |θ)
I−1
∏

i=0

P (xi|f) df

∝

∫

f f
θ+H−1(1− f)θ+T−1

df

∝
H + θ

H + T + 2θ

From the above equations, we show how the posterior belief
can be derived from initial prior belief and observable data.
Conveniently, the posterior belief has the same distribution
family as the prior belief because the Beta Distribution is a
conjugate prior to Bernoulli random variables. For a more
detailed explanation of conjugate priors, readers may refer
to [6].

3.2 Parameters in Our Proposed Model
In our proposed model, we hypothesize on the existence of

unobservable directed trust links from raters to contributors.
These directed links can be hidden because raters do not
always update their Web of Trust. We claim that these
links are present because the raters form an unexpressed
opinion about the contributors when rating the contributors’
objects. Therefore, these links possess two attributes; trust
value label and observability.

From the trust antecedent framework, we derive contribu-
tor’s ability and rater’s propensity as two latent parameters
to be learnt for each contributor and rater.

• The contributor’s ability to attract trusts from raters.
We denote the ability of contributor j by aj .

• The rater’s propensity to form trust or distrust links.
The propensity of rater i is denoted by yi.

We need another latent parameter to represent the tendency
of a rater to express his or her trust links towards contribu-
tors. We call this the rater’s expressiveness and denote the
expressiveness of rater i by ei. The expressiveness parame-
ter ei consists of two components, one for trust and another
for distrust denoted by ei|t=1 and ei|t=0 respectively.

Finally, we introduce a latent parameter to describe a
rater’s tendency to give high or low ratings. We call this
the rater’s stringency in ratings and denote the stringency
of rater i by bi. Again, the stringency parameter has two
components, one for trust and another for distrust denoted
by bi|t=1 and bi|t=0 respectively.

Each of the above parameters is modeled as a distribu-
tion parameter. The expected ability aj values of 1 and
0 represent full ability and no ability respectively. Simi-
larly, the expected propensity yi values of 1 and 0 represent
full propensity to trust and no propensity respectively. The
expected expressiveness ei|t=1 (or ei|t=0) values of 1 and 0
represent full expressiveness and non-expressiveness for trust
links that are labeled with trust (or distrust) respectively.
Finally, the expected stringency bi|t=1 (or bi|t=0) values of
1 and 0 represent highest stringency and least stringency
involving trust links labeled with trust (or distrust) respec-
tively.

Similar to the coin toss example in Section 3.1, we place
prior distributions on the parameters to model their depen-
dency with the observable ratings. These parameters are
used to construct different probabilistic graphical models as
described in the next section.

4. TRUST ANTECEDENT FACTOR MODEL
We begin with the introduction of our model, Trust An-

tecedent Factor (TAF) Model. TAF formulates the genera-
tive process of observed trust links and ratings based on the
following dependency assumptions [22]:

1. Contributor j’s ability aj and rater i’s propensity yi
influence the rater’s decision to trust or distrust the

contributor ti,j ∈ {0, 1}. This causal dependency is di-
rectly extracted from the trust antecedent framework.
Here, ti,j = 1 represents trust, and ti,j = 0 represents
distrust from rater i to contributor j.

2. The rater-contributor trust link ti,j and rater’s expres-

siveness ei influence the observability of trust link

denoted by oi,j ∈ {0, 1}. The value of observability oi,j
equals 1 in the event ti,j is observable, and 0 other-
wise. The observability variable is introduced to ad-
dress the issue of unexpressed trust link issue. Instead
of treating unexpressed trust and distrust the same,
the observability variable allows us to model situations
where a rater decides not to express them. We expect
raters should be sensitive about whether to express
trust links depending on whether the trust links are
trust or distrust, and whether the raters are outspoken
(or expressiveness). In particular, people are known to
be careful in stating who they distrust in public.

3. The rater-contributor trust link ti,j and rater’s strin-

gency bi influence the ratings a rater gives to a contrib-

utor’s object k denoted by ri,j,k ∈ {0, 1, · · · ,m}. We
believe that rating a familiar contributor’s objects is
different from rating those of a stranger. A stringent
rater will also give smaller rating values.

We now describe the generative process adopted by TAF
model. Let I be the total number of raters, J denote the
total number of contributors, and Kj be the total number
of objects contributed by j. The generative process of TAF
follows the steps below:
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1. For each rater i ∈ I, sample distribution parameters:
propensity yi, using Beta distribution with symmetric
hyper-parameters

yi ∼ Beta(τ )

2. For each contributor j ∈ J, sample distribution pa-
rameters: ability aj using Beta distribution with sym-
metric hyper-parameters

aj ∼ Beta(α)

3. For each rater i and contributor j,

(a) Rater generates trust for contributor ti,j based on
rater’s propensity yi and contributor’s ability aj .

P (ti,j = t|yi, aj) = y
t
i a

t
j(1− yi)

1−t(1− aj)
1−t

(b) Rater sample distribution parameters: expressive-
ness ei|t and stringency bi|t, using Beta distribu-
tion with symmetric hyper-parameters

bi|t ∼ Beta(β)

ei|t ∼ Beta(ǫ)

(c) Rater generates the observability of link oi,j based
on rater’s expressiveness ei|t and trust of the link
ti,j .

P (oi,j = o|ti,j = t, ei|t) = e
o
i|t(1− ei|t)

1−o

(d) For each object k ∈ Kj , Rater generates rating
ri,j,k for k based on

i. rater’s stringency bi|t and,

ii. trust ti,j towards the contributor j of the ob-
ject k,

P (ri,j,k = r|ti,j = t, bi|t) =

(

m

r

)

b
r
i|t(1− bi|t)

m−r

J

I

J

K

t

rb

y

τ α

a

β

o

ε

e

Figure 4: Plate Notation for TAF Model

The above generative process can be represented in graph-
ical plate notations as shown in Figure 4. The directed ar-
rows in Figure 4 denote dependency assumptions. Variables

in shaded circles (i.e., oi,j ’s and ri,j,k’s) denote completely
observed variables while those in grey circles (i.e., ti,j) repre-
sent partially observable variables. The remaining variables
are non-observable.

Note that the generative process requires a few hyper-
parameters τ , ǫ, α, and β for the parametric probability
distributions. Our modeling goal is to learn these hyper-
parameters based on the observed data. After learning the
parameters from observed data, we will be able to infer the
values of future unobserved data. These hyper-parameters
may be set as constants at the beginning of the learning
process.

The trust link and observability are modeled as Bernoulli
events since they have binary values. The rating has m
states and we can choose to model the rating as a set of
m multinomial variables. Multinomial distribution however
assumes that each state is independent and identically dis-
tributed. This assumption unfortunately does not hold in
practice. Instead, we divide an object into m parts, a rater
will give a rating of m if the rater likes all m parts, a rater
gives a rating of m − 1 if the rater likes all but one part,
conversely, a rater gives a rating of zero if the rater does not
like any parts. Hence, if we model each part as a Bernoulli
event, then the rating distribution can be generalized to a
Binomial distribution.

To further justify the use of binomial distribution for rat-
ings, we will like to explain the relationship between bi-
nomial, poisson and gaussian distributions. The binomial
distribution requires factorial calculations which may be in-
feasible when the number of states approaches infinity, i.e.
m→∞. Poisson distribution is a discrete approximation for
the binomial distribution when m→∞ and the probability
of each state approaches zero. The gaussian distribution is
a continuous approximation of binomial distribution when
m → ∞ but the probability of each state occurring is near
to 0.5. Since object ratings are usually in the discrete range
of [0, 4], it is more appropriate to use binomial distributions.

Due to the presence of partially observed variable ti,j , the
joint probability cannot be factorized into separable compo-
nents and the parameters cannot be solved analytically. To
learn the parameters, we will use Collapsed Gibbs Sampling
which has been used for parameter learning in topic models
[9, 2].

4.1 Inference using Collapsed Gibbs Sampling
The key idea of Gibbs Sampling is to break up the Bayesian

network into manageable chunks and sample each unob-
served variable separately from the rest [3]. Each time we
sample the unobserved variable, we make assumptions that
the rest of the network is correctly sampled. Repeating the
sampling process for multiple iterations will improve the ac-
curacy of the initial assumptions made. Collapsed Gibbs
Sampling improves the efficiency over Gibbs Sampling by
marginalizing the parameters out of the joint distribution.
We sample whenever we encounter an unobserved link ti,j .
The Gibbs sampling inference procedure can be written in
this form P (ti,j |ti,−j , o, r, β, ǫ, τ, α) where ti,−j refers to the
set of all t variables except for ti,j ,

P (ti,j = t|ti,−j , o, r, β, ǫ, τ, α)

∝ P (oi,j |ti,j = t, oi,−j , ǫ)P (ti,j = t|ti,−j , τ, α)

P (ri,j |ti,j = t, ri,−j , β)
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The three components are as follows,

P (oi,j |ti,j = t, oi,−j , ǫ) =
n(o0i |t) + ǫ

n(o0i |t) + n(o1i |t) + 2ǫ

where n(o0i |t)[n(o
1
i |t)] is the number of times i choose to

hide [show] the trust given that the trust i to j is t. Due to
the condition on oi,−j , n(o

0
i |t) and n(o1i |t) must exclude the

counts between i and j.

P (ti,j = t|ti,−j , τ, α)

=

[

n(tti) + τ

n(t0i ) + n(t1i ) + 2τ

] [

n(ttj) + α

n(t0j ) + n(t1j ) + 2α

]

where n(tti) is the number of links with value t from i and
n(ttj) is the number of links with value t to j. Due to ti,−j ,
n(tti) and n(ttj) must exclude the counts between i and j.

P (ri,j |ti,j = t, ri,−j , β)

=

[

Γ
(

m.n
(

r
r
i |t
)

+ 2β
)

Γ

( m
∑

r=0

r.
[

n(rri |t) + n(rri,j |t)
]

+ β

)

Γ

( m
∑

r=0

(m− r).
[

n(rri |t) + n(rri,j |t)
]

+ β

)

]

[

Γ
(

m
∑

r=0

r.n(rri |t) + β
)

Γ
(

m
∑

r=0

(m− r).n(rri |t) + β
)

Γ

(

m.
[

n(rri |t) + n(rri,j |t)
]

+ 2β

)

]−1

where n(rri |t) are the ratings i has rated with value r given
trust t, n(rri,j |t) are the ratings i has rated on j objects with
values r given that the trust is t.

4.2 Parameter Learning
After inference on unobserved variables ti,j ’s, we update

the parameters y, a, e, b. The derivation of parameter learn-
ing equations for y, a and e follows that of Section 3.1 and
we leave them out due to space constraint. Instead, we state
the equations for y, a, e and show the derivation for b. The
updated posterior distributions of y, a and e parameters are:

P (yi|ti, τ, α) ∼ Beta
(

τ + n(t1i ), τ + n(t0i )
)

P (aj |tj , τ, α) ∼ Beta
(

α+ n(t1j), α+ n(t0j )
)

P (ei|t|ti, oi, ǫ) ∼ Beta
(

ǫ + n(o1i |t), ǫ + n(o0i |t)
)

The updated posterior distribution of bi’s is derived as fol-
lows.

P (bi|t|ri, ti, β) ∝ P (bi|t|β)
∏

j,k

P (ri,j,k = r|ti,j , bi|t)

∝ b
β−1

i|t (1− bi|t)
β−1

∏

j,k

∏

r

(

m

r

)

b
r
i|t(1− bi|t)

m−r

∼ Beta

(

m
∑

r=0

r n(rri |t) + β,

m
∑

r=0

(m− r) n(rri |t) + β

)

4.3 Trust Prediction
After learning the parameters, we predict the trust be-

tween i and j, ti,j using its Markov Blanket [22]. The
Markov Blanket is the minimum set of variables required

to infer the value of a variable. This minimum set is given
by the variable’s children, parents and children’s parents.
Hence, probability of ti,j given its Markov Blanket is:

P (ti,j = t|oi,j = o, ri,j , yi, ei, bi, aj)

∝ P (oi,j = o|ti,j = t, ei)P (ti,j = t|yi, aj)P (ri,j |ti,j = t, bi)

If we are not able to observe the ratings between i and j, we
can use the law of total probability as follows,

P (ti,j |oi,j , yi, ei, bi, aj)

∝
∏

k

∑

r

P (ti,j = t, ri,j,k = r|oi,j , yi, ei, bi, aj)

∝ P (oi,j |ti,j , ei)P (ti,j |yi, aj)

Algorithm 1 illustrates the relation of these three sections.

Algorithm 1 Inference and Learning

Randomly assign {0, 1} to ti,j ∀ i, j

Count n(ti), n(tj), n(oi|t), n(r
r
i |t) ∀ i, j

while not converge do
for i← 1 to I do

for j ← 1 to J do
Subtract from n(ti), n(tj), n(oi|t), n(r

r
i |t) to ex-

clude the results of ti,j from previous iterations.

ti,j ← Perform Inference. (Section 4.1)

Add to n(ti), n(tj), n(oi|t), n(r
r
i |t) to include the

results of current iteration.
end for

end for
end while
Update the Parameters (Section 4.2).
Perform the Prediction (Section 4.3).

5. EXPERIMENTAL EVALUATION
In this section, we evaluate the the performance of our

model using a real data set from Epinions [18]. We run two
sets of experiments. The first set simulates the existence of
ground truth by artificially hiding the true value of links. In
the second set of experiments, we apply our model on the
entire data-set with all available ratings and trust link labels.
We examine the distribution of network properties before
and after learning. We then show that the distribution after
learning is a better reflection of the network.

5.1 Data Set
We used the Epinions data set from trustlet.org. Epinions

is an online website that provides reviews of products. The
reviews are meant to help other users acquire knowledge and
opinions about product. These reviews are written by users
and can be rated by other users. Users can choose to read
and/or rate subsets of reviews by filtering. The Epinions
system filters the reviews based on the users’ Web of Trust.
To apply our proposed models to the data set, we consider
the users who write reviews as contributors and users who
rate objects as raters.

To keep the computation manageable, we extract a subset
of the Epinions network data set as follows. We first initial-
ize a rater set and a contributor set to be empty. The rater
with the largest number of rated contributors is first added
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to the rater set. The rated contributors by this rater are
added to the contributor set. From the set of contributors,
we further add their raters to the rater set. The process
repeats until we have exhausted all raters and contributors
reachable from the initial rater. Finally, we have 85,132
raters, 75,294 contributors, and 4,042,345 rater-contributor
pairs (i.e., the rater has rated some object(s) by contribu-
tor). Among these pairs, 467,047 have observable trust links
while 3,575,298 have unobservable trust links. Among the
observable trust links, 421,756 have trust label and 45,291
have distrust label. This data subset represents about 65%
of all users, 89% of all rater-contributor pairs, and 70% of
all trust links in the original Epinions data-set.

5.2 Trust Prediction Experiments
In these experiments, we evaluate trust prediction accu-

racy of our proposed model. We compare our model against
a naive baseline model. We divide the constructed data set
into five folds. In five-fold validation, we hide the trust link
labels in one of the folds and predict the labels for these
links using four other folds as training set. We measure the
performance using precision-recall curves for distrust links
prediction as the distrust link label is a smaller class.

5.2.1 Naive Baseline Model

As shown in Figure 5, the baseline model is a stripped
down version of TAF. The generative process is as follows:

1. For each rater i ∈ I, sample the trust propensity yi us-
ing Beta distribution with symmetric hyper-parameters,

yi ∼ Beta(τ )

2. For each rater i and contributor j,

(a) Rater i generates trust for contributor ti,j based
on rater’s propensity yi,

P (ti,j = t|yi) = y
t
i(1− yi)

1−t

(b) Rater i sample stringency using Beta distribution
with symmetric hyper-parameters,

bi|t ∼ Beta(β)

(c) For each object k ∈ Kj, Rater generates rating
ri,j,k for k based on

i. rater’s stringency bi|t and,

ii. trust ti,j towards the contributor j of the ob-
ject k,

P (ri,j,k = r|ti,j = t, bi|t) =

(

m

r

)

b
r
i|t(1−bi|t)

m−r

For inference,

P (ti,j = t|ti,−j , r, τ, β) = P (ti,j = t|ti,−j , τ )P (ri,j|ti,j , ri,−j , β)

where

P (ti,j = t|ti,−j , τ ) =
n(tti) + τ

n(t0i ) + n(t1i ) + 2τ

The P (ri,j |ti,j , ri,−j is similar as before so we will not show
in detail here. And for prediction,

P (ti,j |r, y, b) = P (ti,j |yi)P (ri,j |ti,j , bi)

Due to a lack of ground truth in our data, we do not ex-
plicitly show trust prediction when ratings are not avail-
able. But one may observe that the naive model only takes
into account of rater’s attributes and ignore contributor’s
attributes. When there is a lack of observable ratings be-
tween rater and contributor, the trust prediction of naive
model will not work based on rater’s attribute alone.

I

J
K

β b r τyt

Figure 5: Naive Baseline Model

5.2.2 Simulating Missing Trust Links and Performance
Metric

The objective of our model is to infer the unobservable
trust links in the network. However, due to the lack of
ground truth for unobservable trust links, we have to hide
existing trust links to simulate missing ones. In this way,
we are able to compare our prediction results with the trust
labels of the artificially hidden links.

Since our trust links have two attributes, observability and
trust label, we run two experiments. First experiment treats
the trust label as missing information and observability as
known information. Second experiment treats both trust
label and observability as missing information.

We divide all the rater-contributor pairs into five data sets
using simple round robin for pairs belonging to the same
rater. Using five fold cross validation, we perform training
on four sets and test on the remaining set. This process is
performed for a total of five times by using different folds as
test data. We present the precision-recall curve by taking
average of the five-fold validation. The precision-recall curve
measures the predictive performance for distrust links. We
have chosen to leave out the prediction of trust label results
because trust links with trust label represent a larger class
making it easier to predict. Moreover, because of the skewed
distribution in data, precision recall curves is a more suitable
measure than receiver operating characteristic curves [5].

We define the precision, recall and F1 values of our pre-
diction as follows,

Recall =
TP

TP + FN
Precision =

TP

TP + FP

F1 =
2× Precision×Recall

P recision+Recall

where TP, FN and FP are numbers of true positives, false
negatives and false positives respectively. We compute the
F1 by taking the predicted distrust to be links where trust
probability is less than 1

2
.

5.2.3 Results of Prediction Experiments

We show the results of distrust link prediction for TAF
and Naive models in Figure 6 and Table 1. Under the con-
dition that observability of trust links is known, the results
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Figure 6: Prediction for Distrust Links

clearly show that TAF is better than the Naive model as
measured by AUC of PR curves and F1.

Under the condition that observability of trust links is
unknown, TAF is still better than Naive model by AUC of
PR curves. Nevertheless, the AUC result of TAF is poorer
than that under the previous observability condition. This
is expected because the true observability is unknown. The
naive model surprisingly performs well under F1. We believe
the use of 0.5 trust probability as the threshold classify trust
and distrust is not ideal, and should be tuned further. We
shall investigate this further in the future work.

Table 1: Area under PR Curve
TAF Baseline

AUC (observable) 0.804 0.708
AUC (unobservable) 0.742 0.708
F1 (observable) 0.780 0.739
F1 (unobservable) 0.711 0.739

5.3 Results of Data Modeling Experiments
In the second set of experiments, we perform trust infer-

ence on the entire data set as a single instance. We examine
the distribution of trust and distrust links for each rater and
contributor. Figure 7(a) shows the trust ratio distribution
of contributors before inference. The trust ratio of a con-
tributor j is computed as follows:

number of observable trust links to j

number of observable links to j
(1)

Based on this definition, the distribution excludes trust links
that are unobserved. We also deliberately exclude contribu-
tors with fewer than five observable links as they are insignif-
icant cases. After inference, we are able to give a measure of
our uncertainty about the unobservable trust for each link.
Hence, the trust distribution of each contributor j after in-
ference is given by,

1

n

n
∑

i

E(ti,j) n is the number of links to j (2)

where E(ti,j) represents the expected trust rater i has for
contributor j. Since our trust ti,j follows a bernoulli distri-
bution, the expected value is also the probability P (ti,j = 1).

We present the trust distribution in Figure 7(b). The dis-
tribution as shown is much smoother than the distribution
in Figure 7(a). This indicates that we recover much of the
missing information in the unobservable links.
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Figure 7: Distribution of Contributors’ Trust Ratio

Figure 8 shows the distribution of raters who express their
trust links. The expressiveness of a rater i is calculated as
follows,

expressiveness =
number of observable links from i

total number of links from i

The distribution result suggests that most raters do not ex-
press their trust links. The number of raters who actively
update their trust network is a minority. Therefore, our
TAF model increases the number of trust links to generate
a more complete network for most users. In other words, we
generate estimated missing values for sparse data.

We will now examine the distribution of trust links for
raters. Figure 9(a) shows the distribution of trust ratio for
each rater before learning. The definition of rater’s trust
ratio is similar to Equation 1 except that the link count is
rater specific. After learning, the trust ratio of a rater is
computed as:

1

n

n
∑

j

E(ti,j) n is the number of links to j (3)
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Equation 3 sums over j unlike the earlier Equation 2 which
sums over i. The distribution of trust ratios is shown in
Figure 9(b). Similar to contributors’ trust ratios, the af-
ter learning distribution is much smoother than that before
learning. This again demonstrates the TAF model’s ability
to recover the missing trust links.
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Figure 8: Distribution of Expressiveness
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Figure 9: Distribution of Raters’ Trust Ratio

6. CONCLUSION
We have introduced the Trust Antecedent Factor (TAF)

model that captures the relationships between trust and rat-
ings in online rating and trust networks. We have only
considered ratings as observable interaction between users
and trust as partially observable variables. Our proposed
model derives other trust related variables and their depen-
dency relationships from a well established trust antecedent
framework. They can predict both trust and distrust in
a unified way, and are capable of modeling the observabil-
ity of trust links. We have evaluated the model using real
data-set and showed that the model can predict artificially
hidden observable trust links with good accuracy compared
with Naive model and reveal the unobservable trust links.

For the future work, we can extend the TAF model to
handle data-sets with other types of user interaction data
such as message activities, clicks on user’s contributed ob-
jects and time spent viewing contributed objects. Exploring
other parametric distribution functions for modeling latent
variables can also be an interesting future research.
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