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Reference Point Adaptation and Disposition Effect 
 

Abstract 
 

Using a large proprietary database of institutional trades, we investigate 
whether, and to what extent, the dynamic adaptation of reference point 
translates into variations in the disposition effect, and establish three key results. 
First, the propensity to realize losses declines sharply with the magnitude of 
prior losses due to insufficient adaptation of reference point. Second, recent 
adverse information accelerates investors’ adaptation to price depreciation and 
increases investors’ willingness to realize losses. Finally, a priori of losing 
money in highly speculative investments decreases investors’ aversion to 
realize losses. Collectively, the findings suggest that both prior outcomes and 
recent expectations contribute to the reference point adaptation and the 
variations in disposition effect. 
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“Disposition effect” is labeled by Shefrin and Statman (1985) to describe the tendency of 

investors to hold losing investments too long and sell winning investments too soon. The 

prominent explanation for the disposition effect is based on Kahneman and Tversky’s (1979) 

prospect theory combined with Thaler’s (1985) mental accounting framework. According to 

prospect theory, decision makers evaluate outcomes in terms of gains and losses relative to a 

reference point using an S-shaped value function that is concave (risk averse) for gains and 

convex (risk loving) for losses. Reference-dependency is the essence of the prospect theory 

because the reference point determines whether an outcome is judged as a gain or loss, which 

significantly affects subsequent risk-taking decision. The disposition effect is an implication of 

the prospect theory under the critical assumption that investors fail to adapt to losses and anchor 

the reference point to a price level higher than the current price.  

Existing empirical studies typically assume the initial purchase price as a fixed reference 

point and show that, when an investment is trading below the reference point, investors tend to 

be risk seeking and hold the losing investment by framing the sell decision as a sure loss and 

hold decision as a gamble that gives opportunity to break even. However, as Kahneman and 

Tversky (1979) and Thaler and Johnson (1990) point out, the reference point in a dynamic 

setting such as financial investment is not static and may shift away from the purchase price 

depending on how investors consider sequences of gains or losses. If an investor fully adapts to 

changes in security prices and segregates prior outcomes, she will adjust the reference point to 

the current price. In contrast, if an investor fails to fully adapt to prior outcomes, there will be a 

discrepancy between the current price and the reference point. Likewise, Odean (1998) argues 

that though evidence of investors’ reluctance to realize capital losses vindicates that purchase 

price plays an important role in determining the reference point, the purchase price may be only 
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one determinant of the reference point and the price path may also affect the level of the 

reference point.  

Motivating our empirical study is the fact that although the reference point plays a critical 

role in prospect theory, yet little is known about how the shift of reference point over time affects 

subsequent risk-seeking behavior and the disposition effect. Since investors exhibit distinct risk 

attitudes in the gain versus loss domain, a shift of reference point systematically alters the value 

of an outcome and subsequent risk-taking decision. In the presence of a prior loss, investors’ hold 

versus sell decision depends on the discrepancy between the adapted reference point and the 

lowered current price. On the one hand, if the reference point has been fully adapted downwards 

to the current price, investor will less likely be risk seeking. On the other hand, if the adapted 

reference point remains at a higher level than the current price, the investor is likely to hold onto 

the losing investment and exhibits the disposition effect.1  

Prior theoretical and experimental studies suggest that investors adjust the reference point 

from the initial purchase price towards current price in response to experienced changes in 

security value but the adjustment is usually incomplete. Tversky and Kahneman (1974) provide 

psychological basis that people adjust away from an initial value towards a final estimate based 

on information, but the adjustment is often insufficient. Barberis, Huang, and Santos’ (2001) 

model assumes a benchmark which serves as a secondary reference point to respond sluggishly 

to changes in the value of the risky asset. When a stock price moves up by a lot, the benchmark 

also moves up, but by less. Conversely, if the stock price falls sharply, the benchmark does not 

adjust downwards by as much. Chen and Rao (2002) suggest that people immediately but 

incompletely update their reference point after experiencing an event. In recent experimental  

                                                               
1 See Weber and Camerer (1998) and Arkes, Hirshleifer, Jiang, and Lim (2008, 2009) for more extensive discussion on the 
relation between dynamic adaptation of reference point and the disposition effect, and a synthesis of the existing evidence on this 
topic.  
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studies, Arkes, Hirshleifer, Jiang, and Lim (2008, 2009) show that individuals tend to shift 

reference points upwards after prior gains and downwards after prior losses but the magnitude of 

reference point adaptation following a price change is not as large as the magnitude of price 

change itself. 

Since investors’ propensity to hold losing investments depends on the discrepancy between 

the adapted reference point and the lowered current price, this study aims to provide empirical 

evidence on how the dynamic adaptation of reference point affects investors’ exhibition of the 

disposition effect by examining exogenous factors potentially relevant to reference point 

adaptation. We conjecture that the disposition effect depends on (1) the magnitude of prior losses 

and (2) the extent to which reference point shifts downwards to the current price.  

First, the magnitude of prior losses affects investors’ willingness to adjust the reference point 

downwards to the lowered current price. Thaler and Johnson (1990) show that individuals are 

more willing to adapt to a small to moderate loss than a large loss in that a small to moderate loss 

increases risk aversion for subsequent gambles whereas a large loss numbs the individual to 

additional losses.2 Failure to fully adapt to a large loss creates a discrepancy between the 

adapted reference point and current price, leaving an investor in the loss domain, and induces 

risk-seeking behavior. Further, diminishing sensitivity reinforces the effect of large losses on risk 

seeking. Given that an investor has not completely adapted to large loss and is already in the loss 

domain, a further loss will cause only a small decrease in utility whereas a price recovery will 

result in a large increase in utility. To illustrate how disposition effect is affected by the 

magnitude of prior losses, imagine an investor who bought a stock at $45, and now the stock 

price goes down to $40. It requires the investor to adjust the reference point downwards by $5 to 

                                                               
2 In their experimental study on how prior losses affect subsequent risk taking behavior, Thaler and Johnson (1990) document 
evidence that the disutility of a subsequent loss is not a monotonically increasing function of a prior loss. Specifically, the loss of 
$9 hurts more after a small to moderate loss ($9 or $30), but less after a large loss ($250 or $1000) (P.650).  
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the current price ($40) so that there will be no discrepancy between the reference point and the 

current price. The investor is more willing to adapt to this small loss and evaluates future 

prospects relative to current stock price. In doing so, she is less likely to exhibit the disposition 

effect. If however, the stock goes down sharply to $25, it requires the investor to adjust the 

reference point downwards by $20. The investor is less likely to fully adapt to this large loss and 

considers the subsequent decision as a choice between a sure loss of $20 and a gamble that gives 

opportunity to break even. Hence, she is likely to exhibit risk seeking behavior and assumes risks 

otherwise not justified by expected returns.  

Second, the disposition effect depends on the extent to which the reference point shifts 

downwards to the current price. Though Kahneman and Tversky (1979) argue that reference 

point can be “an expectation or aspiration level that differs from status quo” and “a state to which 

one has adapted”, they do not specify how the reference point changes over time. In a recent 

reference-dependency model, Köszegi and Rabin (2006, 2007) posit that a person’s reference 

point is her recent probabilistic beliefs about outcomes. The model helps explain how the 

reference point changes over time and provides testable implications for the disposition effect. 

The first testable implication is that investors are less susceptible to disposition effect if they 

have recently received unfavorable information about stock prices. Since investors form 

expectations using information available to them, they tend to update expectations about stock 

value downwards upon receipt of unfavorable information. By equating the reference point with 

recent expectations, the downward expectation translates into a lower reference point, which in 

turn makes investors more willing to sell losing positions. The second testable implication is that 

investors are less prone to disposition effect when trading in highly speculative investments and 

during highly speculative market periods. Köszegi and Rabin argue that a priori of losing money 
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decreases aversion to realize losses. Since investors base the reference point on probabilistic 

beliefs about outcomes, a high expected probability of losing money increases their willingness 

to realize losses. Specifically, since investors foresee a good chance of losing money when 

investing in a highly speculative investment, they will be more willing to adapt the reference 

point downwards after experiencing anticipated losses, and will be less willing to take chances to 

break even.  

Building on the prior experimental studies and theoretical predictions, we empirically 

investigate whether, and to what extent, prior outcomes and recent expectations affect the 

reference point which, in turn, translates into variations in the disposition effect using a large 

proprietary dataset of institutional trading. We employ an extended Cox proportional hazard 

model to ascertain the degree of institutional investors’ disposition effect. Primary findings 

presented in this article can be summarized as follows. First, the disposition effect increases with 

the magnitude of prior losses as a result of insufficient adjustment of reference point. We assess 

the extent to which disposition effect is sensitive to the magnitude of prior losses by separating 

the losing positions into 6 capital loss intervals, each representing an interval that lies within a 10% 

return band from 0 to 50% and above 50% loss. We find that the probability of selling a losing 

position declines as the magnitude of prior loss becomes larger. Consistent with our conjuncture 

that a large capital loss creates a discrepancy between the adapted reference point and current 

price, institutional investors’ exhibition of disposition effect is driven by their reluctance to 

realize large losses (positions that have depreciated more than 20%). Furthermore, the tendency 

to hold onto losing positions significantly increases once the capital losses exceed 40%, with the 

probability of selling such a loss is 80% lower than a winning position. 

 Second, consistent with the theoretical predictions of Köszegi and Rabin (2006, 2007), 
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we find that institutional investors’ propensity to sell losing position depends crucially on both 

recent value-relevant information and speculative natures of investment. Our findings reveal that 

recent adverse information accelerates investors’ adaptation to price depreciation and increases 

their willingness to realize large capital losses. Specifically, if institutional investors hold a losing 

position in a stock that a) has been underperforming recently, b) experiences negative earnings 

news, or c) is traded in down market condition, they are more likely to update the reference point 

to a lower level and liquidate the losing position. On the other hand, if investors observe recent 

favorable value-relevant information, they are more likely to hold onto the losing stock in 

waiting for price recovery as the favorable information raises their hope to break even.3 

Furthermore, institutional investors are more willing to adapt to large capital losses and liquidate 

losing investments when trading in highly speculative stocks (as proxied by stock-level 

information uncertainty) and during highly speculative market periods (as proxied by 

market-wide investor sentiment). In particular, our findings indicate that institutional investors 

are more willing to realize large capital losses in high idiosyncratic risk, small market 

capitalization, and high volatility stocks and during the periods of high market-wide investor 

sentiment.  

Our key contributions to the literature are as follows. First, to the best of our knowledge, our 

study is the first to provide empirical evidence on the importance of reference point adaptation in 

explaining the disposition effect using the data from financial markets. Although both theoretical 

and experimental studies acknowledge that investors update the reference point overtime, there 

has been a lack of empirical evidence on whether, and to what extent, the shift of reference point 

affects subsequent risk-seeking decision. Second, we investigate a paramount theoretical model 

                                                               
3 This finding also suggests that a misguided belief in mean-reversion cannot be a sufficient explanation for institutional 
investors’ disposition effect. Mean-reversion beliefs will lead investors to hold underperforming stocks and sell overperforming 
stocks regardless whether the stocks are held as capital losses. 
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of Köszegi and Rabin (2006, 2007) which highlights the importance of recent stock-level and 

market-level value-relevant information and speculative natures in explaining when and how the 

disposition effect is likely to be observed. Our findings suggest that exogenous factors pertinent 

to investors’ recent expectations affect the reference point and the disposition effect. Third, we 

offer the first-to-date empirical investigation of disposition effect in U.S. institutional equity 

trading using high frequency transaction data. Though disposition effect is well-documented 

among retail investors, little is known about the existence of such biases among institutional 

investors. Our results should be of interest to a wide audience, as institutions currently hold 74% 

of common stocks, compared to 8% about 50 years ago (Bogle (2008)). With a large fraction of 

aggregate wealth under their management, institutions are frequently the marginal price-setting 

agents in securities markets. An investigation of their trading behavior is necessary to understand 

the dynamics of stock prices. In this respect, the closest work to our study is perhaps Frazzini 

(2006) which examines whether the presence of mutual funds who display the disposition effect 

can generate stock price underreaction to news, leading to return predictability and 

post-announcement price drift using quarterly mutual funds stock holdings data. While his study 

focuses on the relation of disposition effect and cross-sectional return predictability, our study is 

devoted to the examination of how prior outcomes as well as recent expectations affect the 

adaptation of reference point which, in turn, translate into variations in disposition effect. Fourth, 

our daily institutional trading data enables us to investigate how institutional investors exhibit the 

disposition effect in equity markets while overcomes the limitations of the quarterly holdings 

data. The quarterly holdings data cannot accurately identify the timing of trades and does not 

reflect intra-quarter round-trip trades which results in a significant number of missing trades.4 

                                                               
4 Puckett and Yan (2008) and Elton, Gruber, Blake, Krasny, and Ozelge (2009) estimate that use of quarterly data fails to capture 
more than 20% of trades due to intra-quarter round-trip transactions.  
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Moreover, the purchase prices are assumed to be the closing price at the end of each quarter. This  

treatment deteriorates the accuracy for measuring gains and losses since the actual transaction 

price is generally different from the quarter-end closing price. Lastly, we estimate the extent to 

which institutional investors are prone to disposition effect by employing an extended Cox 

proportional hazard model. The model offers advantages over the traditional approaches used to 

investigate the disposition effect. Our findings are robust to various changes in model 

specification (full-set regression and regressions with investor-specific and stock-specific, and 

year-specific heterogeneity controls) and are not driven by fund manager’s managerial 

compensation incentive. 

The balance of the paper is organized as follows. Section 1 reviews related literature and 

develops testable hypotheses. Section 2 introduces the data and methodology. Section 3 presents 

the empirical results. Section 4 reports robustness checks. Section 5 concludes. 

 

1. Related Literature and Hypothesis Development 

According to Kahneman and Tversky’s (1979) prospect theory, decision makers evaluate 

outcomes in terms of gains and losses relative to a reference point using an S-shaped value 

function that is concave (risk averse) for gains and convex (risk loving) for losses. Critical to this 

value function is the reference point which determines whether an outcome is judged as a loss or 

gain. The original formation of this theory uses the status quo as the reference point for static 

context whereas Shefrin and Statman (1985) apply the prospect theory to a dynamic setting - 

security trading - and coin “disposition effect” to describe investors’ tendency to hold losing 

investments too long and sell winning investments too soon. 

Initiated by Shefrin and Statman (1985), existing empirical studies typically assume the 
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initial purchase price as a fixed reference point and show that investors are reluctant to sell 

investments trading below the reference price.5 Although both theoretical and empirical studies 

acknowledge that reference point is likely to migrate overtime (Kahneman and Tversky’s (1979), 

Shefrin and Statman (1985), Thaler and Johnson (1990), Odean (1998), Weber and Camerer 

(1998), Heath, Hudddart, and Lang (1999), Barberis, Huang, and Santos (2001), Chen and Rao 

(2002), Garvey and Murphy (2004), Crane and Hartzell (2008), Arkes, Hirshleifer, Jiang, and 

Lim (2008, 2009)), little empirical analysis focuses on whether, and to what extent, the shift of 

reference point affects investors’ exhibition of the disposition effect. Since investors exhibit 

distinct risk attitudes in the gain versus loss domain, a shift of reference point systematically 

alters the value of an outcome and subsequent risk-taking decision. Specifically, investors’ hold 

versus sell decision following a loss depends on the discrepancy between the adapted reference 

point and the lowered current price.  

In this paper, we conjecture that the discrepancy between the adapted reference point and the 

current price is largely determined by the magnitude of prior losses and recent expectations about 

outcomes. The magnitude of prior losses affects investors’ willingness to adjust the reference 

point downwards to lowered current price. Failure to fully adapt to a large loss creates a 

discrepancy between the adapted reference point and current price, leaving investor in the loss 

domain, and induces risk-seeking behavior. Further, diminishing sensitivity reinforces the effect 

of large loss on risk seeking. Given that an investor has not completely adapted to large loss, a 

further loss will cause only a small decrease in utility whereas a price recovery will result in a 

larger increase in utility. 

Hypothesis 1:  Institutional investors’ exhibition of disposition effect increases with the 

                                                               
5 See, for example, Odean (1998), Grinblatt and Keloharju (2001), Genesove and Mayer (2001), Garvey and Murphy (2004), 
Coval and Shumway (2005), Feng and Seasholes (2005), Shumway and Wu (2006), Ivkovic, Poterba, and Weisbenner (2005), 
Locke and Mann (2005), and Dhar and Zhu (2006). 
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magnitude of prior losses.  

In a recent reference-dependency model, Köszegi and Rabin (2006, 2007, 2009) propose 

that a person’s reference point is her recent probabilistic beliefs about outcomes. Building on the 

essential intuitions in Kahneman and Tversky’s (1979) prospect theory, Köszegi and Rabin (2006, 

2007) argue that, by equating the reference point with recent expectations rather than the status 

quo, their model helps explain how the reference point changes over time and hence provides 

testable implications for the disposition effect. The first testable implication is that investors are 

less susceptible to disposition effect if they have recently received unfavorable information about 

stock prices. Since public information flows interact with investors’ belief formation (Harris and 

Raviv (1993), Wang (1994), and Kim and Verrecchia (1994), and Karlson, Leowenstein, and 

Seppi (2009)), investors update beliefs downwards (upwards) upon the receipt of recent 

unfavorable (favorable) value-relevant information. In particular, adverse information accelerates 

dynamic adaptation to price depreciation and increases their willingness to realize losses. In 

contrast, favorable information raises their hope to break even, and induces risk-seeking 

behavior. 

We examine three kinds of stock-level and market-level information: 1) stock’s recent 

performance, 2) firm’s earnings news, and 3) aggregate market condition. A stock’s recent 

performance is salient information for investors to form expectation about future performance 

(Chan, Jegadeesh, and Lakonishok (1996), Barberis and Thaler (2003), and Chae (2005)). When 

an investor observes the recent price path of a stock, she gradually incorporates the information 

into expectation and updates the reference point. If an investor is holding a losing position, and 

the underlying stock has been performing poorly recently, she tends to update beliefs about 

stock’s price downwards. By adjusting the reference price to a lower level, closer to the current 
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price, the investor will be more willing to sell the losing stock.  

Hypothesis 2a:  Institutional investors’ reluctance to realize losses is attenuated when 

the underlying stocks have been underperforming recently.  

Earnings news spurs investors’ revision of expectations and affects their adaptation of the 

reference point. Bernard and Thomas (1989, 1990), Chan, Jegadeesh, and Lakonishok (1996), 

and Chae (2005) show that earnings news provides significant information about stock’s value 

and that there is a positive correlation between earnings news and subsequent stock returns. 

When an investor observes negative earnings news, she updates the expectation about stock’s 

price downwards. By lowering her reference point according to her recent expectation, she will 

be more willing to sell the losing stock. 

Hypothesis 2b:  Institutional investors’ reluctance to realize losses is attenuated when 

the underlying stocks experience negative earnings news.  

Down (up) market condition lowers (raises) investors’ expectation for individual stock’s 

performance (Daniel, Hirshleifer, and Subrahmanyam (1998), and Cooper, Gutierrez, and 

Hameed (2004)). When the overall market goes down, investors are more likely to update the 

expectations and reference points downwards, closer to current price, and will be more willing to 

sell losing stocks.  

Hypothesis 2c:  Institutional investors’ reluctance to realize losses is attenuated in down 

market conditions. 

The second testable implication is that investors are less prone to disposition effect when 

trading highly speculative investments or during highly speculative market periods. Köszegi and 

Rabin (2006, 2007) argue that a priori of losing money decreases aversion to realize losses. Since 

an investor foresees a good chance of losing money, when investing in a highly speculative 
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investment, she is more willing to adapt the reference point downwards after experiencing 

anticipated losses, and will be less willing to take chances to break even. We examine whether 

institutional investors are able to adapt to a large loss when they foresee a probability of losing 

money in highly speculative investments (as proxied by stock-level information uncertainty) and 

during highly speculative market periods (as proxied by market-wide investor sentiment).  

Previous literature argues that stocks with high information uncertainty are hard to value and 

difficult to arbitrage (Miller (1977), Shleifer and Vishny (1997), Baker and Wurgler (2005, 2006), 

and Kumar (2009)). These stocks are characterized with high idiosyncratic risks, small market 

capitalization, and high volatility. We conjuncture that institutional investors have a priori of 

losing money in high information uncertainty stock and will be more willing to liquidate the 

losing position. 

Hypothesis 3a:  Institutional investors’ reluctance to realize losses is attenuated in high 

information uncertainty stocks. 

Lastly, we examine market-level speculative nature using market-wide investor sentiment 

which represents the biased expectations of market participants: a bullish (bearish) investor 

overestimates (underestimates) asset value (Brown and Cliff (2004)). De Long et al. (1990) and 

Shleifer and Vishny (1997) argue that investor sentiment is a risk faced by rational investors 

when trading against noise investors. During periods of high sentiment, speculative traders have 

systematic optimism and increase speculative demand while sophisticated investors face higher 

risk from trading against them (Baker and Wurgler (2007) and Lemmon and Ni (2009)). To the 

extent that institutional investors are sophisticated, we conjecture that institutions are aware of 

high risk associated with trading against noise traders during high sentiment periods and will be 

more willing to liquidate the losing position. 
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Hypothesis 3b:  Institutional investors’ reluctance to realize losses is attenuated during 

high investor sentiment periods. 

 

2. Data and Methodology 

2.1 Data, Sample and Summary Statistics 

We obtain proprietary institutional trading data from the Abel Noser Corporation 

(thereafter, Abel Noser) for the period of 1999-2005. Abel Noser is a widely recognized firm that 

provides consulting and advisory services to institutional investors in monitoring their equity 

trading cost. The Abel Noser dataset identifies institutional investor’s decisions to establish or 

liquidate positions as well as the order execution. The Abel Noser dataset provides information 

about stock traded, number of shares ordered and executed, execution price, order direction (buy 

or sell), and the time of orders and the executions. The identities of the institutions and portfolio 

managers are not provided due to privacy protection, but the unique identity codes are used to 

distinguish trades from different types of institutions and portfolio managers. Our analysis 

focuses primarily on mutual funds since most pension funds and index funds in our dataset 

follow an inactive trading strategy. 

We obtain stock return, share price, stock turnover from CRSP daily tape, and include only 

common stocks (share code equals 10 or 11) traded on NYSE/AMEX/NASDAQ in our sample. 

To make sure our results are not driven by very small stocks or by bid-ask bounce, we delete 

stocks with price less than $1. We obtain analysts’ consensus quarterly earnings forecast and 

actual earnings per share from I/B/E/S. 

Positions. A position begins when an investor purchases a stock and ends when the stock 

is sold. To maintain the integrity of the data and filter out possible errors in identifying prior 
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capital gains or losses, we follow the approach of Ivkovic, Poterba and Weisbenner (2005) and 

restrict the sample to trades for which we can unambiguously match purchase and sale dates. We 

exclude sales that do not have a preceding purchase and sales that are preceded by multiple 

purchases.6 When a single purchase is followed by multiple sales, we choose the first sale as the 

end of that position.7 Gains and losses. On each position-day, we identify holding period capital 

loss/gain against purchase price. If the position has a sell order on that day, we compare the 

volume-weighted executed price of the sell order to that of the buy order which originates the 

position. On days that the position is held, we compare the CRSP closing price of that day to the 

purchase price.8 All prices are adjusted for stock splits and dividend distributions.  

Table I provides the descriptive statistics of our sample. The final sample consists of 199 

institutions and 469 portfolio managers who place orders in a total number of 6,653 common 

stocks. We identify 0.89 million initiations of positions which results in 23.90 million 

position-days. The average holing period (from initiation to first sale) is 27 days for a position. 

Institutions purchase approximately 41.79 billion shares, representing $1.08 trillion in value. 

 

2.2 The Cox Proportional Hazard Model 

We estimate the extent to which institutional investors are prone to disposition effect by 

employing an extended Cox proportional hazard model (thereafter, the Cox-PH model). Recent 

studies on disposition effect such as Genesove and Mayer (2001), Feng and Seasholes (2005), 

Ivkovic et al (2005), Shumway and Wu (2006) and Seru, Shumway, and Stoffman (2008) 

                                                               
6 As a robustness check, we repeat our analysis with the sample including sale orders that are preceded by multiple purchase 
orders by using volume-weighted average purchase prices of each order as the purchase price. The results remain qualitatively 
unchanged. 
7 Institutional investors in our sample are less likely to engage in portfolio rebalancing when liquidate their holding, as over 90% 
of the sales occurred are sales of entire positions. 
8 We use closing price instead of bid/ask price to identify gain/loss in order to limit the observations with no price change. We 
repeat all analysis using bid/ask price, the results are qualitatively similar to those obtained using closing price. 
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advocate the advantages of hazard model over several traditional approaches to investigate the 

disposition effect. 

In particular, Odean (1998) compares the proportion of losses realized (PLR) to the 

proportion of gains realized (PGR). A lower PLR than PGR suggests that investors are reluctant 

to realize losses than gains.9 However, it is difficult to control for other factors that could be 

correlated to investors’ trading decision, such as stock past returns and stock volatility. To 

facilitate such controls, Grinblatt and Keloharju (2001) use a Logit regression by regressing a 

holding indicator (1=sell, 0=hold) at the stock position level on a set of independent variables. 

The most relevant variables to our study are indicators of capital losses. The Logit regression 

includes observations for each position on each day when an investor trades at least one security. 

Days in which an investor does not trade are dropped from their analysis. A potential problem 

with a Logit regression is that they may give incorrect inferences in cases where capital gains or 

losses vary over time, i.e. the model ignores the price path during the holding period of a position 

(Seru et al. (2008)). The hazard model overcomes this limitation by including each position-day 

as a separate observation and thus can identify the time-varying nature of the explanatory 

variables. In addition, this model is especially proper in our setting due to the conditional nature 

of investors’ sale decisions: the probability of selling a position at time t is conditional on still 

holding that position still time t-1.  

For each day t after a position j is established (a stock is bought by an investor), we 

calculate hazard rate hj(t|X), the probability of selling position j at time t conditional on still 

holding the position until time t. We specify the hazard rate as:  

hj (t| X) = h0(t)exp(β*X)                        (A) 

                                                               
9 We also repeat our main analysis using Odean’s (1998) proportional method. We provide a brief discussion of the findings in 
robustness check section.  
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The baseline hazard rate h0 (t) is essentially the hazard rate when all covariates take the 

value of zero. If we take logarithm of both sides, (A) is transferred to  

log [hj (t| X)] = log[h0(t)] +β*X                        (B) 

Equation (B) shows that the log baseline hazard is analogous to the intercept in a linear 

regression model. The advantage of the Cox-PH model is that it does not impose a specific form 

of the baseline by allowing for a non-parametric baseline h0(t), which automatically captures 

fluctuations in hazard rate caused by differing holding time.  

X is the matrix of explanatory variables --- covariates--- that can be time-invariant or 

time-varying. The estimate for each covariate reflects an average effect of the covariate to 

increase or decrease hazard rate during the holding period of a position. The economic meaning 

is easy to interpret. The sign of the coefficient indicates the direction of the covariate’s effect on 

the hazard rate. Specifically, a negative β1 coefficient on X1 means that one unit increase in X1 

lead to the absolute value of [EXP(β1) -1] decrease in the conditional probability of selling. 

Since the duration of holding a position is the time between establishing and liquidating a 

position, a lowered hazard rate implies a longer period of holding the position.  

 

3. Empirical Results 

In this section, we present our empirical findings on how the reference point adaptation affects 

subsequent risk-seeking behavior and the disposition effect. We begin by assessing the general 

evidence of institutional investors’ disposition effect in Section 3.1. We investigate how the 

magnitude of prior capital losses affects the disposition effect in Section 3.2. We evaluate the 

impact of recent stock-level and market-level information on disposition effect in Section 3.3. 

We examine the impact of stock-level and market-level speculative natures on the disposition 
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effect in Section 3.4. 

3.1 General Disposition Effect 

To examine the general disposition effect, we begin with the univariate specification of the 

Cox-PH model:  

hj(t) = h0(t)exp(β1 * LOSS),                         (1) 

where LOSS is an indicator variable that is equal to one if the position has depreciated in 

value from the time of purchase until time t.10 If institutional investors exhibit disposition effect, 

the coefficient for the capital loss indicator will be negative (capital loss decreases the hazard 

rate). This implies that investors with a losing position will hold the position longer than a 

winning position.  

Table II Model (1) reports the estimated coefficient and standard error for the capital loss 

indicator. The standard error is calculated using the robust covariance matrix clustered by each 

position to derive the statistic inference. The result shows a weak evidence of disposition effect 

among institutional investors. The coefficient of -0.0333 on LOSS suggests that an investor 

facing a prior loss will have a 3.28% reduction in the daily hazard (exp (-0.03) -1= -0.0328= 

-3.28%), or an equivalent increase in the expected holding time to liquidation. Compared to 

previous findings on retail investors’ disposition effect, our result presents a much weaker 

disposition effect for institutional investors. For instance, Feng and Seasholes (2005) show that 

Chinese individual investors decrease the hazard rate by 36% if a stock is trading at a capital loss 

relative to a capital gain. The comparatively weaker disposition effect is not surprising, 

considering that institutional investors possess a higher level of sophistication than retail 

investors. Our findings are consistent with a growing body of literature which examines the 

                                                               
10 We use the indicator variable of capital loss, with the omitted category being capital gain or no price change (in rare instances). 
By this setup, the baseline hazard rate h0(t) is the hazard rate corresponding to a capital gain. 
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relationship between investor characteristics and disposition effect (Locke and Mann (2004), 

Shapira and Venezia (2001), Feng and Seasholes (2005), Dhar and Zhu (2006), and Seru, 

Shumway, and Stoffman (2009)) and documents evidence that investors with higher level of 

sophistication, literacy, investment knowledge, professional occupations, and more trading 

experience are able to adapt better to prior losses and exhibit weaker disposition effect. 

 

3.2 Magnitude of Prior Losses and Disposition Effect  

In this section, we investigate whether, and to what extent, the magnitude of prior losses 

contributes to variations in disposition effect. We characterize the Cox-PH model by including 6 

dummy variables corresponding to 6 capital loss intervals, each representing an interval that lies 

within a 10% return band from 0 to 50% and above 50% loss. For example, the dummy LOSS [0, 

10%] is equal to one when capital loss is greater than zero but less than or equal to 10%. LOSS 

[50%, 100%] is equal to one when capital loss is greater than 50%. 

       hj(t) = h0(t)exp( β1 * LOSS [0, 10%] + β2 * LOSS [10%, 20%]   

+ β3 * LOSS [20%, 30%] + β4* LOSS [30%, 40%]     

+ β5 * LOSS [40%, 50%] + β6* LOSS [50%, 100%])        (2)   

Table II Panel A Model (2) presents the estimated coefficients and standard errors for six 

capital loss indicators. Our finding suggests that institutional investors fail to adapt to large 

losses while they are able to adapt to small to moderate losses. The estimated coefficients on 

LOSS [0, 10%] and LOSS [10, 20%] are positive, suggesting that institutional investors are not 

disposition-prone with respect to small to moderate losses. In contrast, institutional investors are 

reluctant to sell losing position once the loss exceeds 20%. The coefficient of -0.0582 and 

-0.6617 for LOSS [20%, 30%] and LOSS [30%, 40%] suggests that an investor facing a prior 
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capital loss between 20% and 30% (and 30% to 40%) will have a 5.66% (and 48.40%) reduction 

in the probability of selling relative to an investor otherwise facing a gain or no price change. 

The probability of selling a losing position significantly declines as the magnitude of the prior 

losses increases beyond 40%. The estimated coefficients for LOSS [40, 50%], and LOSS [50, 

100%] are -1.6585, and -1.5032, respectively, which are associated with an 80.96%, and 79.67% 

decrease in the probability of selling relative to a stock with capital gain or no price change. In 

sum, our finding supports Hypothesis 1 and is consistent with the notion that a large prior loss 

creates a discrepancy between the adapted reference point and lowered current price which 

induces risk-seeking behavior.  

Since the coefficients are positive for small to moderate loss dummies, but of opposite sign 

for larger loss dummies, we use more parsimonious representation in subsequent analyses. 

Specifically, we dichotomize capital losses into large and moderate losses, instead of the six 

capital loss indicators. We characterize the Cox-PH model by including two dummies: 

LARGELOSS and MODERATELOSS, for large capital loss (loss >20%) and for moderate capital 

losses (loss <=20%), respectively, with the baseline being associated with either a capital gain or 

no price change. 

       hj(t) = h0(t)exp(β1 * LARGELOSS + β2 * MODERATELOSS)            (2’) 

Table II Panel B Model (2’) presents the estimated coefficients and standard errors for 

moderate and large loss indicators. We find opposite signs of the coefficients on the large loss 

versus moderate loss indicators. The coefficient of -0.7980 on LARGELOSS suggests that an 

investor facing a large capital loss will have a 54.98% reduction in the daily hazard (exp (-0.7980) 

-1 = -0.5498 = -54.98%) relative to an investor otherwise facing a gain or no price change. In 

contrast, investors are not reluctant to realize a small to moderate loss. The coefficient on 
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moderate loss of 0.0427 is positive but economically insignificant. Investors facing a moderate 

loss will increase the hazard rate by 4.36% (exp (0.0427) -1 = 0.0436 = 4.36%). The evidence on 

the relation between prior losses and investors’ subsequent risk attitude is similar to the observed 

patterns in Thaler and Johnson (1990), Odean (1998) and Grinblatt and Keloharju (2001), 

although the exact reason for such a trend remains largely unexplained. Given that investors are 

less likely to fully adapt to large capital loss, the negative relation between magnitude of prior 

losses and the propensity to sell losing position can be explained by dynamic adaptation of 

reference point within the framework of prospect theory. In prospect theory, the propensity to sell 

a stock should decline as the stock price moves away from the reference point, given a positive 

expected return (Gomes (2005) and Barberis and Xiong (2009)). Our findings suggest that 

institutional investors are able to adapt to small to moderate losses and adjust the reference point 

downwards closer to current price, resulting in only a small discrepancy between the two prices. 

In contrast, institutions’ inability to fully adapt to large loss creates a large negative deviation 

between adapted reference point and current price which results in a lower propensity to sell 

losing position.11  

In the subsequent empirical analyses, we focus our discussion on the impact of large 

capital loss rather than moderate loss given that institutional investors are able to adapt to small 

to moderate losses and have the greater propensity to hold onto losing investments with large 

capital losses. 

 

3.3    Recent Value-Relevant Information and Disposition Effect 

In this section, we investigate the extent to which recent value-relevant information affects the 

                                                               
11  Skill signaling may also help explain why institutional investors are unable to adapt to large losses. Harbaugh (2009) argues 
that decision makers take risky chances to win back large losses to avoid unfavorable signaling on their skills. 
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reference point which, in turn, translates into variations in the disposition effect. We examine 

three kinds of stock-level and market-level value-relevant information: a) stock’s recent 

performance, b) firm’s earnings news, and c) aggregate market condition. 

3.3.1 Stock’s Recent Performance and Disposition Effect  

We expand the model to include interaction terms of large and moderate loss indicators with past 

return variables. The interaction terms enable us to assess how stock’s recent performance 

together with prior losses affects the disposition effect. We also include past returns as control 

variables. We estimate the Cox-PH model using the following specification: 

hj(t) = h0(t)exp( β1 * LARGELOSS + β2 * MODERATELOSS 

             + β3 * LARGELOSS * PastRet + β4 * MODERATELOSS * PastRet 

             + β5 * PastRet)                                             (3) 

We use the market-adjusted returns, calculated as the difference between the buy-and-hold 

returns of sample stocks and the CRSP value-weighted portfolio. We include market-adjusted 

return variables over 7 non-overlapping trading-day intervals in the past one year: trading days -4 

to 0 (prior one week), days -19 to -5 (prior one month to prior one week), days -39 to -20, days 

-59 to -40, days -119 to -60, days -179 to -120, and days -239 to -180.  

Table III Model (3) reports the estimated coefficients and standard errors for interaction 

terms of large and moderate loss indicators with past return variables. The coefficients on the 

interaction terms in intervals from day -4 to 0 till days -59 to -40 (prior 3 months) are negative 

and statistically significant which implies that, conditional on a prior loss, negative past return 

accelerates the speed of investors’ liquidation of the losing position. To elaborate on this point, 

consider the situation of stock X and Y, both of which are held as a large loss. Suppose stock X 

had a -10% market-adjusted return during the prior week while stock Y had zero market-adjusted 
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return. The coefficient of -3.2965 on the interaction term of large loss indicator with past returns 

of days -4 to 0 (LARGELOSS *Ret[day0,-4]) implies that the hazard rate of stock X is 28.08% 

higher than that of stock Y (exp(-3.29657 * -10% *1)-1) = 0.2808 = 28.08%). In contrast, the 

marginal effect of negative return on the propensity to sell moderate losses is economically 

insignificant. Under the same circumstance, when both stock X and Y are held as moderate loss, 

the coefficient of -0.4379 on the interaction term of moderate loss indicator and stocks’ return of 

days -4 to 0 (MODERATELOSS *Ret[day0,-4]) suggests that the hazard rate of stock X is only 

4.47% higher than that of stock Y (exp(-0.4379 * -10% *1)-1) = 0.0447 = 4.47%). Moreover, the 

coefficients on interaction terms of large loss indicator with most recent past return 

(LARGELOSS *Ret [day0,-4]) is the largest among all the interaction terms, suggesting that 

investors pay more attention to the most recent past return, consistent with Köszegi and Rabin’s 

(2006, 2007) conjuncture that reference point is based on investors’ recent expectations about the 

asset value.  

Our results also reveal that the disposition effect cannot be explained by contrarian trading. 

The coefficient on LARGELOSS remains statistically and economically significant after 

controlling for past return variables. The LARGELOSS coefficient of -1.0713 implies that the 

hazard rate for a position with large loss is 65.74% lower than that for a position with capital 

gain or no price change (exp (-1.0713) -1 = -0.6574 = 65.74%), ceteris paribas. Moreover, the 

positive coefficients on past return control variables implies that investors are more likely to sell 

a stock with good recent performance, conditional on the position being a capital gain. While 

recent outperformance induces investors to sell winning positions, recent underperformance 

increases investors’ willingness to liquidate losing positions. The finding suggests that a belief in 

mean-reversion could not be a sufficient explanation for the disposition effect. A mean-reversion 
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investor would tend to hold the stocks having been underperforming and sell outperforming 

stocks, regardless of whether she experiences paper losses or gains. 

Overall, our finding is consistent with Hypothesis 2a that stock’s recent underperformance 

accelerates adaptation of reference point to a lower level so that institutional investors are more 

willing to realize losses and exhibit weaker disposition effect following a recent price decline.12 

3.3.2 Earnings News and Disposition Effect  

We characterize the Cox-PH model to include the interaction terms of large and moderate loss 

indicators with extreme positive and negative earnings surprise dummies. The earnings surprise 

variables are also included as control variables. 

hj(t) = h0(t)exp(β1 * LARGELOSS + β2 * MODERATELOSS 

                + β3* LARGELOSS * NegES + β4 * LARGELOSS * PosES 

               + β5 * MODERATELOSS * NegES + β6 * MODERATELOSS * PosES 

               + β7 * NegES + β8 * PosES)                                (4) 

   We define quarterly earnings surprise (SUE) as: 

                           (Xjt-Xjt-4)/Sjt,                                  (C) 

where Xjt is actual earnings per share for quarter t; Xjt-4 is actual earnings per share for 

quarter t-4. Sjt is the standard deviation of (Xjt-Xjt-4) in the previous eight quarters (Chordia and 

Shivakumar (2006)). 

Following Foster, Olsen, and Shevlin (1984), each calendar quarter, we rank stocks based 

on the SUE for that quarter to determine the deciles of the distribution. We use these deciles as 

                                                               
12 To capture potential non-linear relation between past performance and disposition effect, we implement two additional tests: 
(1). we include dummy variables indicating whether stocks hit recent historical highs/lows over 3 intervals (overlapped): past 
1-month, 3-month, and 6-month. (2). we include dummy variables representing top/bottom momentum quintiles formed based on 
returns over 3 intervals (overlapped): past 1-month, 3-month, 6-month. Our results indicate that (1). Investors are more likely to 
sell (hold) a losing position if the underlying stock hits the historical low (high). (2). Investors are more likely to sell (hold) a 
losing position if the underlying stock is in the bottom (top) momentum quintile. Overall, the additional tests confirm our main 
findings and results are not reported here for brevity. 
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the cut-offs to assign firms into one of ten earnings surprise portfolios in the quarter subsequent 

to that quarter in which the cut-off point were determined. We define NegES as a dummy 

variable if the stock is in the bottom decile of the earnings surprise ranking, and PosES as a 

dummy variable if the stock is in the top decile of the earnings surprise ranking. We also assess 

the robustness of our findings using dummy variables representing negative or positive earnings 

surprise, our conclusion remains qualitatively unchanged. 

Table III, Model (4) presents the estimated coefficients and standard errors for interaction 

term of large loss indicator with negative earnings surprise (LARGELOSS*NegES) along with 

other covariates. The positive sign of the coefficient on the interaction term suggests that 

negative earnings news increases the probability of selling a large losing position. Specifically, 

the positive coefficient of 0.7405 implies that a negative earnings surprise increases the 

probability of selling by 109.69% (exp(0.7405* 1*1)-1) = 1.0969) relative to a losing position 

that is not subject to extreme negative earnings news. This finding is consistent with Hypothesis 

2b in that recent negative earnings news helps accelerate investors’ reference point downwards 

and attenuates the disposition effect.  

In addition, we address the possibility of the correlation between the stock’s past 

performance and firm’s earnings news. Prior researches suggest that information in stock price is 

correlated with information in earnings news to some extent (Chan, Jegadeesh, and Lakonishok 

(1996) and Chordia and Shivakumar (2006)). As a result, we specify the regression including 

both past return variables and earnings news variables: 

hj(t) = h0(t)exp(β1* LARGELOSS + β2 MODERATELOSS 

                + β3 * LARGELOSS * PastRet + β4 * MODERATELOSS * PastRet 

                + β5 * LARGELOSS * NegES + β6 * LARGELOSS * PosES  
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+ β7 * MODERATELOSS * NegES + β8 * MODERATELOSS * PosES 

+ β9 * PastRet + β10 * NegES + β11 * PosES)                   (5) 

Results from Model (5) confirm our earlier findings and provide support to Hypothesis 2a 

and Hypothesis 2b. Stock’s recent performance and firm’s earnings news both have strong 

impact on the disposition effect and are not subsumed by each other. Specifically, when both 

past return and earnings news variables are included in the model, coefficients on the interaction 

terms of large loss indicator with the seven past return variables change only slightly from Model 

(3), and remain economically and statistically significant. The coefficient on interaction term of 

large loss with negative earnings news reduces from 0.7405 in Model (4) to 0.3497 in Model (5), 

but is still economically and statistically significant, suggesting that the economic effect of 

negative earnings news on disposition effect is reduced but not subsumed by past return 

variables. 

3.3.3 Aggregate Market Condition and Disposition Effect  

We characterize the Cox-PH model to include the interaction terms of large and moderate loss 

with market condition indicator. 

hj(t) = h0(t)exp (β1 * LARGELOSS + β2 * MODERATELOSS 

+ β3 * LARGELOSS * MKTdown 

+ β4 * MODERATELOSS * MKTdown 

                + β5 * MKTdown)                                       (6) 

where the indicator variable “MKTdown” is equal to one for down market condition, and 

takes the value of zero otherwise. Down (Up) markets are months in which the market excess 

return is less (greater) than zero. Market excess return is defined as the difference between the 

return on the value-weighted CRSP portfolio and risk-free rate. We also repeat our analysis using 
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equal-weighted CRSP portfolio as well as Standard & Poor 500 index as proxy for market 

portfolio. The findings are qualitatively unchanged and not reported here for brevity. 

Table IV reports the estimated coefficient and standard error for interaction term of large 

loss indicator with down-market indicator (LARGELOSS * MKTdown). The positive coefficient 

on the interaction term of 0.4933 suggests that institutional investors are 63.77% (exp(0.4933 * 

1*1)-1) = 0.6377) more likely to realize large loss in down-market than in up-market condition. 

The finding provides support to Hypothesis 2c in that institutional investors are more likely to 

update the expectations and reference points downwards and will be more willing to sell losing 

positions in down-market condition. 

 

3.4   Stock-Level and Market-Level Speculative Natures and Disposition Effect 

In this section, we investigate how institutional investors’ reluctance to realize large losses is 

affected by stock-level and market-level speculative natures. To carry out our tests, we examine 

stock-level speculative nature using information uncertainty proxies and market-level speculative 

nature using composite index of investor sentiment. 

3.4.1 Stock-Level Speculative Nature and Disposition Effect  

We adopt three commonly used proxies for stock level information uncertainty.  

Idiosyncratic Risk --- We use the average monthly idiosyncratic risk during the prior 

quarter before portfolio formation. Following Fu (2009), we define idiosyncratic volatility each 

month as the product of (a) the standard deviation of the regression residuals of excess daily 

returns on the daily Fama-French three factors (FF3), and (b) the square root of the number of 

observations in the month.  

Firm Size --- measured as the market capitalization at the portfolio formation date. It 
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seems plausible that small firms are less diversified and have less information available for the 

market than large firms (Zhang (2006)). 

Return Volatility --- return volatility is the standard deviation of weekly returns over the 

year ending at the portfolio formation date. We measure the weekly returns from Thursday to 

Wednesday to mitigate nonsynchronous trading or bid-ask bounce effects in daily price.   

For each proxy of information uncertainty, we sort stocks into three groups (High, Mid, 

Low). We define three dummy variables representing information uncertainty group a stock 

belongs to. We characterize the Cox-PH model to include the interaction terms of large and 

moderate loss indicators with three information uncertainty indicators. 

hj(t) = h0(t)exp ( β1 * LARGELOSS * IU_High 

+ β2 * LARGELOSS * IU_Mid 

+ β3 * LARGELOSS * IU_Low 

+ β4 * MODERATELOSS * IU_High 

+ β5 * MODERATELOSS * IU_Mid 

+ β6 * MODERATELOSS * IU_Low 

                      + β7 * IU_Mid + β8 * IU_Low                   (7) 

Table V Model (7) presents the estimated coefficients and standard errors for interaction 

terms of large loss indicator with stock-level information uncertainty indicators. For all three 

information uncertainty proxies, the results are consistent with Hypothesis 3a in that institutional 

investors exhibit weaker disposition effect when trading in highly speculative stocks. For 

example, when using size as the proxy for information uncertainty, the positive coefficient of the 

interaction term of small size with large loss indictor (LARGELOSS *SIZE_Small) of 0.0778, 

with small increase in probability of selling a losing position of 8.09%, implies that institutional 



 28 

investors exhibit no disposition effect when trading in small stocks. As firm size becomes larger, 

institutional investors exhibit stronger disposition effect. The negative coefficient of the 

interaction term of middle size with large loss indicator (LARGELOSS *SIZE_Mid) of -0.6462 

suggests that institutional investors are 47.59% (exp(-0.6462 * 1*1)-1) = -0.4759) less likely to 

realize large losses in middle size stocks. The negative coefficient of the interaction term of the 

large size with large loss indicator (LARGELOSS *SIZE_Large) of -1.4165 indicates that 

institutional investors are 75.74% (exp(-1.4165 * 1*1)-1) = -0.7574) less likely to realize large 

loss in large stocks. Our results are consistent with the notion that institutions anticipate a high 

probability of losing money when trading a highly speculative stock and are more willing to 

adapt to large losses. In contrast, institutions are more willing to assume risk and hold onto 

losing positions in the relatively “safe” stocks, i.e., low information uncertainty stocks. 

3.4.2 Market-Level Investor Sentiment and Disposition Effect  

We characterize the Cox-PH model to include the interaction terms of large and moderate loss 

indicators with market-wide investor sentiment indicator. 

hj(t) = h0(t)exp ( β1 * LARGELOSS  

                       + β2* MODERATELOSS  

                       + β3* LARGELOSS * PosSENT 

                       + β4 * MODERATELOSS * PosSENT 

                       + β5 * PosSENT)                                 (8) 

The dummy variable “PosSENT” is equal to one if the composite index of investor 

sentiment is positive in the previous month. Positive (Negative) sentiment index implies high 

(low) market-wide investor sentiment. We use a composite index of sentiment developed by 

Baker and Wurgler (2006). The sentiment index is created from 6 proxies of investor sentiment 
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based on their first principal component. These proxies include such variables positively 

associated with sentiment levels as share turnover, IPO volume and first-day returns, and the 

equity share in new issues, and those negatively associated as the closed-end fund discount and 

the dividend premium. We obtain monthly sentiment index from Jeffrey Wurgler’s website.13  

Table VI reports the estimated coefficient and standard error for interaction terms of large 

loss indicator with positive market sentiment indicator (LARGELOSS * PosSENT). Consistent 

with Hypothesis 3b, the positive coefficient on the interaction term suggests that high investor 

sentiment attenuates institutional investors’ disposition effect. The coefficient on 

LARGELOSS*PosSENT of 0.7073 suggests that positive investor sentiment increases the 

probability of selling a large losing position by 102.84% (exp(0.7073 * 1*1)-1) = 1.0284).  

In addition to monthly sentiment index, we repeat our analysis using yearly sentiment 

index as well as each individual component of the composite sentiment index (share turnover, 

IPO volume and first-day returns, equity share in new issues, closed-end fund discount and the 

dividend premium) compiled by Baker and Wurgler (2006) and alternative proxy such as Market 

Volatility Index (VIX) which measures the implied volatility of options on the S&P 500 stock 

index. In untabulated results, we find that when investor sentiment is high, institutional investors 

are less prone to disposition effect, consistent with our main findings.   

 

4.  Robustness Checks 

4.1 Full-Set Regression  

The findings so far indicate that the disposition effect is affected by each of the three aspects 

pertinent to reference point adaptation: the magnitude of prior losses, recent stock-level and 

market-level value-relevant information and speculative natures. In this section, we examine all 
                                                               
13 http://pages.stern.nyu.edu/~jwurgler/ 
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factors together and explore whether the impact of some factors on the disposition effect may be 

subsumed by other factors.  

We estimate the regression including all the exogenous factors, with the baseline being 

associated with a position that all covariates take the value of zero. 

hj(t) = h0(t)exp(β1 * LARGELOSS +β2 MODERATELOSS 

+ β3 * LARGELOSS * PastRet 

              + β4 * LARGELOSS * NegES + β5 * LARGELOSS * PosES  

              + β6 * LARGELOSS * MKTdown 

              + β7 * LARGELOSS * IU_Mid + β8 * LARGELOSS * IU_High 

+ β9 * LARGELOSS * PosSENT  

+ β10 * MODERATELOSS *PastRet 

+ β11 * MODERATELOSS *NegES +β12 * MODERATELOSS *PosES 

+ β13 * MODERATELOSS * MKTdown 

              + β14 *MODERATELOSS * IU_Mid + β15 * MODERATELOSS * IU_High 

+ β16 * MODERATELOSS * PosSENT  

+ β17 * PastRet + β18 * NegES + β19 * PosES 

+ β20 * MKTdown + β21* IU_Mid + β22* IU_High 

+ β23 * PosSENT)                                          (9) 

Table VII Model (9) reports the estimated coefficients and standard errors for all covariates. 

Result from Model (9) shows that each exogenous factor pertinent to reference point adaptation 

has impact on the disposition effect and that one factor’s impact is not subsumed by another. For 

brevity, we report the results using idiosyncratic risk as the proxy for stock-level information 

uncertainty. The findings are robust to other alternative information uncertainty proxies. 
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First, the coefficient on LARGELOSS is -2.2352 while the coefficient on 

MODERATELOSS is 0.0345, indicating that institutional investors are strongly disposition-prone 

with respect to large losses while they do not exhibit disposition effect in moderate losses. 

Second, the coefficients on the interaction terms of large loss indicator with each of the factors 

representing recent stock-level and market-level value-relevant information remain qualitatively 

unchanged, suggesting that institutional investors’ exhibition of disposition effect in large losses 

is weakened by recent adverse information about the stock’s value. Third, the coefficients on the 

interaction terms of large loss indicator with stock-level information uncertainty proxy and 

investor sentiment remain qualitatively the same as in our main analysis. This suggests that 

institutional investors exhibit weaker disposition effect when trading in highly speculative stocks 

and during highly speculative market periods.  

 

4.2 Investor-, Stock- and Time-Specific Heterogeneity 

4.2.1 Investor- and Stock-Specific Heterogeneity 

There may be unobserved fixed effects in selling probabilities specific to individual investor or 

stock. To explore the sensitivity of our main findings to such potential unobserved 

heterogeneities, we follow Ivkovic et al. (2005) to allow for investor- and stock-specific baseline 

hazard rates. We replace the homogeneous baseline h0(t) in Model (9) with investor-specific 

baseline h0,i(t), which allows the baseline to vary across portfolio managers (Model 10). We 

replace h0(t) with stock-specific h0,s(t), which allows the baseline to vary across stocks (Model 

11). 

     Table VII Model (10) presents the estimated coefficients and standard errors for full set 

regression with investor-specific baseline. After controlling for heterogeneity in investors’ 
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trading behaviors, institutional investors’ reluctance to sell large losing positions is still 

prominent with all the exogenous factors pertinent to reference point adaptation still have 

significant impact on the disposition effect. Model (11) presents the estimated coefficients and 

standard errors for full set regression with stock-specific baseline. The magnitudes of all the 

covariates of interests become even larger and statistically significant after including 

stock-specific baselines. Taken together, the results confirm that our main findings are not simply 

an artifact of correlated cross-sectional differences in investor trading behavior or stock attribute. 

4.2.2 Time-Specific Heterogeneity and Bubble Period 

There may be concerns that our findings are driven by specific time period in the sample. For 

example, during the technology bubble in the late 1990s, mutual funds actively invest in the 

technology sector may find it optimal to ride bubbles and engage in post-peak sell-offs 

(Brunnermeier and Nagel (2004), Griffin, Harris, Shu, and Topaloglu (2009)). We address the 

concerns in three ways. First, we reestimate the regressions in Model (9) by replacing the 

homogeneous baseline h0(t) with year-specific baseline h0,y(t), to address the possibility of 

cross-section dependence produced by time-specific heterogeneity (Model (12)). Second we 

repeat our analysis including investor-stock-year specific baseline (Model (13)). Third, we 

address the possibility that our findings may be altered by different trading behaviors of 

institutional investors for tech stocks during the bubble period. To mitigate this concern, we redo 

the analysis without technology firms (Model (14)). We define technology firms as firms with 

the following SIC codes: 3570-3579, 3622, 3660-3692, 3694-3699, 3810-3839, 7370-7379, 7391, 

and 8730-8734. The last three columns of Table VIII present the estimated coefficients and 

standard errors for all three models. Our findings are robust to inclusion of year-specific baseline 

as well as investor-stock-year specific baseline. Moreover, the estimated coefficients of all the 
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covariates of large losing positions and all the exogenous factors pertinent to reference point 

adaptation are qualitatively unchanged after excluding technology firms.    

4.3 Managerial Compensation Incentive 

One criticism leveled at the results is that they may be driven by the possibility that fund 

managers choose to hold the large losing positions because of their compensation incentive.14 

Brown, Harlow, and Starks (1996), Chevalier and Ellison (1997), and Koski and Pontiff (1999) 

show that midyear underperforming fund managers have an incentive to gamble towards the end 

of the year in attempt to improve their performance while outperformers have an incentive to 

decrease the riskiness and lock in a winning year. To array such a concern, we estimate the 

regression separately for outperforming fund managers (midyear winners) and underperforming 

fund managers (midyear losers).15 Each year, we identify midyear winners and midyear losers 

based on their portfolio returns for the first half of the year (January to June). The difficulty with 

our dataset to measure fund’s portfolio return is that we lack information on share holdings. To 

construct “share holdings”, we follow Dvořák (2005) and cumulate trading flows of a given 

stock initiated by a given fund manager. There may be cases where some holdings are 

established before the start of our dataset and those shares will be missed in the integration of 

trades up to holdings. To mitigate this problem, we keep holdings series of a fund manager after 

the first year in which the first trade record of the manager appears in the dataset. Following 
                                                               
14 Ippolito (1992) and Sirri and Tufano (1998) document that funds with the best recent performance attract higher inflows of 
new investment, while poorly performing funds are not penalized with significant outflows. Because the fund manager’s 
compensation typically changes in proportion to the fund’s inflows, the convex performance–flow relation produces a convex 
relationship between the fund’s past performance and the compensation of the fund’s manager.  
15 The empirical evidence of the relation between interim performance and subsequent risk taking due to managerial incentive is 
inconclusive. For example, Chevalier and Ellison (1997) find that the worst performing funds have the lowest risk-taking 
incentives due to job losing concerns. Busse (2001) finds that the evidence in favor of the tournament hypothesis based on 
monthly data is weaken using daily data. 
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Barber and Odean (2000), we apply CRSP monthly return to each stock in a fund’s portfolio at 

the beginning of the month and then calculate the fund’s monthly portfolio return as 

beginning-of-month market value weighted average returns of all the stocks held in the portfolio. 

Finally, we derive the January-June performance as the cumulative portfolio returns during the 

first half of each year. Following Brown, Harlow, and Starks (1996), we define funds whose 

performance is above median as midyear winners while funds whose performance is below 

median as midyear loser.  

The analysis for the second half of the year is presented in Table VIII. If midyear losers have 

stronger incentives to improve performance due to managerial compensation, we expect them to 

increase the funds' riskiness in the second half of the year by holding onto large losing 

investments. However, the negative sign on LARGELOSS coefficient for both midyear winners 

and midyear losers suggests that both are reluctant to realize large losing positions relative to 

winning positions. Our finding implies that the risk taking behavior does not depend on fund 

manager’s midyear performance and cannot be explained by managerial compensation concerns. 

Moreover, midyear winners have a stronger tendency to hold onto large losing investments. 

Midyear winners are 92.50% less likely to sell a losing stock than to sell a winning stock 

compare to only 77.16% for midyear losers. Our finding may reflect the fact that the adjustment 

of risk taking by mutual fund managers in response to past performance due to managerial 

compensation incentives operates at the fund portfolio level, while the disposition effect operates 

at individual position level (O’Connell and Teo (2009)).  

It’s interesting to note that there are some key differences with respect to the extent of 
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reference point adaptation to the exogenous factors. First, midyear losers are more sensitive to 

stock’s recent performance and market conditions. Specifically, the negative market-adjusted 

return during the prior week has stronger influence for midyear losers in selling a losing position 

than for midyear winners. Similarly, down market condition makes midyear losers sell losing 

investments more aggressively than midyear winners. Our finding is in line with Kempf, Ruenzi, 

and Thiele (2009), who find that midyear losers tend to decrease risk to prevent job loss in 

bearish markets because employment risk is relatively high. Second, we find that though both 

midyear winners and losers are more willing to sell highly risky losing stocks, midyear losers sell 

less aggressively than midyear winners. The result agrees with conventional wisdom that 

midyear winners will not take risky positions to the same extent as do the losers for the second 

half of the year and suggests that interim good performance does not entice excess managerial 

overconfidence.  

 

4.3 Odean’s (1998) Proportional Method  

We assess the robustness of our main findings using Odean’s (1998) proportional method. This 

also facilitates a comparison of our findings to previous studies. Odean (1998) compares the 

proportion of losses realized (PLR) to the proportion of gains realized (PGR). A lower PLR than 

PGR suggests that investors are reluctant to realize losses. The results using proportional method 

is consistent with our findings from Cox-PH model. In untabulated result, we find that the ratio 

of the proportion of gains realized (PGR) to the proportion of large losses realized (PLR) is 

3.587, indicating that institutional investors exhibit very strong disposition effect in large losses. 

In contrast, the ratio of the proportion of gains realized (PGR) to the proportion of losses realized 
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(PLR) of general losses is 0.963, suggesting that institutional investors do not exhibit disposition 

effect. In comparison, Odean (1998) reports the ratio of PGR to PLR equals 0.148/0.098=1.510, 

suggesting that retail investors are strongly disposition-prone.  

 

4.4 Evidence on Tax-Selling/Window-Dressing Motivations 

We assess the extent to which institutional investors’ exhibition of the disposition effect is 

affected by tax-motivation or window dressing. Previous literature documents evidence that the 

disposition effect is weakened in month near the deadline for realizing capital losses in order to 

reduce tax payment (Shefrin and Statman (1985), Odean (1998), and Ivkovic et al. (2005)). 

Bhabra, Dhillon, and Ramirez (1999) document evidence that mutual funds engage in window 

dressing or tax-selling in October just before the end of tax year on October 31. Since tax-related 

sales typically occur just before funds’ October 31 tax year-end and that a significant portion of 

window-dressing trades likely take place shortly before funds’ fiscal year end, portfolio 

managers may be more willing to sell losing positions in October. We use an October dummy to 

investigate whether there is tax motivated selling or window dressing for institutional investors. 

We find that institutional investors are more readily to sell large losing positions in October than 

during the rest of the year, which is consistent with tax motivated selling or window dressing.   

 

5 Conclusion 

We provide empirical evidence on whether, and to what the extent, the dynamic adaptation of 

reference point affects investors’ exhibition of the disposition effect by examining exogenous 

factors potentially relevant to reference point adaptation. Our findings indicate that the 

probability of selling a losing position declines as the magnitude of prior capital losses increases 
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due to insufficient adaptation of reference point to large capital losses. Furthermore, institutional 

investors’ willingness to realize large losses is accelerated by recent adverse value-relevant 

information as well as speculative natures, consistent with the theoretical predictions of Köszegi 

and Rabin (2006, 2007). Collectively, our findings highlight that both prior outcomes and recent 

expectations contribute to the reference point adaptation and the disposition effect.  
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Table I Summary Statistics 
 

Table I reports summary statistics of the data in our sample. The positions established are placed by 469 
portfolio managers from 199 mutual funds during the sample period from January 1, 1999 to December 31, 
2005. A position begins when a portfolio manager purchases a stock and ends when the stock is sold. A 
position-day refers to a day during the holding period. We follow the approach of Ivkovic, Poterba and 
Weisbenner (2005) and restrict the sample to trades for which we can unambiguously match purchase and sale 
dates. We exclude sales that do not have a preceding purchase and sales that are preceded by multiple 
purchases. When a single purchase is followed by multiple sales, we choose the first sale as the end of that 
position.  
 

  1999-2005  
Number of Institutions 199 
Number of Portfolio Managers 469 
Number of Stocks 6,653 
Number of Positions (millions) 0.89  
Number of Position-Days (millions) 23.90  
Dollar Volume Purchased ($trillion) 1.08  
Share Volume Purchased (billion) 41.79  
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Table II General Disposition Effect Magnitude of Capital Loss and Disposition Effect 
 

We analyze how holding-period capital loss affects the probability of an investor selling a position by fitting an 
extended Cox proportional hazard model. The Cox PH-model facilitates both time-invariant and time-varying 
covariates. A negative estimated coefficient suggests that the covariate decreases the probability of selling; a 
positive estimated coefficient suggests that the covariate increases the probability of selling. This table reports 
the estimated coefficients and standard errors for loss indicators and different magnitudes of capital losses. 
Model (1) reports the estimated coefficient and standard error for the capital loss indicator. LOSS is an 
indicator variable which takes the value of one if there is a realized or paper loss for that position-day. Model 
(2) characterizes the Cox-PH model by 6 dummy variables corresponding to 6 capital loss intervals, each 
representing an interval that lies within a 10% return band from 0 to 50% and above 50% loss. For example, 
the dummy LOSS [0, 10%] is equal to one when capital loss is greater than zero but less than or equal to 10%. 
LOSS [50%, 100%] is equal to one when capital loss exceeds 50%. Model (2’) reports estimated coefficient 
and standard error for large and moderate losses. LARGELOSS is an indicator variable that takes the value of 
one if the holding loss exceeds 20%, and takes the value of zero otherwise. MODERATELOSS is an indicator 
variable that takes the value of one if the loss is between 0% and 20%. Robust standard error (in parentheses) 
is calculated using the robust covariance matrix clustered by each position to derive the statistic inference. *, 
** indicate significance at the 5% and 1% levels, respectively. 
 

  Model (1)    

LOSS -0.0334  ** 
  (0.0025)   

 
Model (2)  

 

Panel A 10% Band Dummies   
LOSS [0,10%] 0.0408  ** 

(0.0026) 
LOSS [10%,20%] 0.0505  ** 

(0.0064) 
LOSS [20%,30%] -0.0582  ** 

(0.0112) 
LOSS [30%,40%] -0.6617  ** 

(0.0172) 
LOSS [40%,50%] -1.6585  ** 

(0.0235) 
LOSS [50%, 100%] -1.5932  ** 
  (0.0226)   

 
Model (2')  

 

Panel B LARGE versus MODERATE LOSSES 
LARGELOSS -0.7980  ** 

(0.0085) 
MODERATELOSS 0.0427  ** 
  (0.0025)   
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Table III Stocks’ Recent Performance, Earnings News, and Disposition Effect 
 

The table reports the estimated coefficients and standard errors for interaction terms of large and moderate loss 
indicators with past return variables and earnings surprise dummies. LARGELOSS is the large loss indicator; 
MODERATELOSS is the moderate loss indicator. Model (3) includes interaction terms of the loss indicators 
with stock’s percentage market-adjusted return variables over 7 non-overlapping trading-day horizons for prior 
one year: trading days -4 to 0 (past one week), days -19 to -5 (prior one month to one week), days -39 to -20, 
days -59 to -40, days -119 to -60, days -179 to -120, and days -239 to -180. The regression also includes the 7 
past return variables as control variables. Model (4) includes interaction terms of the loss indicators with two 
news dummy variables. NegES is an indicator for stocks with extreme negative earnings news while PosES is 
an indicator for stocks with extreme positive earnings news. Model (5) includes both past return variables and 
earnings surprise dummies in one regression. Robust standard error (in parentheses) is calculated using the 
robust covariance matrix clustered by each position to derive the statistic inference. *, ** indicate significance 
at the 5% and 1% levels, respectively. 
 

   Model (3) Model (4)  Model (5)  

Loss Indicators 
LARGELOSS -1.0713 ** -0.8126 ** -1.0769 ** 

(0.0098) (0.0087) (0.0098) 
MODERATELOSS 0.0438 ** 0.0431 ** 0.0438 ** 

(0.0028) (0.0026) (0.0028) 
Interaction Terms with Large Loss 
LARGELOSS*Ret[day0,-4] -3.2966 ** -3.2193 ** 

(0.0674) (0.0675) 
LARGELOSS*Ret[day-19,-5] -1.5838 ** -1.584 ** 

(0.0575) (0.0573) 
LARGELOSS*Ret[day-39,-20] -0.7767 ** -0.7714 ** 

(0.0583) (0.0582) 
LARGELOSS*Ret[day-59,-40] -0.3805 ** -0.385 ** 

(0.0605) (0.0604) 
LARGELOSS*Ret[day-119,-60] 0.1220 ** 0.1248 ** 

(0.0285) (0.0283) 
LARGELOSS*Ret[day-179,-120] 0.1025 ** 0.1071 ** 

(0.0242) (0.0242) 
LARGELOSS*Ret[day-239,-180] 0.1082 ** 0.1137 ** 

(0.0224) (0.0224) 
LARGELOSS*NegES 0.7405 ** 0.3497 ** 

(0.0502) (0.0548) 
LARGELOSS*PosES -0.0495 -0.0042 

(0.0638) (0.0641) 
Interaction Terms with Moderate Loss 
MODERATELOSS*Ret[day0,-4] -0.4379 ** -0.404 ** 

(0.0473) (0.0472) 
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   Model (3) Model (4)  Model (5)  

MODERATELOSS*Ret[day-19,-5] -0.0725 ** -0.0709 ** 
(0.0238) (0.0238) 

MODERATELOSS*Ret[day-39,-20] 0.0515 ** 0.0515 * 
(0.0210) (0.0210) 

MODERATELOSS*Ret[day-59,-40] 0.0052 0.0056 
(0.0210) (0.0210) 

MODERATELOSS*Ret[day-119,-60] 0.0228 0.023 
(0.0115) (0.0116) 

MODERATELOSS*Ret[day-179,-120] -0.0135 -0.0129 
(0.0106) (0.0106) 

MODERATELOSS*Ret[day-239,-180] 0.0587 0.0589 ** 
(0.0102) (0.0102) 

MODERATELOSS*NegES 0.0124 0.0235 
(0.0239) (0.0247) 

MODERATELOSS*PosES -0.0302 -0.0304 
(0.0180) (0.0180) 

Control Variables 
Ret[day0,-4] 0.2147 ** 0.1954 ** 

(0.0297) (0.0297) 
Ret[day-19,-5] 0.1819 ** 0.1814 ** 

(0.0163) (0.0163) 
Ret[day-39,-20] -0.0079 -0.0066 

(0.0143) (0.0143) 
Ret[day-59,-40] 0.0261 0.0262 

(0.0146) (0.0146) 
Ret[day-119,-60] -0.0660 ** -0.0668 ** 

(0.0080) (0.0080) 
Ret[day-179,-120] 0.0846 ** 0.0826 ** 

(0.0074) (0.0074) 
Ret[day-239,-180] 0.0661 ** 0.0639 ** 

(0.0074) (0.0074) 
NegES 0.1493 ** 0.1563 ** 

(0.0124) (0.0179) 
PosES 0.2991 ** 0.2886 ** 
      (0.0172)  (0.0124)   
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Table IV Market Condition and Disposition Effect 
 

The table reports estimated coefficient and standard error for interaction term of large and moderate loss 
indicators with down-market indicator. LARGELOSS is the large loss indicator; MODERATELOSS is the 
moderate loss indicator. The dummy variable “MKTdown” takes on the value of one if the monthly market 
excess return is negative, and takes the value of zero otherwise. Robust standard error (in parentheses) is 
calculated using the robust covariance matrix clustered by each position to derive the statistic inference. *, ** 
indicate significance at the 5% and 1% levels, respectively. 
 

  Model (6)  

LARGELOSS -1.0422 ** 
(0.0122) 

MODERATELOSS 0.0299 ** 
(0.0033) 

LARGELOSS*MKTdown 0.4933 ** 
(0.0163) 

MODERATELOSS*MKTdown 0.0173 ** 
(0.0051) 

MKTdown 0.0478 ** 
  (0.0036)   
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Table V Stock-Level Information Uncertainty and Disposition Effect 
 

The table reports the estimated coefficients and standard errors for interaction terms of large and moderate loss indicator with stock-level information 
uncertainty indicators. Panel A to Panel C report the relationship between disposition effect and information uncertainty, proxied by idiosyncratic risk 
(IDIO), market capitalization (SIZE), and return volatility (VOL), respectively. Stocks are sorted into tertiles based on each information uncertainty proxy. 
The regression includes interaction terms of the loss indicators with rank dummies based on information uncertainty (High, Medium, Low); we also 
control the level of information uncertainty. Robust standard error (in parentheses) is calculated using the robust covariance matrix clustered by each 
position to derive the statistic inference. *, ** indicate significance at the 5% and 1% levels, respectively. 
 

 

 
Model (7) 

    

Panel A Panel B Panel C 
 IU Proxy= Idiosyncratic Risk (IDIO) IU Proxy=Market Capitalization (SIZE)  IU Proxy=Return Volatility (VOL) 
  

LARGELOSS*IDIO_High 0.0532 ** LARGELOSS*SIZE_Small 0.0778 ** LARGELOSS*VOL_High -0.0796 ** 
(0.0109) (0.0142) (0.0113) 

LARGELOSS*IDIO_Mid -1.0483 ** LARGELOSS*SIZE_Mid -0.6462 ** LARGELOSS*VOL_Mid -0.7158 ** 
(0.0171) (0.0145) (0.0155) 

LARGELOSS*IDIO_Low -2.3646 ** LARGELOSS*SIZE_Large -1.4165 ** LARGELOSS*VOL_Low -2.2176 ** 
(0.0275) (0.0162) (0.0255) 

MODERATELOSS*IDIO_High 0.0195 ** MODERATELOSS*SIZE_Small 0.0594 ** MODERATELOSS*VOL_High 0.0534 ** 
(0.0058) (0.0072) (0.0055) 

MODERATELOSS*IDIO_Mid 0.0422 ** MODERATELOSS*SIZE_Mid 0.0223 ** MODERATELOSS*VOL_Mid 0.0482 **

(0.0044) (0.0047) (0.0044) 
MODERATELOSS*IDIO_Low 0.0356 ** MODERATELOSS*SIZE_Large 0.0458 ** MODERATELOSS*VOL_Low 0.0365 ** 

(0.0036) (0.0033) (0.0037) 
IDIO_Mid 0.1499 ** SIZE_Mid 0.5256 ** VOL_Mid 0.1317 ** 

(0.0049) (0.0058) (0.0047) 
IDIO_Low 0.2542 ** SIZE_Large 0.9738 ** VOL_Low 0.2585 ** 
  (0.0045)   (0.0054)     (0.0045)  
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Table VI Market-Level Investor Sentiment and Disposition Effect 
 

This table reports the estimated coefficient and standard error for interaction terms of large and moderate loss 
indicator with positive market sentiment indicator. We use the composite investor sentiment index for investor 
sentiment developed by Baker and Wurgler (2006). The index is calculated from 6 proxies based on their first 
principal component. These proxies include share turnover, IPO volume, IPO first-day returns, the equity share 
in new issues, the closed-end fund discount, and the dividend premium. The dummy variable “PosSENT” is 
equal to one if the composite index of sentiment is positive in the previous month, and equal to zero otherwise. 
Robust standard error (in parentheses) is calculated using the robust covariance matrix clustered by each 
position to derive the statistic inference. *, ** indicate significance at the 5% and 1% levels, respectively. 
 

  Model (8)  

LARGELOSS -1.1215 ** 
(0.0118) 

MODERATELOSS 0.0368 ** 
(0.0030) 

LARGELOSS*PosSENT 0.7073 ** 
(0.0171) 

MODERATELOSS*PosSENT 0.0093 
(0.0055) 

PosSENT 0.3937 ** 
  (0.0038)   
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Table VII Full-Set Regression and Heterogeneity Controls 
 
This table reports results for the full set regressions. Model (9) reports the homogeneous baseline model as in 
the main analysis. Model (10) allows for investor-specific baseline. Model (11) allows for stock-specific 
baseline. Model (12) allows for year-specific baseline. Model (13) allows for manager-stock-year-specific 
baseline. Model (14) estimates the sample without technology stocks and allows for 
manager-stock-year-specific baseline. Robust standard error (in parentheses) is calculated using the robust 
covariance matrix clustered by each position to derive the statistic inference. *, ** indicate significance at the 5% 
and 1% levels, respectively. 
 

  Model (9) Model (10) Model (11) Model (12) Model (13) Model (14) 

Loss Indicators 
LARGELOSS -2.2352  **

 -2.2465 ** -5.0097 ** -2.2173 ** -4.6161  **
 -4.9304 **

(0.0229) (0.0229) (0.0302) (0.0228) (0.0503) (0.0603)
MODERATELOSS 0.0345  **

 0.0365 ** 0.0116 ** 0.0691 ** 0.0386  **
 0.0419 **

(0.0044) (0.0043) (0.0043) (0.0044) (0.0045) (0.005) 
Interaction Terms with Large Loss 
LARGELOSS*Ret[day0,-4] -2.2307  **

 -2.3019 ** -5.1527 ** -2.1398 ** -5.6943  **
 -6.3393 **

(0.067) (0.0646) (0.1434) (0.0619) (0.1779) (0.2401)
LARGELOSS*Ret[day-19,-5] -0.6525  **

 -0.5777 ** -3.1413 ** -0.4788 ** -3.1721  **
 -4.0876 **

(0.0471) (0.0449) (0.0997) (0.0421) (0.1653) (0.247) 
LARGELOSS*Ret[day-39,-20] -0.2529  **

 -0.1824 ** -1.8832 ** -0.0356 -1.0402  **
 -1.4025 **

(0.0411) (0.0386) (0.0966) (0.0358) (0.1222) (0.1919)
LARGELOSS*Ret[day-59,-40] -0.2118  **

 -0.1162 ** -1.3515 ** 0.0394 -0.6859  -0.4108 
(0.0439) (0.0398) (0.0906) (0.0371) (0.1798) (0.3165)

LARGELOSS*Ret[day-119,-60] 0.1241  **
 0.1621 ** -0.1385 ** 0.2324 ** 0.0963  0.0649 

(0.0209) (0.021) (0.0465) (0.0198) (0.0637) (0.1114)
LARGELOSS*Ret[day-179,-120] -0.0001  0.0761 ** -0.1970 ** 0.1076 ** 0.0031  0.3206 **

(0.0207) (0.0193) (0.0441) (0.0189) (0.0551) (0.0977)
LARGELOSS*Ret[day-239,-180] -0.0236  0.0426 * 0.0242 0.0602 ** 0.1927  **

 0.4191 **

(0.02) (0.019) (0.0381) (0.0187) (0.0564) (0.0948)
LARGELOSS*NegES 0.2245  **

 0.2220 ** 0.3404 ** 0.2843 ** 0.3152  *
 0.2026 

(0.0527) (0.0515) (0.0685) (0.051) (0.0206) (0.1838)
LARGELOSS*PosES -0.1146  *

 -0.0909 -0.2728 ** -0.0694 -0.2383  **
 0.0011 

(0.0641) (0.0637) (0.0699) (0.0631) (0.1171) (0.1526)
LARGELOSS*MKTdown 0.2874  **

 0.2632 ** 0.4568 ** 0.2444 ** 0.5622  **
 0.6510 **

(0.0171) (0.017) (0.0215) (0.0169) (0.0363) (0.0483)
LARGELOSS*IDIO_Mid 0.9188  **

 0.9016 ** 1.2543 ** 0.8742 ** 1.0931  **
 0.9713 **

(0.0278) (0.0278) (0.0309) (0.0277) (0.061) (0.0759)
LARGELOSS*IDIO_High 1.6495  **

 1.5768 ** 2.7390 ** 1.5145 ** 2.3601  **
 2.3952 **

(0.0266) (0.0262) (0.0355) (0.0261) (0.0626) (0.0794)
LARGELOSS*PosSENT 0.3319  **

 0.3220 ** 0.6556 ** 0.2780 ** 0.6173  **
 0.5336 **

(0.0184) (0.0179) (0.023) (0.018) (0.0384) (0.0514)
Interaction Terms with  
Moderate Loss YES 

 
YES 

 
YES 

 
YES 

 
YES 

 
YES 

 

Control Variables YES YES YES YES YES YES 

Heterogeneity Control 
Manager-specific baselines YES YES YES 
Stock-specific baselines YES YES YES 
Year-specific baselines        YES YES  YES 
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Table VIII Full-Set Regression Partitioned by Midyear Winners/Losers  
 

The table reports estimated coefficient and standard error for full-set regression in the second half of the year 
(July to December). We estimate the regressions separately for outperforming fund managers (midyear winners) 
and underperforming fund managers (midyear losers). We identify midyear winners and midyear losers on a 
yearly basis based on their cumulative portfolio returns for the first half of the year (January to June). We 
define funds whose performance is above median as midyear winners while funds whose performance is below 
median as midyear loser. Robust standard error (in parentheses) is calculated using the robust covariance 
matrix clustered by each position to derive the statistic inference. *, ** indicate significance at the 5% and 1% 
levels, respectively. 
 

  Midyear 
Winners  

Midyear 
Losers  Difference   

Loss Indicators 
LARGELOSS -2.5908  ** -1.4767 ** 1.1140  ** 

(0.0496) (0.0328) (0.0595) 
MODERATELOSS -0.0002  0.0842 ** 0.0844  ** 

(0.008) (0.0085) (0.0117) 
Interaction Terms with Large Loss 
LARGELOSS*Ret[day0,-4] -1.8287  ** -2.5956 ** -0.7669  ** 

(0.1666) (0.109) (0.199) 
LARGELOSS*Ret[day-19,-5] -0.5537  ** -0.7465 ** -0.1928  

(0.118) (0.0856) (0.1457) 
LARGELOSS*Ret[day-39,-20] -0.3402  ** -0.1701 ** 0.1701  

(0.1063) (0.0787) (0.1322) 
LARGELOSS*Ret[day-59,-40] -0.0620  -0.2688 ** -0.2068  

(0.114) (0.0844) (0.1418) 
LARGELOSS*Ret[day-119,-60] 0.1447  * 0.2345 ** 0.0898  

(0.0662) (0.0443) (0.0796) 
LARGELOSS*Ret[day-179,-120] 0.0474  0.0396 -0.0078  

(0.0475) (0.034) (0.0584) 
LARGELOSS*Ret[day-239,-180] 0.0694  -0.2044 ** -0.2738  ** 

(0.0439) (0.0358) (0.0567) 
LARGELOSS*NegES 0.2778  * 0.1187 -0.1591  

(0.1407) (0.0942) (0.1693) 
LARGELOSS*PosES -0.3813  ** -0.0430 0.3382  * 

(0.1411) (0.1219) (0.1865) 
LARGELOSS*MKTdown 0.1840  ** 0.4025 ** 0.2185  ** 

(0.0423) (0.0289) (0.0512) 
LARGELOSS*IDIO_Mid 0.7986  ** 0.6075 ** -0.1912  * 

(0.0641) (0.0415) (0.0764) 
LARGELOSS*IDIO_High 1.6546  ** 1.2032 ** -0.4515  ** 

(0.0611) (0.0393) (0.0727) 
LARGELOSS*PosSENT 0.8144  ** 0.0119 -0.8026  ** 

(0.0486) (0.0312) (0.0578) 

Interaction Terms with Moderate Loss YES YES YES 
Control Variables YES YES YES 
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