
Simultaneously Load Balancing for Every p-norm,
With Reassignments∗

Aaron Bernstein1, Tsvi Kopelowitz2, Seth Pettie3, Ely Porat4, and
Clifford Stein5

1 Columbia University, New York, USA
bernstei@gmail.com

2 University of Michigan, Ann Arbor, USA
kopelot@gmail.com

3 University of Michigan, Ann Arbor, USA
pettie@umich.edu

4 Bar Ilan University, Ramat Gan, Israel
porately@cs.biu.ac.il

5 Columbia University, New York, USA
cliff@ieor.columbia.edu

Abstract
This paper investigates the task of load balancing where the objective function is to minimize
the p-norm of loads, for p ≥ 1, in both static and incremental settings. We consider two closely
related load balancing problems. In the bipartite matching problem we are given a bipartite
graph G = (C ∪ S,E) and the goal is to assign each client c ∈ C to a server s ∈ S so that
the p-norm of assignment loads on S is minimized. In the graph orientation problem the goal
is to orient (direct) the edges of a given undirected graph while minimizing the p-norm of the
out-degrees. The graph orientation problem is a special case of the bipartite matching problem,
but less complex, which leads to simpler algorithms.

For the graph orientation problem we show that the celebrated Chiba-Nishizeki peeling algo-
rithm provides a simple linear time load balancing scheme whose output is an orientation that
is 2-competitive, in a p-norm sense, for all p ≥ 1. For the bipartite matching problem we first
provide an offline algorithm that computes an optimal assignment. We then extend this solution
to the online bipartite matching problem with reassignments, where vertices from C arrive in
an online fashion together with their corresponding edges, and we are allowed to reassign an
amortized O(1) vertices from C each time a new vertex arrives. In this online scenario we show
how to maintain a single assignment that is 8-competitive, in a p-norm sense, for all p ≥ 1.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Online Matching, Graph Orientation, Minimizing the p-norm

Digital Object Identifier 10.4230/LIPIcs.ITCS.2017.51

1 Introduction

Online algorithms for load balancing have received much attention in recent years. There
are many variants of load balancing, and in this paper we consider two closely related
load balancing problems – bipartite matchings and graph orientations. These problems
have many natural applications in areas such as internet advertising, social networks, and
routing. In the standard online paradigm, an object such as a vertex or edge arrives online

∗ Research supported in part by NSF grants CCF-1421161, CCF-1514383, and CCF-1637546.

© Aaron Bernstein, Tsvi Kopelowitz, Seth Pettie, Ely Porat, and Clifford Stein;
licensed under Creative Commons License CC-BY

8th Innovations in Theoretical Computer Science Conference (ITCS 2017).
Editor: Christos H. Papadimitrou; Article No. 51; pp. 51:1–51:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/132422826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.51
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

51:2 Simultaneously Load Balancing for Every p-norm, With Reassignments

and then a decision, such as orienting an edge or matching two vertices, must be made
immediately. This decision is irrevocable. It is well understood that, for most problems,
an online algorithm cannot perform as well as an offline algorithm which knows the future
requests. Sometimes the gap can be quite large.

It is therefore natural to consider giving the online algorithm a small amount of additional
power. This idea has taken many forms such as resource augmentation, randomization,
advice, or knowledge of an input distribution. Here we study the idea of allowing the online
algorithm to “redo” some of its earlier decisions. Since we are studying polynomial-time
solvable problems such as matching and orientation, we have to be sure not to allow too
many opportunities to redo decisions, as we would then just simulate an offline algorithm. In
particular, we will allow edge reorientations or reassignments, but will focus on algorithms
that allow only a small number of reassignments. Our results will, in general, show that
by allowing a small number of reassignments, we can maintain a much better matching or
orientation.

The p-norm

Typically one evaluates a matching by its size or total cost and one evaluates an orientation
by its maximum edge out-degree, or load. In this paper, we consider a more general class of
objective functions, evaluating the p-norm, for any p ≥ 1. For a vector X = (x1, x2, . . . , ck)
the p-norm of X is denoted by ‖X‖p = (

∑k
i=1 x

p
i)1/p. Often, with a load-balancing problem,

there is a tension between finding a solution that minimizes the maximum load and one that
fairly distributes load among various agents. Considering only the maximum load ignores
fairness among the non-maximum load nodes and considering only the average ignores the
possibility of a solution with one or more nodes of very high load. This tradeoff has been
studied in various ways in previous work, e.g. [19, 24, 14, 25, 4]. We address this tradeoff
by considering p-norms. By using a small constant p > 1, it is well understood that one
balances these two competing objectives. In this paper, we will give algorithms that perform
well on all norms simultaneously. This not only shows that the algorithm does not need to
be specialized to the norm, but also shows that there exist solutions that perform well in all
norms simultaneously.

1.1 Edge orientation and bipartite matching
We investigate the goal of minimizing the p-norm of loads by considering two closely related
problems.

Graph orientations

In the graph orientation problem, the goal is to orient (direct) the edges of an undirected
graph G while minimizing some function of the out-degrees, and in our case the p-norm. If
we consider an out-degree vector X of length n where xi is the out-degree of vertex vi, then
one can word this goal as minimizing ‖X‖p.

Bipartite matching

In the online bipartite matching with reassignments problem a bipartite graph contains two
sets of vertices: there is a set of vertices S (server vertices) that is fixed in advance, and a
set of vertices C (client vertices) that grows over time. In particular, at each time step, a
new client c is inserted into C along with edges from c to some non-empty subset of S. We

A. Bernstein, T. Kopelowitz, S. Pettie, E. Porat, and C. Stein 51:3

say that a server s ∈ S is a neighbor of c if edge (c, s) exists. Given any time t, we let Ct

be the set of client vertices at time t. We always let C refer to the set of vertices at the
current time t. Similarly, we let Gt = (Vt, Et) refer to the resulting bipartite graph at time
t (so Vt = Ct

⋃
S), and G refer to the graph at the current time t.

The online algorithm must at all times maintain a global assignment function A : C → S,
which assigns each client c ∈ C to some server s ∈ S. Whenever a new client c is inserted into
C, it must immediately be assigned to one of its neighbors in S. However, unlike in standard
online matching, we also allow the algorithm to reassign O(1) vertices from C each time a
client arrives. Given any s ∈ S, let loadA(s) = |{c ∈ C : A(c) = s}| refer to the number
of client vertices assigned to s by A. Let loadA = (loadA(s1), loadA(s2), . . . , loadA(sk))
where S = {s1, s2, . . . , sk}. The vector loadA is is called the load vector of A. The goal is
to maintain an assignment A that minimizes ‖loadA‖p.

Notice that if each client arrives with exactly two neighboring vertices in S, then the
online bipartite matching problem corresponds to an incremental version of the graph ori-
entation problem (where edges arrive online and orientations are allowed to be flipped) by
considering S as the set of vertices and C as the set of edges.

1.2 Our results
Our main result is to show that for the online bipartite matching with reassignments problem
we can maintain an 8-approximation to the optimal assignment, while reassigning a small
number of clients. To do so, we first show how to find an optimal offline solution using
an adaptation of augmenting paths as follows. Given a global assignment A we orient1 the
edges of G as follows: an edge (s, c) is oriented s→ c if A(c) = s, and otherwise it is oriented
c→ s. This oriented graph is denoted by GA.

I Definition 1. For a bipartite graph G = (C ∪S,E) and a global assignment A, a directed
path P in GA from server x ∈ S to server y ∈ S is an augmenting path if loadA(y) ≤
loadA(x)− 2.

I Theorem 2. For a bipartite graph G = (S ∪ C,E) and for any 1 ≤ p < ∞, a global
assignment A is optimal with respect to the p-norm if and only if GA has no augmenting
paths.

Our online algorithm will always keep track of the optimal offline solution in the back-
ground (Theorem 2 provides a simple algorithm for keeping track of opt as new clients
arrive), and use it to influence its online assignments. Note that even though the online
algorithm knows opt it does not directly use the same assignment as opt because main-
taining opt as new vertices are inserted into C may require too many reassignments.

Let optt be an optimal assignment at time t. We are now ready to state our main
theorem for online assignment.

I Theorem 3. There exists an algorithm for online assignment which only performs an
amortized O(1) reassignments per time step (i.e. O(1) per new client vertex), and ensures
that at every time t, for any s ∈ S, loadA(s) ≤ 8 · loadoptt(s). Note that the resulting
assignment is always 8-competitive to the optimal assignment for any p-norm where p ≥ 1,
including p =∞.

1 Notice that this is not the same orientation as in the graph orientation problem, although the two are
related.

ITCS 2017

51:4 Simultaneously Load Balancing for Every p-norm, With Reassignments

Results for graph orientation

While Theorem 2 provides a method for finding an optimal orientation in G in polynomial
time (since the graph orientation problem is a special case), the runtime (via a straight-
forward implementation) is O(m2) where m is the number of edges. Instead, based on the
Chiba and Nishizeki [7] triangle enumeration algorithm, we provide a simple linear time
algorithm for finding an orientation that is a 2-approximation to the optimal p-norm. For
an orientation O and a vertex u Let d+

O(u) be the out-degree of u in the graph oriented by
O.

I Theorem 4. There exists a linear time algorithm for the graph orientation problem on a
graph G = (V,E) producing an orientation O such that for any p ≥ 1 and any vertex u ∈ V ,
d+
O(u) ≤ 2 · d+

opt(u) where opt is an optimal orientation with respect to the p-norm.

We emphasize that one can use Theorem 3 to solve an incremental/online version of the
graph orientation problem with a constant number of edge flips to maintain an orientation
with a close to optimal p-norm of the out-degrees. The nice benefit of the proof of Theorem 4
is that it introduces and investigates a new natural combinatorial measurement of graphs,
called the local degeneracy, which may be of independent interest.

1.3 Overview and Techniques for Bipartite Matching
To prove Theorem 3 we start by proving a simpler theorem.

I Theorem 5. Say that for some specific time tf we know in advance an upper bound
on loadopttf

(s) for every s ∈ S: that is, we know some function u : S → N such that
loadopttf

(s) ≤ u(s) for every s ∈ S. Then, there is an online assignment protocol that
performs an amortized O(1) reassignments per time step, and guarantees that at time tf ,
every server s ∈ S has loadtf

(s) ≤ 2u(s).

The proof of Theorem 5 is based on a recent result of Gupta, Kumar, and Stein [16] that
also studies the problem of online assignment with reassignments, but they solve a simpler
problem of trying to minimize the maximum load (i.e. the L∞ norm of the loads) while
performing as few reassignments as possible. In particular, they achieve the following results
(the second result is a combination of the first result and the standard guess and double
technique):

I Theorem 6. [16] Say that we know in advance that at some final time step tf , there is a
solution in which every server s ∈ S has load at most k. Then, there is an online assign-
ment protocol that performs an amortized O(1) reassignments per time step, and achieves a
maximum load of 2k at time tf .

I Theorem 7. [16] There exists an algorithm for online assignment which performs O(1)
reassignments per time step and has the following guarantee: at every time step t, if there
exists an offline solution in which every s ∈ S has a load of at most kt, then the online
protocol achieves a maximum load of at most 8kt.

Although there is a trivial extension from Theorem 6 to Theorem 5, there is no trivial
extension from Theorem 7 to Theorem 3. The intuition for why not knowing the optimal
maximum load in advance poses a problem is as follows. Loosely speaking, the analysis of
Theorem 6 (where the optimal max load k is known in advance) relies on the fact that the
server vertices are only getting more and more constrained: if we know in advance that the

A. Bernstein, T. Kopelowitz, S. Pettie, E. Porat, and C. Stein 51:5

final load should be k, then since the load on every server s ∈ S can only increase over time,
as more clients arrive less and less capacity remains before we reach load k. But if the loads
are not known in advance, then the algorithm must occasionally increase the desired load
on s from k to say 2k, which effectively makes s less constrained, and destroys the analysis
in Theorem 6.

Theorem 7 is able to very easily overcome this obstacle because as long as we only care
about the maximum load, the desired load for all s ∈ S changes at the same time: as
more vertices are inserted into C, the algorithm sometimes realizes that max load k is no
longer feasible, so it increases the max allowable load to 2k for all vertices s ∈ S. Such
global changes are easy to handle by effectively restarting the entire algorithm every time
the desired max load doubles. But this approach does not work for Theorem 3 because here
the algorithm must aim for a different load on every server, and these loads will change at
different times. This prevents us from applying a global restart, and locally changing the
allowable load on one server ends up destroying the analysis for the not-yet-changed parts
of the graph.

We show, however, that it is nonetheless possible to do a reduction from Theorem 3
(loads not known in advance) to Theorem 5 (loads known in advance), but the reduction
is significantly more complicated, and requires a more careful analysis of how the optimal
offline assignment opt relates to our online assignment. The main idea is to create another
graph G∗ by carefully duplicating servers with exponentially increasing capacities. Once
the first i servers are full we begin using the i+ 1’th server. We show that maintaining an
optimal solution in G∗ can be used to maintain a close to optimal solution in G, and then
we show how to maintain a close-to-optimal solution in G∗.

1.4 Overview and Techniques for Graph orientations: The Local
Degeneracy

When considering the ∞-norm of out-degrees, a natural parameter to consider is the ar-
boricity or degeneracy of the graph. The degeneracy of an undirected graph G = (V,E)
is the largest minimum degree of any subgraph of G. Formally the degeneracy of G is
δ(G) = maxU⊆V minu∈U dGU

(u) where dGU
is the degree of u in the subgraph of G induced

by U . The degeneracy is roughly equal (up to constant factors) to other well known graph
parameters such as the arboricity, strength, or thickness of a graph. Of particular interest
is the arboricity α(G) of G since the maximum out-degree of any orientation is at least
α(G)− 1, and α(G) ≤ δ(G) ≤ 2α(G)-1.

Chiba and Nishizeki [7] gave a linear time algorithm, called the CN-peeling algorithm,
that computes a δ(G)-orientation as follows. Repeatedly remove a vertex u in (the current)
G with smallest (current) degree, together with the edges Eu touching u at the time u is
removed. For each u, all of the edges Eu are oriented as leaving u. The out-degree of
each vertex is shown to be at most δ(G) using straightforward arguments. The CN-peeling
algorithm provides an acyclic orientation of G, where for each vertex u all of the edges Eu

are oriented as leaving u. This acyclic orientation is used to enumerate all triangles of the
graph in time O(m · δ(G)) with the following observation: for each triangle v1, v2, v3 in G
there must be at least one vertex of the three with both edges oriented outwards. Thus, it
suffices to consider, for each vertex, all pairs of outgoing edges.

ITCS 2017

51:6 Simultaneously Load Balancing for Every p-norm, With Reassignments

Local versus global parameters

While the algorithm of [7] is essentially tight for worst-case inputs (see [21, 22]), for many
graphs the runtime bound of O(m · δ(G)) is not tight. For example, consider a graph G

composed of a clique on n1/3 vertices, and a tree on the rest of the vertices, with the
tree being connected to the clique with one edge. The degeneracy of G is Θ(n1/3) and
so O(m · δ(G)) = O(n4/3). However, it is obvious that triangle enumeration through the
CN-peeling algorithm runs in O(n) time.

Why is this analysis not tight enough? Because the degeneracy is a global parameter of
G which is largely due to a small part of G being dense. However, in the analysis, this global
parameter should not affect the time cost of other sparser parts in G. It would therefore
be more beneficial to express the runtime using tighter graph parameters which are more
appropriate in determining the local cost of each vertex.

Local degeneracy

We extend the notion of degeneracy by introducing a new local sparseness measurement.
The local degeneracy (LD) of a vertex v in G is `v = maxU⊆V,v∈U minu∈U dGU

(u). In words,
the LD of v is the largest minimum degree of any subgraph of G that contains v. It is
straightforward to show that in the orientation obtained from the CN-peeling algorithm the
out-degree d+

u of a vertex u is at most its LD `u. The runtime of the CN-peeling algorithm for
triangle enumeration is then

∑
v∈V (d+

u)2 ≤
∑

v∈V (`u)2, which is always at most O(m·δ(G)),
but could be much less. In the example graph G above, this turns out to be O(n). So, at
least in the example, LD captures a locality notion that better expresses the runtime of the
peeling algorithm.

We prove that LD captures a fundamental property of graph orientations stated in the
following theorem.

I Theorem 8. For an undirected graph G = (V,E) and for any 1 < p < 0, let opt be any
optimal orientation of the edges with respect to the p-norm. Let d+

opt(v) be the out-degree
of v ∈ V when G is oriented according to opt. Then d+

opt(v) > `v/2−1. For the ∞-norm,
the same is true for some optimal orientation.

Theorem 8 has two important consequences. The first is that the CN-peeling algorithm
gives an orientation whose out-degrees are 2-competitive to the optimal orientation with
respect to the p-norm (Theorem 4). The second implication is that any algorithm that
uses an acyclic orientation for enumerating all triangles in a given graph, by separately
considering for each vertex all pairs of its outgoing edges, cannot be asymptotically faster
than the CN-peeling algorithm.

Local degeneracy and the k-core

The k-core of G is the maximum subgraph of G with minimum degree at least k, and is
denoted by Gk. As it turns out, if u ∈ Gk −Gk+1 then `u = k (more on this in Section 4).
While the notion of a k-core is certainly not new, the focus from an algorithmic perspective
has mainly been on computing the k-core of a graph for a given k. In other words, the
focus has been on the k-core from a global prospective of the graph. Our focus is on a local
property of vertices, which is captured by the local degeneracy of each vertex. Thus, we find
the terminology of local degeneracy to be more appropriate for our objectives.

A. Bernstein, T. Kopelowitz, S. Pettie, E. Porat, and C. Stein 51:7

1.5 Related work
There is a large body of work that deals with the tradeoff between reassignment and the
quality of an online solution. E.g., consider the problem of load balancing, where each arriv-
ing task has a processing time but can run only on some subset of the servers. Here, Phillips
and Westbrook [28] and Westbrook [33] showed that a small number of reassignments (linear
in the number of tasks) improve the quality of the solution, getting a constant competetive
ratio, compares to logarithmic lower bounds in the case without reassignments [3]. There
has also been work on the case of identical machines [30, 13, 29, 32, 12] and reassignments
for other online problems such as Steiner Tree [18, 26, 15].

Related work on online bipartite matching

For online matching, the maximization version has been studied extensively. In this model all
arriving nodes do not need to be matched, and the goal is to maximize the reward accrued by
successfully matching a large number/weight of these nodes. It is well known that the greedy
algorithm is 1/2-competitive for maximum matching. There are many papers on variants
including when the capacity on one side is large relative to the requests, or when there is
stochastic information, or when randomization is allowed. These results are orthogonal to
our line of investigation, and we omit a detailed discussion.

Most relevant to our work is a paper by Gupta, Kumar and Stein [16] that studies the
problem of online assignment in the same model as this paper. For online bipartite matching,
where the left vertices arrive online and must be matched to the right vertices, they give
an algorithm that reassigns the left vertices an (amortized) constant number of times, and
maintains a constant factor to the optimal load on the right vertices. They then extend this
result in several ways. For restricted machine scheduling with arbitrary sized jobs, they give
an algorithm that maintains load which is O(log logmn) times the optimum, and reassigns
each job only an (amortized) constant number of times. They also give an algorithm for
online flow that reroutes flow an (amortized) constant number of times while achieving
constant factor approximation to the congestion. The bounds in the SODA proceedings
version of [16] are correct, but there is an error in the proof. Work on this paper revealed
that proof, which the authors have since corrected (the corrected verion has not yet been
made public). Our work generalizes the results in that paper.

Related work on graph orientations

The task of maintaining an edge orientation with the goal of minimizing the maximum
out-degree has also received a lot of attention [5, 20, 17]. Edge orientations have many
algorithmic applications including “color-coding” [1], adjacency queries [8, 5, 23, 20], short-
path queries [24], load balancing [6], maximal matchings [27], pattern matching [2], counting
subgraphs in sparse graphs [9], prize-collecting TSPs and Steiner Trees [10], reporting all
maximal independent sets [11], answering dominance queries [11], subgraph listing problems
(listing triangles and 4-cliques) in planar graphs [8], and computing the girth [24].

2 Optimal Offline Bipartite Matching

Proof of Theorem 2. If A is optimal with respect to the p-norm then clearly there are no
augmenting paths since flipping an augmenting path leads to a new assignment with smaller
p-norm, due to convexity. So we focus on proving that if there are no augmenting paths in

ITCS 2017

51:8 Simultaneously Load Balancing for Every p-norm, With Reassignments

GA then A must be optimal for any p-norm with 1 < p <∞. For the following let p be any
p in the range.

Let optp be the optimal global assignment with respect to p. We partition the set of ver-
tices in S as follows. S< = {u ∈ S|loadA(u) < loadOPTp(u)}, S> = {u ∈ S|loadA(u) >
loadoptp

(u)}, and S= = S−{S<∪S>}. Let E∗ = {(c, s) ∈ E|A(c) = s ∈ A∧optp(c) 6= s}
be the set of edges in the symmetric difference between GA and Goptp

. Let A∗ by a global
assignment of G∗ = (S∪C,E∗) where each assignment of a vertex from C is made according
to its assignment in A. Notice that each vertex in C has either degree 0 or 2 in G∗.

Let C be a directed cycle in G∗A∗ . Notice that if we were to flip all of the edges of C in
GA, then the out-degree of each vertex would not change due to the flip, and so the p-norm
of the corresponding assignment would remain the same. However, after flipping the edges
in C these edges are oriented in the same direction in both GA and Goptp

. So we may
assume without loss of generality that G∗A∗ contains no cycles, since otherwise we iteratively
pick a cycle and flip it until no cycles are left.

Given that G∗A∗ does not contain any directed cycles, then either E∗ is empty, in which
case we are done, or G∗A∗ is a directed acyclic graph with some edges. We say a directed
path from u ∈ S to v ∈ S in G∗A∗ with length at least 1 is a maximal path if there is no
edge entering u and no edge leaving v. Notice that a maximal path cannot start in S− since
every vertex in S− has edges leaving it, and it cannot start in S= since every vertex in S=

has the same number of incoming and outgoing edges. Similarly, a maximal path cannot
end in S+ or S=. Thus, all maximal paths must begin in S+ and end in S−.

Consider a maximal path P from u ∈ S+ to v ∈ S−. We will prove that loadA(u) =
loadA(v) + 1. From this it will follow that we can flip P in GA thereby swapping the
loads of u and v in A. So the p-norm of the loads of this new assignment is the same as
the ‖loadA‖p. We can then iteratively flip maximal paths until we obtain the assignment
optp, implying that ‖loadA‖p = ‖loadoptp

‖p as required.
If loadA(u) > loadA(v) + 1 then P is an augmenting path in GA, which contradicts

the assumption. If loadA(u) < loadA(v) + 1, then since u ∈ S+ and v ∈ S− we have that
loadoptp

(u) ≤ loadA(u) + 1 ≤ loadA(v) + 1 ≤ loadoptp
(v) + 2. This implies that the

reverse of P , which is a path in Goptp
, is an augmenting path, contradicting optp being

an optimal orientation with respect to the p-norm. J

By Theorem 2 an orientation that is optimal with respect to some 1 < p <∞ is optimal
with respect to any such p, and so we denote any such orientation by opt. We also call opt
the optimal orientation for G.

I Corollary 9. If an orientation has no augmenting paths, then it is optimal for the∞-norm.

3 Online Matching with Reassignments: Preliminaries and Main
Theorem Statement

Proof of 5. The proof shows how to reduce this problem to the one in Theorem 6. In
particular, recall that G = (V,E) always corresponds to the graph induced by V = C ∪S at
the current time t (so G changes as new clients are inserted). Instead of directly maintaining
an online assignment in G, we create a slightly different graph G′ = (V ′, E′) which is
essentially equivalent to G, but where we only need to concern ourselves with the ∞-norm.
We define V ′ = S′ ∪ C, where the set S′ contains u(s) copies of every vertex s ∈ S, labeled
s1, s2, ..., su(s). Then, for every edge (c, s) ∈ E, we add edges (c, s1), (c, s2), ..., (c, su(s))
to E′.

A. Bernstein, T. Kopelowitz, S. Pettie, E. Porat, and C. Stein 51:9

It is clear that since loadopttf
(s) ≤ u(s), at time tf there is an assignment in G′ in

which every vertex si ∈ S has load at most 1. But this means via applying Theorem 6 that
there is an assignment protocol for G′ that only requires an amortized O(1) reassignments
per time step, and that maintains an assignment in G′ where at time tf , every vertex si has
load at most 2. This assignment for G′ then translates directly to the desired assignment in
G: assigning a client c to some copy si ∈ V ′, corresponds to assigning c to s ∈ V . We only
perform a reassignment in G when we perform one in G′ (but not necessarily vice versa: a
reassignment between two copies si and sj in G′ does not lead to a reassignment in G), so
the number of reassignments in G will also be at most amortized O(1) per time step. Since
every copy si ∈ V ′ has at most two client vertices assigned to it, and there are u(s) copies
of s in V ′, we will end up with loadtf

(s) ≤ 2u(s), as desired. J

Defining a Capacity Function

Unlike Theorem 5, Theorem 3 does not specify a particular finish time tf , so the online
assignment must be a good approximation to opt at all time steps. Thus, in order to rely
on Theorem 5, we need to define a fixed capacity function u : S → N such that at all times
t we have that for every s ∈ S, loadoptt(s) ≤ u(s).

This seems contradictory – how can u be an upper bound on loadoptt
if the first is

fixed and the latter increases with t – but the idea is to capture changes in loadoptt
(s) by

creating many copies of each s ∈ S, each with different capacities u(s). (Note: these copies
are unrelated to the copies used in the proof of Theorem 5.)

Recall that G = (V,E) refers to the current version of the graph. We define another
graph G∗ = (V ∗, E∗) that also changes as new clients are inserted. We start by defining a
new set of servers S∗, which contains an infinite number of copies for each vertex s ∈ S,
labeled: s0, s1, s2, s3..., where copy si will have capacity u(si) = 2i+1. Our algorithm will
not have to actually handle an infinite number of copies because originally all the copies si

of a vertex s ∈ S are closed: there are no edges from C to a closed copy si, so si will never
have any client vertices assigned to it and can be entirely ignored.

Recall that as new clients are inserted into the graph, we are always keeping track of an
optimal offline solution opt, and that by the proof of Theorem 2 loadopt(s) never decreases
for any s ∈ S. Let optt be an optimal solution at time t. When a new vertex c ∈ C arrives
at time t(c), we do the following to the graph G∗:

If for some vertex s ∈ S, we have loadoptt(c)−1(s) = 2i − 1 and loadoptt(c)(s) = 2i,
then we open copy si ∈ S∗.
For every edge (c, s) in G, we add an edge (c, si) to E∗ for every open copy si.

Note that our end goal is to apply Theorem 5 to G∗, so it is crucial that G∗ evolves
according to the definition of an online assignment problem given in Section 3: at each time
step, a client arrives with all of its incoming edges, and no new edges are ever added or
removed. In particular, when a new copy si opens up at time t, we do NOT add edges
from (c, si) to G∗ for client vertices c ∈ C that arrived before time t. However, the lack of
edges from opened server copies in S∗ to older client vertices in C leads to the problem that
G∗ ends up being quite different from the main graph G. In particular, we can in theory
imagine a situation where opt assigns many client vertices c1, c2, ..., cq to some vertex s ∈ S,
and yet in G∗ we cannot assign all these ci to copies of s in S∗, because even though there
are many open copies of s (because loadopt(s) = q is large), it might be the case that
most of the copies si were created after the clients c1, ..., cq arrived, so there no edges from
these ci to the copies of s in S∗. The following lemma shows that G∗ is nonetheless a good

ITCS 2017

51:10 Simultaneously Load Balancing for Every p-norm, With Reassignments

approximation to G: we first apply the Lemma to Theorem 3, and then proceed to prove
the lemma.

I Lemma 10. At all times t, there exists an assignment in G∗t of vertices c ∈ C to vertices
si ∈ S∗ such that load(si) ≤ 2i+1 = u(si).

Proof of Theorem 3. The proof relies on using Theorem 5 to maintain an online assignment
in G∗. Note that we do not need to specify a specific time tf as in Theorem 5, because we
know from Lemma 10 that at ALL times t there is an assignment from C to S∗ in which
every si ∈ S∗ has load at most u(si) = 2i+1. Thus, by Theorem 5 we can maintain an
assignment from C to S∗ that only uses an amortized O(1) reassignments per new client,
and in which for all times t we have load(si) ≤ 2u(si) = 2i+2.

The assignment from C to S∗ in G∗ then translates directly into an assignment from
C to S in G: for every assignment c → si, if si ∈ S∗ is a copy of s ∈ S, then we assign
c→ s. The number of reassignments in G is also amortized O(1) per new client, since every
reassignment in G corresponds directly to one in G∗ (the opposite is not necessarily true:
a reassignment in G∗ between two copies si and sj does not translate to a reassignment in
G). All we have left to show is that for each s ∈ S, and for all times t, we always have
loadt(s) ≤ 8loadoptt(s). To see this, note that loadt(s) =

∑
i loadt(si), where we know

that loadt(si) ≤ 2i+2 if copy i is open, and loadt(si) = 0 if copy i is closed. But we only
open copy si if loadoptt(s) ≥ 2i, so letting j be an index for which 2j ≤ loadoptt(s) < 2j+1,
we have that

loadt(s) =
∑

i

loadt(si) =
∑
i≤j

loadt(si) ≤
∑
i≤j

2i+2 < 2j+3 ≤ 8loadoptt
(s). J

We now turn to the proof of Lemma 10, which requires a more careful analysis of the
offline solution opt in G.

I Definition 11. If at some time t opt assigns c ∈ C to s ∈ S – whether because c just
arrived, or because opt chooses to reassign c at time t – we say that the assignment c→ s

has level k if loadoptt(s) = k.

Note that if we look at all the different assignments of some c ∈ C, their level is mono-
tonically increasing over time. This is because opt always makes the lowest level assignment
possible and loadopt is monotonically increasing. So if at time t1 there was an assignment
c → s1 of level k1, and at time t2 > t1 there was an assignment c → s2 of level k2 < k1,
then opt would have instead assigned c to s2 at time t1.

I Definition 12. We say that a vertex c ∈ C has initial level k if the assignment c → s

performed by opt when c first arrives is a level k assignment. Finally, we say that a vertex
s ∈ S is the final level k server of some c ∈ C if the assignment c → s is the last level k
assignment opt performs on c.

I Claim 13. Say that vertex s ∈ S is the final level k server of vertex c ∈ C. Then, if at
time t opt reassigns c from s to s′, we must have that loadoptt

(s) > k.

Proof. opt only has to reassign c from s to s′ if it assigned some other c′ to s. Now, we
know that the assignment c → s′ could not have been of level less than k because earlier c
had a level k assignment to s, and the level of assignments of c is monotonically increasing.
We also know that the reassignment c → s′ cannot be of level k since s was the final
level k server of c. Thus, the assignment c → s′ is of level at least k + 1, so by definition
loadoptt

(s′) ≥ k + 1. But this means that loadoptt
(s) ≥ k + 1, because otherwise opt

would not have reassigned c from s to s′. J

A. Bernstein, T. Kopelowitz, S. Pettie, E. Porat, and C. Stein 51:11

I Claim 14. Let s ∈ S be the final level k server for vertices c1, c2, c3, ..., cq; then q ≤ k.

Proof. Say, for contradiction, that q ≥ k + 1. Let ti, for 1 ≤ i ≤ q, be the time at which s
became the final level k sever for ci. Without loss of generality, let t1 < t2 < ... < tq. We
want to argue that at the end of time tq we have loadopttq

(s) ≥ k + 1, which contradicts
s being the final k server for cq. There are two cases to consider. The first case is that
opt still assigns all of c1, c2, ..., cq−1 to s at the end of tq; then, since opt also assigns cq

to s at time tq, we have that loadopttq
(s) ≥ q ≥ k + 1. The second case is that by time

tq some ci is no longer assigned to s in opt, in which case by Claim 13, we must have that
loadopttq

(s) ≥ k + 1. J

Proof of Lemma 10. We say that a vertex c ∈ C has priority i if the initial level of c is
in (2i, 2i+1]. We now argue the following: if vertex c ∈ C has priority i, then for every
edge (c, s) ∈ E, we have that E∗ must contain edges (c, s0), (c, s1), ...(c, si) (E∗ might also
contain edges from c to later copies of s). Let us say for the sake of contradiction that edge
(c, si) /∈ E∗. This can only happen if si was not yet open at time t(c), where t(c) is the arrival
time of c, and so in particular if loadoptt(c)(s) < 2i. Say that at time t(c), c was assigned to
s′ ∈ S. Since c has priority i, we know that at the end of t(c) we have loadoptt(c)(s′) > 2i.
This inequality yields the desired contradiction, since opt is not optimal, as it would have
been better off assigning c to s instead of s′ at time t(c).

Let Ci
t ⊆ Ct contain all vertices in Ct that have priority exactly i. We first observe that

there is an assignment in G from all vertices c ∈ Ci
t to vertices in S in which every s ∈ S

has load at most 2i+1. In particular, we can simply assign each c ∈ Ci
t to its final level 2i+1

server, and by claim 14, each s ∈ S will end up with at most 2i+1 client vertices assigned
to it. This implies that at all times t, there exists an assignment in G∗ that assigns each
vertex c ∈ Ci

t to some ith copy si ∈ S∗, while maintaining load(si) ≤ 2i+1 = u(si) (and
load(sj) = 0 for all j 6= i.) The reason is that we can take the above assignment from Ci

t to
S in the main graph G, and for every assignment c → s in G, we can simply assign c → si

in G∗; we know from the above paragraph that edge (c, si) necessarily exists in G∗ because
c has priority i. This completes the proof of Lemma 10, since our final assignment in G∗

from Ct to S∗ is simply the union among all priorities i of all the assignments from Ci
t to

the ith copies si ∈ S∗. J

4 Graph Orientation

Orienting with local degeneracy

We use Chiba and Nishizeki’s peeling algorithm. Let (v1, . . . , vn) be the order of vertices as
encountered by the peeling algorithm. Recall that Eu is the set of edges touching u at the
time u is peeled.

I Lemma 15. |Evi
| ≤ `vi

.

Proof. The subgraph of G at the point where vi is peeled has a minimum degree of |Evi
| so

`vi must be at least |Evi |. J

Consider the k-core of G, denoted by Gk. Clearly, every vertex in Gk must have local
degeneracy at least k. Seidman in [31] showed that by recursively deleting (peeling) vertices
with degree less than k one obtains Gk.

I Lemma 16. For vi let j ≤ i be the smallest integer such that |Evj
| = max1≤k≤i{|Evk

|}.
Then `vi = |Evj |.

ITCS 2017

51:12 Simultaneously Load Balancing for Every p-norm, With Reassignments

Proof. When vj is peeled, all vertices must have degree at least |Evj
| and so `vi

≥ |Evj
|.

Furthermore, by the correctness of the process described in Seidman in [31], right before vj is
peeled the remaining graph must be a |Evj

|-core of G, and if `vi
> |Evj

| then the algorithm
must encounter a vertex vj′ where j < j′ ≤ i such that `vi

= |Evj′ | > |Evj
| contradicting

the definition of j. J

Proof of Theorem 4. The whole proof relies on the following simple claim: for v, w ∈ V , if
there is a directed path in G oriented by opt from w to v, then d+

opt(w) ≤ d+
opt(v) + 1.

This is because otherwise, opt could be converted to a better solution by flipping the path
from w to v.

Assume by contradiction that for some vertex v ∈ V , d+
opt(v) ≤ `v − 1. For the rest of

the proof, we ignore all vertices that are not in the `v-core. Now, clearly in G`v
as well we

have that d+
opt(v) ≤ `v−1. On the other hand, we have that every vertex in the unoriented

G`v
has degree at least `v.
Define S to be the set of all vertices that can reach v in G`v by some directed path

of oriented edges. Note that by the simple claim above, for any vertex u ∈ S we have
d+
opt(u) ≤ `v − 1 + 1 = `v. while d+

opt(u) itself is strictly less than `v/2, so the average
load in S is strictly less than `v/2.

We will now prove a contradictory claim: S must have some edges directed into S from
outside of S. This is contradictory because we defined S to be maximal. To yield the
contradiction, let ES be all edges incident in an undirected sense to S, and let E∗S be all
edges that are oriented outwards from vertices in S, possibly to some other vertex in S. We
want to show that ES > E∗S , which implies that some edge is incoming into S. We know
that E∗S is the sum of the out-degrees of vertices in S, so given the upper bound on the
average load in S, we have that E∗S < |S| · `v/2. On the other hand, ES ≥ |S| · `v/2, because
every vertex in S has degree at least `v. J

References

1 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.
doi:10.1145/210332.210337.

2 Amihood Amir, Tsvi Kopelowitz, Avivit Levy, Seth Pettie, Ely Porat, and B. Riva Shalom.
Mind the gap: Essentially optimal algorithms for online dictionary matching with one gap.
In Accepted to International Symposium on Algorithms and Computation (ISAAC), 2016.

3 Yossi Azar, Joseph Naor, and Raphael Rom. The competitiveness of on-line assignments.
In SODA: ACM-SIAM Symposium on Discrete Algorithms (A Conference on Theoretical
and Experimental Analysis of Discrete Algorithms), 1992.

4 Glencora Borradaile, Jennifer Iglesias, Theresa Migler, Antonio Ochoa, Gordon T. Wilfong,
and Lisa Zhang. Egalitarian graph orientations. CoRR, abs/1212.2178, 2012.

5 Gerth Stølting Brodal and Rolf Fagerberg. Dynamic representation of sparse graphs. In
Algorithms and Data Structures, 6th International Workshop, WADS, pages 342–351, 1999.
doi:10.1007/3-540-48447-7_34.

6 Julie Anne Cain, Peter Sanders, and Nick Wormald. The random graph threshold for k-
orientiability and a fast algorithm for optimal multiple-choice allocation. In 18th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 469–476. SIAM, 2007. URL: http:
//dl.acm.org/citation.cfm?id=1283383.1283433.

7 Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algorithms. SIAM
J. Comput., 14(1):210–223, 1985.

http://dx.doi.org/10.1145/210332.210337
http://dx.doi.org/10.1007/3-540-48447-7_34
http://dl.acm.org/citation.cfm?id=1283383.1283433
http://dl.acm.org/citation.cfm?id=1283383.1283433

A. Bernstein, T. Kopelowitz, S. Pettie, E. Porat, and C. Stein 51:13

8 Marek Chrobak and David Eppstein. Planar orientations with low out-degree and com-
paction of adjacency matrices. Theor. Comput. Sci., 86(2):243–266, 1991. doi:10.1016/
0304-3975(91)90020-3.

9 Zdenek Dvorak and Vojtech Tuma. A dynamic data structure for counting subgraphs in
sparse graphs. In Algorithms and Data Structures - 13th International Symposium, WADS,
pages 304–315, 2013. doi:10.1007/978-3-642-40104-6_27.

10 David Eisenstat, Philip N. Klein, and Claire Mathieu. An efficient polynomial-time ap-
proximation scheme for steiner forest in planar graphs. In Proceedings of the Twenty-Third
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 626–638, 2012. URL:
http://dl.acm.org/citation.cfm?id=2095116.2095169.

11 David Eppstein. All maximal independent sets and dynamic dominance for sparse graphs.
ACM Transactions on Algorithms, 5(4), 2009. doi:10.1145/1597036.1597042.

12 Leah Epstein and Asaf Levin. Robust algorithms for preemptive scheduling. In ESA,
volume 6942 of Lecture Notes in Comput. Sci., pages 567–578. Springer, Heidelberg, 2011.
doi:10.1007/978-3-642-23719-5_48.

13 Rudolf Fleischer and Michaela Wahl. Online scheduling revisited. In Proceedings of the 8th
Annual European Symposium on Algorithms, ESA ’00, pages 202–210, London, UK, UK,
2000. Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=647910.740462.

14 Ashish Goel, Adam Meyerson, and Serge A. Plotkin. Combining fairness with throughput:
online routing with multiple objectives. In STOC, pages 670–679, 2000.

15 Albert Gu, Anupam Gupta, and Amit Kumar. The power of deferral: maintaining a
constant-competitive steiner tree online. In STOC, pages 525–534, 2013.

16 Anupam Gupta, Amit Kumar, and Cliff Stein. Maintaining assignments online: Matching,
scheduling, and flows. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA, pages 468–479, 2014.

17 Meng He, Ganggui Tang, and Norbert Zeh. Orienting dynamic graphs, with applications
to maximal matchings and adjacency queries. In ISAAC, pages 128–140, 2014.

18 Makoto Imase and Bernard M. Waxman. Dynamic Steiner tree problem. SIAM J. Discrete
Math., 4(3):369–384, 1991.

19 Jon M. Kleinberg, Yuval Rabani, and Éva Tardos. Fairness in routing and load balancing.
J. Comput. Syst. Sci., 63(1):2–20, 2001.

20 Tsvi Kopelowitz, Robert Krauthgamer, Ely Porat, and Shay Solomon. Orienting fully
dynamic graphs with worst-case time bounds. In ICALP (2), pages 532–543, 2014.

21 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Dynamic set intersection. In Proceedings 14th
Int’l Symposium on Algorithms and Data Structures (WADS), pages 470–481, 2015.

22 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3SUM conjec-
ture. In SODA, pages 1272–1287, 2016.

23 Lukasz Kowalik. Adjacency queries in dynamic sparse graphs. Inf. Process. Lett.,
102(5):191–195, 2007. doi:10.1016/j.ipl.2006.12.006.

24 Lukasz Kowalik and Maciej Kurowski. Oracles for bounded-length shortest paths in planar
graphs. ACM Transactions on Algorithms, 2(3):335–363, 2006. doi:10.1145/1159892.
1159895.

25 R. Lipton, E. Markakis, E. Mossel, and A. Saberi. On approximately fair allocations of
indivisible goods. In ACM EC, 2004.

26 Nicole Megow, Martin Skutella, José Verschae, and Andreas Wiese. The power of recourse
for online MST and TSP. In ICALP (1), pages 689–700, 2012.

27 Ofer Neiman and Shay Solomon. Simple deterministic algorithms for fully dynamic maximal
matching. In Proceedings of the 45th ACM Symposium on Theory of Computing, STOC,
pages 745–754, 2013. doi:10.1145/2488608.2488703.

ITCS 2017

http://dx.doi.org/10.1016/0304-3975(91)90020-3
http://dx.doi.org/10.1016/0304-3975(91)90020-3
http://dx.doi.org/10.1007/978-3-642-40104-6_27
http://dl.acm.org/citation.cfm?id=2095116.2095169
http://dx.doi.org/10.1145/1597036.1597042
http://dx.doi.org/10.1007/978-3-642-23719-5_48
http://dl.acm.org/citation.cfm?id=647910.740462
http://dx.doi.org/10.1016/j.ipl.2006.12.006
http://dx.doi.org/10.1145/1159892.1159895
http://dx.doi.org/10.1145/1159892.1159895
http://dx.doi.org/10.1145/2488608.2488703

51:14 Simultaneously Load Balancing for Every p-norm, With Reassignments

28 S. Phillips and J. Westbrook. On-line load balancing and network flow. Algorithmica,
21(3):245–261, 1998. doi:10.1007/PL00009214.

29 John F. Rudin, III and R. Chandrasekaran. Improved bounds for the online
scheduling problem. SIAM J. Comput., 32(3):717–735, March 2003. doi:10.1137/
S0097539702403438.

30 Peter Sanders, Naveen Sivadasan, and Martin Skutella. Online scheduling with bounded
migration. Math. Oper. Res., 34(2):481–498, 2009. doi:10.1287/moor.1090.0381.

31 Stephen. B. Seidman. Network structure and minimum degree. Social Networks, 5(3):269–
287, 1983.

32 Martin Skutella and José Verschae. A robust PTAS for machine covering and packing.
In ESA (I), volume 6346 of LNCS, pages 36–47. Springer, Berlin, 2010. doi:10.1007/
978-3-642-15775-2_4.

33 Jeffery Westbrook. Load balancing for response time. J. Algorithms, 35(1):1–16, 2000.
doi:10.1006/jagm.2000.1074.

http://dx.doi.org/10.1007/PL00009214
http://dx.doi.org/10.1137/S0097539702403438
http://dx.doi.org/10.1137/S0097539702403438
http://dx.doi.org/10.1287/moor.1090.0381
http://dx.doi.org/10.1007/978-3-642-15775-2_4
http://dx.doi.org/10.1007/978-3-642-15775-2_4
http://dx.doi.org/10.1006/jagm.2000.1074

	Introduction
	Edge orientation and bipartite matching
	Our results
	Overview and Techniques for Bipartite Matching
	Overview and Techniques for Graph orientations: The Local Degeneracy
	Related work

	Optimal Offline Bipartite Matching
	Online Matching with Reassignments: Preliminaries and Main Theorem Statement
	Graph Orientation

