
Hierarchical Functional Encryption∗†

Zvika Brakerski1, Nishanth Chandran2, Vipul Goyal3,
Aayush Jain4, Amit Sahai5, and Gil Segev6

1 Weizmann Institute of Science, Rehovot, IL
zvika.brakerski@weizmann.ac.il

2 Microsoft Research India, Bangalore, IN
nichandr@microsoft.com

3 CMU, Pittsburgh, USA
goyal@cs.cmu.edu

4 UCLA, Los Angeles, USA
aayushjain1728@gmail.com

5 UCLA, Los Angeles, USA
sahai@cs.ucla.edu

6 Hebrew University of Jerusalem, Jerusalem, IL
segev@cs.huji.ac.il

Abstract
Functional encryption provides fine-grained access control for encrypted data, allowing each user
to learn only specific functions of the encrypted data. We study the notion of hierarchical
functional encryption, which augments functional encryption with delegation capabilities, offering
significantly more expressive access control.

We present a generic transformation that converts any general-purpose public-key functional
encryption scheme into a hierarchical one without relying on any additional assumptions. This
significantly refines our understanding of the power of functional encryption, showing that the
existence of functional encryption is equivalent to that of its hierarchical generalization.

Instantiating our transformation with the existing functional encryption schemes yields a
variety of hierarchical schemes offering various trade-offs between their delegation capabilities
(i.e., the depth and width of their hierarchical structures) and underlying assumptions. When
starting with a scheme secure against an unbounded number of collusions, we can support arbit-
rary hierarchical structures. In addition, even when starting with schemes that are secure against
a bounded number of collusions (which are known to exist under rather minimal assumptions
such as the existence of public-key encryption and shallow pseudorandom generators), we can
support hierarchical structures of bounded depth and width.

1998 ACM Subject Classification E.3 Data Encryption

Keywords and phrases Fuctional encryption

∗ In this extended abstract we present results from [23] and [25].
† Z. Brakerski is supported by the Israel Science Foundation (Grant No. 468/14), the Alon Young Faculty
Fellowship, Binational Science Foundation (Grant No. 712307) and Google Faculty Research Award.
A. Sahai and A. Jain are supported in part from a DARPA/ARL SAFEWARE award, NSF Frontier
Award 1413955, NSF grants 1619348, 1228984, 1136174, and 1065276, a Xerox Faculty Research Award,
a Google Faculty Research Award, an equipment grant from Intel, and an Okawa Foundation Research
Grant. This material is based upon work supported by the Defense Advanced Research Projects Agency
through the ARL under Contract W911NF-15-C-0205. The views expressed are those of the author
and do not reflect the official policy or position of the Department of Defense, the National Science
Foundation, or the U.S. Government.
G. Segev is supported by the European Union’s 7th Framework Program (FP7) via a Marie Curie
Career Integration Grant, by the Israel Science Foundation (Grant No. 483/13), by the Israeli Centers
of Research Excellence (I-CORE) Program (Center No. 4/11), by the US-Israel Binational Science
Foundation (Grant No. 2014632), and by a Google Faculty Research Award.

© Zvika Brakerski, Nishanth Chandran, Vipul Goyal, Aayush Jain, Amit Sahai, and Gil Segev;
licensed under Creative Commons License CC-BY

8th Innovations in Theoretical Computer Science Conference (ITCS 2017).
Editor: Christos H. Papadimitrou; Article No. 8; pp. 8:1–8:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/132422825?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 Hierarchical Functional Encryption

Digital Object Identifier 10.4230/LIPIcs.ITCS.2017.8

1 Introduction

The rapidly evolving vision of functional encryption [49, 15, 48] offers tremendous flexib-
ility when accessing encrypted data. Specifically, functional encryption schemes support
restricted decryption keys that allow users to learn specific functions of the encrypted
data and nothing else. Motivated by the early examples of functional encryption schemes
for specific functionalities (such as identity-based encryption [51, 13, 27]), extensive re-
search has recently been devoted to the study of functional encryption (see, for example,
[49, 15, 48, 38, 3, 9, 19, 30, 37, 5, 53, 32, 7, 22, 42, 21] and the references therein).

In a functional encryption scheme, a trusted authority holds a master secret key known
only to the authority. When the authority is given the description of some function f as
input, it uses its master secret key to generate a functional key skf associated with the
function f . Now, anyone holding the functional key skf and an encryption of any message
x, can compute f(x) but cannot learn any additional information about the message x. Such
fine-grained access to encrypted data is extremely useful for a wide variety of applications,
including expressive access control, spam filtering, mining encrypted databases, and more
(we refer the reader to the survey by Boneh, Sahai and Waters [16] for an in-depth discussion
of these applications).

Hierarchical functional encryption. Motivated by the applicability of functional encryp-
tion to expressive access-control systems, in this paper we study the notion of hierarchical
functional encryption, which was introduced by Ananth, Boneh, Garg, Sahai and Zhandry
[4]. The hierarchical notion augments standard functional encryption with delegation cap-
abilities, enabling significantly more expressive access control.

Specifically, recall that in a functional encryption scheme, the holder of the master secret
key msk can generate a functional key skf corresponding to any given function f . In a
hierarchical functional encryption scheme, the holder of any such functional key skf can
in turn generate a functional key skg◦f corresponding to the function g ◦ f for any given
function g. Now, anyone holding the delegated functional key skg◦f and an encryption of any
message x, can compute (g ◦ f)(x) = g(f(x)) but cannot learn any additional information
about the message x. Such expressive delegation capabilities give rise to hierarchical access
control, which is a sought-after ingredient in modern access control systems. In particular,
the notion of hierarchical functional encryption generalizes those of hierarchical attribute-
based encryption, hierarchical identity-based encryption and more (see the discussion at the
end of Section 3 on the delegation capabilities of functional encryption).

Ananth et al. formalized a notion of security for hierarchical functional encryption
schemes, and sketched how the functional encryption scheme of Garg et al. [30] can be
transformed into a hierarchical one by using a general-purpose indistinguishability obfus-
cator [8, 30].1 Their approach, however, is both tailored to the specific functional encryption
scheme of Garg et al. [30], and can only support hierarchical structures of constant depth
(i.e., can only support a constant number of successive delegations).2

1 It was recently shown by Ananth and Jain [6] and by Bitansky and Vaikuntanathan [10] that indis-
tinguishability obfuscation can be constructed from some flavors of functional encryption. Specifically,
from succinct functional encryption with sub-exponential security. Our approach is both more direct
and requires no such properties.

2 In the hierarchical scheme of Ananth et al. [4], a delegated functional key skg◦f for the function g ◦ f is

http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.8

Z. Brakerski et al. 8:3

1.1 Our Contributions
We present a generic transformation that converts any general-purpose public-key functional
encryption scheme into a hierarchical one without relying on any additional assumptions
(and, in particular, without relying on indistinguishability obfuscation). Our transformation
allows instantiations based both on unbounded-collusion functional encryption schemes and
on bounded-collusion ones. This level of generality yields a variety of hierarchical schemes
based on various assumptions in the standard model. These include strong assumptions
such as indistinguishability obfuscation [30, 53] or multilinear maps [32], and much milder
assumptions such as learning with errors [37], and even the existence of any public-key
encryption scheme and low-depth pseudorandom generator [38].

We stress that our result stands even if it turns out that indistinguishability obfuscation
is impossible to achieve or requires strong computational assumptions. One could view it as
evidence that the hierarchical properties do not stem from the “obfuscation-like” features of
functional encryption, but rather from the more rudimentary properties that are achievable
under minimal assumptions.

Security and efficiency. In terms of security, the schemes resulting from our transformation
guarantee semi-adaptive security. Moreover, by assuming that the underlying functional
encryption scheme is sub-exponentially secure, we obtain adaptive security via a standard
complexity leveraging argument. In terms of efficiency, our approach results in keys and
ciphertexts with a rather low overhead compared to the efficiency of the underlying functional
encryption scheme. A ciphertext in our scheme is essentially a ciphertext of the underlying
scheme. A delegated functional key for g ◦ f contains two functional keys for functions
that essentially compute f and g, respectively, in addition to some basic cryptographic
computation (an evaluation of a PRF, and an encryption of a ciphertext of the underlying
scheme). We refer the reader to the overview below for more details on the security and
efficiency of the schemes resulting from our approach.

Instantiations. The variety of schemes resulting from our transformation offer different
trade-offs between their underlying assumptions and their delegation capabilities (i.e., the
depth and width of the hierarchical structures that they support). For example, instan-
tiating our transformation with the schemes of Garg et al. [30] and Waters [53] results in
hierarchical schemes that support hierarchical structures of any polynomial depth and any
polynomial width (where these polynomials do not have to be specified in advance). In
addition, instantiating our transformation with the schemes of Goldwasser et al. [37] or
Gorbunov et al. [38] results in hierarchical schemes that support hierarchical structures of
any constant depth and any pre-determined polynomial width. This should be compared to
the hierarchical scheme of Ananth et al. [4] that is constructed from the specific functional
encryption scheme of Garg et al. [30], and can only support hierarchical structures of con-
stant depth, and to the alternative hierarchical scheme in this work (see Section 1.3) that is
constructed based on even stronger assumptions and still requires an a-priori bound on the
depth of the support hierarchical structures. We refer the reader to Table 1 for a comparison
of the assumptions underlying the known hierarchical functional encryption schemes and of
their supported hierarchical structures.

computed from skf by applying the obfuscator to a program that contains skf as part of its description.
Thus, since skf itself consists of such an obfuscated program, this allows for only a constant number
of successive delegations.

ITCS 2017

8:4 Hierarchical Functional Encryption

Table 1 A comparison of the assumptions underlying the known hierarchical functional en-
cryption schemes and of their supported hierarchical structures. We note that indistinguishability
obfuscation (iO) is known to imply unbounded-collusion functional encryption [53], which in turn
clearly implies bounded-collusion functional encryption. In addition, bounded-collusion functional
encryption is implied by much milder assumptions such as learning with errors [37], and even the
existence of any public-key encryption scheme and low-depth pseudorandom generator [38].

Assumption
Hierarchical Structure

Depth Width

iO [4] Constant Unbounded
Sub-exponentially-secure iO and
sub-exponentially-secure HIBE (this work
[25])

Any fixed
polynomial Unbounded

Unbounded-collusion FE (this work [23]) Unbounded Unbounded

Bounded-collusion FE (this work [23]) Constant Any fixed polynomial

1.2 Overview of Our Approach

Formally, a hierarchical FE scheme contains the standard (Setup,KG,Enc,Dec) algorithms,
in addition to a new delegation algorithm Delegate. The delegation algorithm Delegate(hskf ,
g) is identical in syntax to the KG algorithm, except that it takes a functional key hskf (which
can itself be the output of a previous delegation) instead of the master secret key msk. Its
output is a key hskg◦f corresponding to the composed function g ◦ f .

Indeed, the way we implement this functionality is by associating a unique master
secret key with any delegable functional key. Namely, a delegable key hskf (with respect
to the master key pair (msk,mpk)) will contain a fresh master secret key msk′ in addi-
tion to a “standard” functional key for a re-encryption function skReEncf,mpk′ (the key pair
(msk′,mpk′) is generated using the standard setup procedure). The function ReEncf,mpk′(x),
intuitively, takes an input x and outputs a functional encryption of f(x) under the new
key mpk′. It is obvious that since msk′ is a part of hskf , then the owner of hskf =
(skReEncf,mpk′ ,msk′) can derive f(x) itself if it so desires. The beauty of this procedure is
that it can then be repeated. If hskf needs to be delegated via Delegate(hskf , g), then one
only needs to generate a new pair (msk′′,mpk′′), use msk′ to obtain sk′ReEncg,mpk′′

and out-
put hskg◦f = (skReEncf,mpk′ , sk

′
ReEncg,mpk′′

,msk′′). In the decryption process, we start with some
ct = FE.Encmpk(x), use the first component of the key to obtain ct′ = FE.Encmpk′(f(x)), and
then using the second component to obtain ct′′ = FE.Encmpk′′(g(f(x))). Finally, msk′′ is
used to decrypt ct′′ and thus learn the value g(f(x)).

Care needs to be taken in order to securely realize the above intuition. In particular,
one has to come up with a source of randomness for the re-encryption process. This is
done by slightly modifying the encryption algorithm of the hierarchical scheme such that
Enc(mpk, x) = FE.Enc(mpk, (x,K,⊥)), where K is a key to a puncturable pseudorandom
function PRF, and ⊥ is a placeholder that will only be used in the proof. Similarly, we will
generate functional keys of the form skReEncf,t,mpk′,c , where t is a random tag and c is a random
string that will be used in the proof. The function ReEncf,t,mpk′,c(x,K,⊥) will compute f(x)
and encrypt the tuple (f(x),K ′,⊥) under msk′ using randomness r′. The randomness for
the generation of K ′ and r′ is produced by evaluating PRFK(t).

Z. Brakerski et al. 8:5

For the sake of our security proof, one last addition is made to the description of
ReEncf,t,mpk′,c. If its input is of the form (·, ·, k), where k is a key for a symmetric en-
cryption scheme, then the first two arguments are ignored and SKE.Deck(c) is output. Thus
we implement a “trapdoor circuit” (or a “Trojan”) as per [29, 5].

Security notion. The notions of security that we consider in this work are those formalized
by Ananth et al. [4]. Specifically, we consider adversaries that obtain functional keys for
various functions of their choice by issuing key-generation queries and delegation queries.
We require that such adversaries have only a negligible advantage in distinguishing the
encryptions of two challenge messages, x∗0 and x∗1, of their choice as long as for any function
f for which they obtain a functional key it holds that f(x∗0) = f(x∗1), where such a key may
be produced either as a result of a key-generation query or a delegation query (we refer the
reader to Section 3 for more details).

We prove that if the underlying scheme FE is selectively secure then the resulting hier-
archical scheme is selectively secure, and if FE is semi-adaptively secure then the resulting
hierarchical scheme is semi-adaptively secure.3 We leave it as an intriguing open problem
to design a hierarchical functional encryption scheme that guarantees adaptive security.
We note that already in the less-expressive setting of identity-based encryption, designing
adaptively-secure hierarchical schemes is extremely challenging. In particular, Lewko and
Waters [46] recently showed why known proof methods fall short of proving adaptive security
even for adaptively-secure hierarchical identity-based encryption (which is a special case of
hierarchical FE) without degrading exponentially with the number of delegation levels.

Proof overview. Let us focus on the case of selective security, semi-adaptive security follows
by a practically identical argument. In the selective security game, the adversary first
specifies challenge messages x∗0 and x∗1, receives mpk, and then makes a sequence of key-
generation and delegation queries. One could visualize the structure that is generated by
these queries as a tree, whose root is (msk,mpk) and whose nodes are the key pairs that
are generated upon each call to KG or Delegate. Each such call generates a new child for
one of the nodes in the tree, as per the adversary’s choice. Each node is associated with
a function f which was input to KG/Delegate in its creation, and also with a function f̃ ,
which is the composition of all functions from the root to that node. If f̃(x∗0) = f̃(x∗1) then
we say that the node is observable, since the adversary is allowed to see the functional key
hskf̃ associated with that node. We can assume w.l.o.g that all the leaves of the tree are
observable.

The high-level intuition of the proof is the following. Let us pretend that ReEnc is actually
capable of outputting a re-encrypted ciphertext which is encrypted with true randomness,
rather than with pseudorandomness. Now, consider an unobservable node i (i.e., a node
corresponding to fi and f̃i for which f̃i(x∗0) 6= f̃i(x∗1)) that only has observable children.
This means that all functions ReEncf,t,mpk′,c that are generated relative to this node’s mski
will output the same value whether the challenge ciphertext is an encryption of x∗0 or of
x∗1. The security of the underlying scheme will guarantee that the re-encrypted ciphertext
cannot be used to distinguish x∗0 from x∗1. Let us take another leap of faith and pretend that

3 We briefly remind the reader the differences between selective, semi-adaptive, and adaptive security.
Selective security considers adversaries that specify their challenge messages before seeing the public
parameters or making any key queries. Semi-adaptive security, as recently defined by Chen and Wee
[26], considers adversaries that specify their challenge messages after seeing the public parameters
but before making any key queries. Finally, adaptive security considers adversaries that specify their
challenge messages even after seeing the public parameters and making key queries.

ITCS 2017

8:6 Hierarchical Functional Encryption

not only the re-encrypted ciphertext cannot distinguish x∗0 from x∗1 but it is in fact identical
in both cases. Then the above process can propagate towards the root of the tree, where at
every step we increase the number of nodes whose output is the same regardless of whether
the challenge ciphertext encrypts x∗0 or x∗1. Once this process gets all the way to the root
and applied to the challenge ciphertext itself, the proof is complete.

This intuition is implemented using the mechanisms of punctured programming [50] and
“trapdoor circuits” [29] (or “Trojans” [5]). We will replace the c values in ReEncf,t,mpk′,c
with symmetric encryptions of our “fantasy ciphertexts” (ones that are encrypted with
true randomness), and append the challenge ciphertext with the appropriate symmetric
decryption key (in fact, multiple symmetric keys will be needed, one for every level of the
hierarchy, and one has to carefully control their propagation along the tree). Puncturable
PRFs will be used to argue that the use of fantasy ciphertexts is indistinguishable from the
actual output of ReEncf,t,mpk′,c, which will allow the proof idea from above to go through.
This requires a careful and delicate argument since we can only puncture a PRF key that
had been generated with fresh randomness, hence one has to also consider fantasy PRF
keys and propagate them along the tree as well together with the fantasy ciphertexts. The
formal proof thus contains many fine points and a large number of steps, and is provided in
Section 4.

1.3 The Multi-Authority Setting and an Alternative Hierarchical
Scheme

While above, we have focused on the question of delegating functional keys to other parties, a
closely related problem is that of achieving functional encryption in the context of multiple
key-issuing authorities. In Multi-Authority Functional Encryption (MAFE), we allow n

authorities to “independently” generate their private and public keys. An encryptor should
be able to encrypt a message m along with a policy F over the various authorities. Any
authority i, should be able to generate a token for a user with identity UID and property
Ui. A user with identity UID with tokens for Ui from authority i ∈ [n], should be able
to decrypt the ciphertext to recover F (U1, .., Un,m). We require that colluding users, say
UID1 and UID2, (possibly, in collusion with some corrupt authorities) should not jointly
learn anything more from the ciphertext than what they are authorized to.

Our main construction idea is natural – we view a ciphertext as an obfuscated program
and functional keys as signatures generated with respect to each authority’s unique public
key. To elucidate this main idea, let us first analyze the problem in a single authority
scenario. The starting point of our construction is a construction of a functional encryption
scheme due to [19] based on differing-inputs obfuscation (diO). In their construction, a
ciphertext is an obfuscated circuit that checks the signature for a function f and computes
f if the signature is valid. The security proof relied on the fact that if the adversary
distinguishes the ciphertext (or rather an obfuscated circuit) encrypting m0 from that of
m1, then one must be able to extract a signature on a function g such that g(m0) 6= g(m1)
thereby producing a forgery. This construction is easily scalable to the multi-authority
setting. However, given the implausibility of differing-inputs obfuscation [31], our objective
is a construction based on indistinguishability obfuscation (iO). While it was observed in
[19] that iO behaves like diO for the setting where the circuits in question differ only on a
polynomially bounded number of points, unfortunately, there are simply too many points
on which these functions would differ for this strategy to yield a construction from iO.

Z. Brakerski et al. 8:7

Constructing MAFE based on indistinguishability obfuscation. Our first idea is to use
signatures that are unique, in the sense, that for every message there exists only one sig-
nature that verifies. In order to instantiate unique signatures, we use puncturable PRF’s,
indistinguishability obfuscation and an injective one way function following the punctured
programming technique from [50]. The main idea of the security proof is that we can build
exponentially many hybrids corresponding to the function space. We index each hybrid with
a function x. In hybrid x, the ciphertext takes as input f with a signature σ and checks if
f < x. If that is the case, it outputs f(m0) otherwise f(m1). We argue indistinguishability
between hybrids x and x + 1 by intermediate hybrids where we puncture the PRF at x
and replace the PRF evaluations with a random sample. Then we further note that if the
adversary now distinguishes these hybrids, then it can be used to invert an injective one
way function in sub-exponential time. In order to handle key corruptions, we now let the
signing key be an obfuscation of a circuit that evaluates a PRF on the input. This allows us
to “program" the secret keys using puncturing techniques [50] and the techniques described
above so that the proof can be made to go through.

Constructing MAFE based on LWE. Since MAFE for arbitrary policies imply obfuscation
it is unlikely to construct them from simpler assumptions. We also study a very natural
policy referred to as the n − out − of − n threshold policy. In this policy for any function
f the decryptor must get tokens from all the authorities to learn f(m). We describe our
construction at a very high level below. Our starting point is the recent construction of
threshold homomorphic encryption (TFHE) by [47]. In a TFHE scheme the secret key can
be shared among n parties and any (evaluated) ciphertext can be partially decrypted using
each of the n key shares. The partial decryptions can be finally added to yield the output.
The security guarantee is two fold: First, given at most n − 1 key shares the semantic
security of the encryption holds. Second, partial decryption of any ciphertext using any key
share can be statistically simulated using the remaining n− 1 shares and the output of the
decryption. The (simplified) scheme can be described as follows. Each authority runs an
FE setup. To encrypt a message m, the encryptor runs a fresh setup of a TFHE system. He
encrypts m as ct and outputs n FE ciphertexts, one corresponding to each authority. For
authority i he encrypts (ct, ski, ∗) where ∗ represents some additional strings (for example,
PRF keys, e.t.c used for programming the proof) and ski is ith partial TFHE decryption key.
The key for a function f is now simply an FE key for a function that takes as input a TFHE
ciphertext ct and evaluates it for function f and then computes a partial decryption using
ski.

The solution described above suffers from one key flaw. The problem is that the scheme
is not user-collusion-resistant. One user uid1 can query tokens for f from say k authorities,
while another user uid2 can query them from other n − k authorities and later collude to
recover f(m). We prevent this by relying on Pseudo-Random Zero-Sharing (PRSS) [28].
Using this primitive one can secret share 0 pseudorandomly and deterministically using
initially distributed shares (β1, .., βn) and any common input. Concretely there exists a
publicly known function g such that for any index x, {g(βi, x)}i∈[n] forms a pseudorandom
secret sharing of 0. We now modify the existing scheme as follows: FE ciphertext for each
authority i now also consists βi and the FE key now produces TFHE partial decryptions
masked by g(βi, uid, f). This masking prevents the adversary to collude in the manner
described above.

ITCS 2017

8:8 Hierarchical Functional Encryption

Applications. We also show that MAFE immediately implies multi-authority attribute
based encryption and this yields the first decentralised ABE scheme without setup and
without the use of random oracles.

Alternate construction of Hierarchical FE. An application of the unique signature idea
described above is that it can be extended to allow for delegation of function keys. In what
we described above, if the signature scheme is delegatable (i.e. if it allows us to compute
a signature on f ||g for any g given a signature on f) then it allows us to compute keys for
g ·f given a key for f , where g ·f denotes the composition of functions f and g and on input
x computes g(f(x)). In order to construct this primitive, we make use of the exponential
hybrid approach and make interesting use of hierarchical identity based encryption (HIBE).
The main idea behind this construction is as follows: to encrypt a message m, we let the
ciphertext be an obfuscated program that takes as input a “function” f . On input f , the
obfuscated program will compute a HIBE encryption of f(m) on identity f using randomness
generated from a PRF applied on f . Any decryptor can then decrypt this ciphertext using
a HIBE key for identity f or its prefix. Here too, the security proof goes input by input over
the space of all circuits. Our construction supports delegation up to any (a-priori bounded)
polynomial number of times, in contrast to prior schemes which allowed delegation only up
to O(1) number of times [4].

A detailed description of the MAFE construction as well as the alternate construction for
HFE can be found in [25].

1.4 Related Work
Hierarchical encryption schemes. Encryption schemes supporting a hierarchical structure
have been extensively studied in the setting of identity-based encryption, and have been
recently studied in the more general setting of attribute-based encryption and functional
encryption.

The line of research on hierarchical identity-based encryption has been extremely success-
ful, starting with schemes in the random oracle model, evolving through selectively-secure
schemes in the standard model and graduating to adaptively secure schemes for polynomially
many levels. It is far beyond the scope of this paper to provide an extensive overview of this
line of research, and we refer the reader to [34, 40, 11, 12, 18, 33, 52, 1, 2, 43, 44, 45, 24, 46]
and the references therein.

Recently, Boneh et al. [14] constructed an attribute-based encryption scheme that sup-
ports delegation of keys. This scheme enables anyone holding a key skP corresponding to
a predicate P to generate a key skP∧Q corresponding to the predicate P ∧Q for any given
predicate Q. Now, given the key skP∧Q and an encryption of any pair (x,m), one can re-
cover m if and only if (P ∧ Q)(x) = 1. Although the setting of attribute-based encryption
is significantly more expressive than the identity-base one, it does not seem to come close
to the general setting of functional encryption that we consider in this paper.

Finally, as discussed above, Ananth et al. [4] sketched how the functional encryption
scheme of Garg et al. [30] can be transformed into a hierarchical one by using a general-
purpose indistinguishability obfuscator. When compared to their scheme our approach offers
two main advantages. First, whereas Ananth et al. rely on a specific scheme and on indis-
tinguishability obfuscation, we can rely on any underlying general-purpose scheme. This
enables us to rely on a variety of underlying assumptions, including learning with errors
and even the existence of any public-key encryption scheme and low-depth pseudorandom

Z. Brakerski et al. 8:9

generators, as discussed in Section 1.1. Furthermore, as new functional encryption schemes
are presented, they can immediately be plugged in to our construction. Second, the schemes
resulting from our transformation guarantee semi-adaptive security, whereas the scheme of
Ananth et al. guarantees only the somewhat less realistic notion of selective security.

Encapsulation techniques in functional encryption. Key encapsulation is a very useful
approach for improving both the efficiency and the security of encryption schemes. Specific-
ally, key encapsulation typically means that instead of encrypting a message x under a fixed
key sk, one can instead sample a fresh key k, encrypt x under k, and then encrypt k under
sk. Recently, Ananth et al. [5], followed by Brakerski et al. [21], showed that key encapsula-
tion is useful also for functional encryption, and can be used for generically enhancing the
functionality and the security of such schemes. Their approaches suggest that encapsulation
techniques may in fact be a general tool that is useful in the design of functional encryption
schemes. As discussed in Section 1.2, our construction relies on encapsulation techniques as
a key ingredient, significantly extending the initial ideas of Ananth et al. and Brakerski et al.
from encapsulating keys to realizing a re-encryption mechanism that generates a hierarchical
structure.

1.5 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we provide an overview
of the notation, definitions, and tools underlying our constructions. In Section 3 we present
the notion of a hierarchical functional encryption scheme and define its security. In Section
4 we present our generic construction of a hierarchical functional encryption scheme.

The details of the results described in Section 1.3 are deferred from this extended abstract
and can be found in [25].

2 Preliminaries

In this section we present the notation and basic definitions that are used in this work. For a
distribution X we denote by x← X the process of sampling a value x from the distribution
X. Similarly, for a set X we denote by x ← X the process of sampling a value x from
the uniform distribution over X . For an integer n ∈ N we denote by [n] the set {1, . . . , n}.
Throughout the paper, we denote by λ the security parameter. A function neg : N → R
is negligible if for every constant c > 0 there exists an integer Nc such that neg(λ) < λ−c

for all λ > Nc. Two sequences of random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N
are computationally indistinguishable if for any probabilistic polynomial-time algorithm A
there exists a negligible function neg(·) such that

∣∣Pr[A(1λ, Xλ) = 1]− Pr[A(1λ, Yλ) = 1]
∣∣ ≤

neg(λ) for all sufficiently large λ ∈ N.

2.1 Pseudorandom Functions

Let {Kλ,Xλ,Yλ}λ∈N be a sequence of sets and let PRF = (PRF.Gen,PRF.Eval) be a function
family with the following syntax:

PRF.Gen is a probabilistic polynomial-time algorithm that takes as input the unary
representation of the security parameter λ, and outputs a key K ∈ Kλ.
PRF.Eval is a deterministic polynomial-time algorithm that takes as input a key K ∈ Kλ
and a value x ∈ Xλ, and outputs a value y ∈ Yλ.

ITCS 2017

8:10 Hierarchical Functional Encryption

The sets Kλ, Xλ, and Yλ are referred to as the key space, domain, and range of the function
family, respectively. For K ∈ Kλ, we use the notation PRF.Eval(K, ·), PRF.EvalK(·) and
PRFK(·) interchangeably.

The following is the standard definition of a pseudorandom function family.

I Definition 2.1 (Pseudorandomness). A function family PRF = (PRF.Gen,PRF.Eval) is
pseudorandom if for every probabilistic polynomial-time algorithm A there exists a negligible
function neg(·) such that

AdvPRF,A(λ) def=
∣∣∣∣ Pr
K←PRF.Gen(1λ)

[
APRF.EvalK(·)(1λ) = 1

]
− Pr
f←Fλ

[
Af(·)(1λ) = 1

]∣∣∣∣
≤ neg(λ),

for all sufficiently large λ ∈ N, where Fλ is the set of all functions that map Xλ into Yλ.

In addition to the standard notion of a pseudorandom function family, we rely on the
seemingly stronger (yet existentially equivalent) notion of a puncturable pseudorandom func-
tion family [41, 17, 50, 20]. In terms of syntax, this notion asks for an additional probabilistic
polynomial-time algorithm, PRF.Punc, that takes as input a key K ∈ Kλ and a set S ⊆ Xλ
and outputs a “punctured” key KS . The properties required by such a puncturing algorithm
are captured by the following definition.

I Definition 2.2 (Puncturable PRF). A pseudorandom function family PRF = (PRF.Gen,
PRF.Eval,PRF.Punc) is puncturable if the following properties are satisfied:
1. Functionality: For all sufficiently large λ ∈ N, for every set S ⊆ Xλ, and for every

x ∈ Xλ \ S it holds that

Pr
K←PRF.Gen(1λ);

KS←PRF.Punc(K,S)

[PRF.EvalK(x) = PRF.EvalKS (x)] = 1.

2. Pseudorandomness at punctured points: Let A = (A1,A2) be any probabilistic
polynomial-time algorithm such that A1(1λ) outputs a set S ⊆ Xλ, a value x ∈ S, and
state information state. Then, for any such A there exists a negligible function neg(·)
such that

AdvPRF,A(λ) def= |Pr [A2(KS ,PRF.EvalK(x), state) = 1]− Pr [A2(KS , y, state) = 1]|
≤ neg(λ)

for all sufficiently large λ ∈ N, where K ← PRF.Gen(1λ), (S, x, state) ← A1(1λ), KS =
PRF.Punc(K,S), and y ← Yλ.

For our constructions we rely on pseudorandom functions that need to be punctured
only at a single point (i.e., in both parts of Definition 2.2 it holds that S = {x∗} for some
x∗ ∈ Xλ). As observed by [41, 17, 50, 20] the GGM construction [36] of PRFs from any
one-way function can be easily altered to yield such a puncturable pseudorandom function
family.

Augmented evaluation. When dealing with pseudorandom functions that need to be punc-
tured only at a single point, we find it natural to consider an “augmented” evaluation al-
gorithm that outputs a pre-determined value y∗ at the punctured point. That is, we extend
the functionality of PRF.Eval such that given an augmented key of the form (Kx∗ , (x∗, y∗)),
it holds that

PRF.Eval(Kx∗ ,(x∗,y∗))(x) =
{
y∗, if x = x∗

PRF.EvalKx∗ (x), if x 6= x∗
.

Z. Brakerski et al. 8:11

2.2 Private-Key Encryption with Pseudorandom Ciphertexts
A private-key encryption scheme over a message space X = {Xλ}λ∈N is a triplet Π = (KG,
Enc,Dec) of probabilistic polynomial-time algorithms. The key-generation algorithm KG
takes as input the unary representation 1λ of the security parameter λ ∈ N and outputs a
secret key k. The encryption algorithm Enc takes as input a secret key k and a message
x ∈ Xλ, and outputs a ciphertext c. The decryption algorithm Dec takes as input a secret
key k and a ciphertext c, and outputs a message x ∈ Xλ or the dedicated symbol ⊥. In
terms of correctness we require that for any key k that is produced by KG(1λ) and for every
message x ∈ Xλ it holds that Dec(k,Enc(k, x)) = x with probability 1 over the internal
randomness of the algorithms Enc and Dec. We also require that a uniformly distributed
string does not decrypt to a valid message with overwhelming probability, i.e. Dec(k, ρ) = ⊥
with probability (1− neg(λ)) over the randomness of the key k and a uniformly distributed
string ρ of the same length as the ciphertext4. In terms of security, we rely on the following
standard notion of pseudorandom ciphertexts which can be based on any one-way function
(see, for example, [35]).

I Definition 2.3 (Pseudorandom ciphertexts). A private-key encryption scheme Π = (KG,
Enc,Dec) has pseudorandom ciphertexts if for any probabilistic polynomial-time adversary
A = (A1,A2), there exists a negligible function neg(·) such that

AdvPC
Π,A(λ) def=

∣∣∣∣Pr
[
ExpPC

Π,A(λ) = 1
]
− 1

2

∣∣∣∣ ≤ neg(λ),

for all sufficiently large λ ∈ N, where the random variable ExpPC
Π,A(λ) is defined via the

following experiment:
1. k← KG(1λ), b← {0, 1}.
2. (x∗, state)← AEnc(k,·)

1 (1λ), where x∗ ∈ Xλ.
3. c∗0 ← Enc(k, x∗), c∗1 ← {0, 1}|c

∗
0 |.

4. b′ ← AEnc(k,·)
2 (c∗b , state).

5. If b′ = b then output 1, and otherwise output 0.

2.3 Public-Key Functional Encryption
A public-key functional encryption scheme over a message space X = {Xλ}λ∈N and a function
space F = {Fλ}λ∈N is a quadruple Π = (Setup,KG,Enc,Dec) of probabilistic polynomial-
time algorithms. The setup algorithm Setup takes as input the unary representation 1λ of
the security parameter λ ∈ N and outputs a master-secret key msk and a master-public
key mpk. The key-generation algorithm KG takes as input a master-secret key msk and a
function f ∈ Fλ, and outputs a functional key skf . The encryption algorithm Enc takes as
input a master-public key mpk and a message x ∈ Xλ, and outputs a ciphertext ct. In terms
of correctness we require that for all sufficiently large λ ∈ N, for every function f ∈ Fλ and
message x ∈ Xλ it holds that Dec(KG(msk, f),Enc(mpk, x)) = f(x) with all but a negligible
probability over the internal randomness of the algorithms Setup, KG, and Enc.

We rely on the standard indistinguishability-based notion of adaptive security for public-
key functional encryption (see, for example, [15, 48, 9, 5]), asking that encryptions of any

4 More accurately, since the ciphertext length may (in general) not be a fixed function of the security
parameter, the uniform string ρ is sampled as follows: Given the key k, encrypt a fixed message (say,
the message 0) to obtain a ciphertext c, and then uniformly sample ρ← {0, 1}|c|, where |c| denotes the
bit-length of c.

ITCS 2017

8:12 Hierarchical Functional Encryption

two messages, x0 and x1, are computationally indistinguishable given access to functional
keys for any function f such that f(x0) = f(x1).

I Definition 2.4 (Adaptive security). A functional encryption scheme Π = (Setup,KG,Enc,
Dec) over a message space X = {Xλ}λ∈N and a function space F = {Fλ}λ∈N is adapt-
ively secure if for any probabilistic polynomial-time adversary A = (A1,A2) there exists a
negligible function neg(·) such that

AdvFE
Π,A(λ) def=

∣∣∣∣Pr
[
ExpFE

Π,A(λ) = 1
]
− 1

2

∣∣∣∣ ≤ neg(λ),

for all sufficiently large λ ∈ N, where the random variable ExpFE
Π,A(λ) is defined via the

following experiment:
1. (msk,mpk)← Setup(1λ), b← {0, 1}.
2. (x∗0, x∗1, state) ← AKG(msk,·)

1 (1λ,mpk), where x∗0, x∗1 ∈ Xλ, and for each function f ∈ Fλ
with which A1 queries KG(msk, ·) it holds that f(x∗0) = f(x∗1).

3. ct∗ ← Enc(mpk, x∗b).
4. b′ ← AKG(msk,·)

2 (ct∗, state), where for each function f ∈ Fλ with which A2 queries
KG(msk, ·) it holds that f(x∗0) = f(x∗1).

5. If b′ = b then output 1, and otherwise output 0.

In addition to the above notion of adaptive security we consider two natural relaxations:
semi-adaptive security, and selective security. Semi-adaptive security is defined via an exper-
iment ExpsemiFE

Π,A (λ) that is obtained from the experiment ExpFE
Π,A(λ) by asking the adversary

to determine the challenge messages before making any key-generation queries (but after
receiving the public key). Selective security is defined via an experiment ExpselFE

Π,A (λ) that is
obtained from the experiment ExpFE

Π,A(λ) by asking the adversary to determine the challenge
messages in advance (i.e., before receiving the public key).

Known constructions. General-purpose functional encryption schemes that satisfy the
above notion of adaptive security are known to exist based on a variety of assumptions.
Ananth et al. [5] gave a generic transformation from selective security to adaptive security,
implying that schemes that are adaptively secure for any number of key-generation queries
can be based on indistinguishability obfuscation [30, 53], differing-input obfuscation [19, 4],
and multilinear maps [32]. In addition, schemes that are adaptively secure for a bounded
number B = B(λ) of key-generation queries can be based on the Learning with Errors
(LWE) assumption (where the length of ciphertexts grows with B and with a bound on the
depth of allowed functions) [37], based on any public-key encryption scheme and pseudoran-
dom generators computable by small-depth circuits (where the length of ciphertexts grows
with B and with an upper bound on the circuit size of the functions) [38], and even based
on any public-key encryption scheme (for B = 1) [38].

3 Hierarchical Functional Encryption

In this section we define the notion of a hierarchical functional encryption scheme and
formalize several notions of security for such schemes (based on [4]). A hierarchical functional
encryption scheme is a functional encryption scheme that supports delegation of functional
keys: Given a functional key skf corresponding to a function f , and given a function g, it
is possible to efficiently compute a functional key skg◦f corresponding to the function g ◦ f

Z. Brakerski et al. 8:13

(i.e., the function that first applies f and then applies g). This capability is provided via a
delegation algorithm denote Delegate.

Formally, a hierarchical functional encryption scheme over a message space X = {Xλ}λ∈N
and a function space F = {Fλ}λ∈N is a tuple Π = (Setup,KG,Enc,Dec,Delegate) of prob-
abilistic polynomial-time algorithms, where (Setup,KG,Enc,Dec) is a functional encryption
scheme (see Section 2.3), and Delegate is a delegation algorithm that operates as follows: It
takes as input a functional key skf (which had been produced either by the key-generation
algorithm or by the delegation algorithm itself) corresponding to a function f ∈ Fλ, and a
function g ∈ Fλ, and outputs a functional key skg◦f .

Correctness. In terms of correctness we require that for every λ ∈ N, for every polynomial
` = `(λ), for every sequence of functions f1, . . . , f` ∈ Fλ, and for every message x ∈ Xλ, it
holds that

Dec(skf`◦···◦f1 ,Enc(mpk, x)) = (f` ◦ · · · ◦ f1)(x)

with all but a negligible probability over the internal randomness of the algorithms Setup, KG,
Enc and Delegate, where skf1 ← KG(msk, f1) and skfi+1◦···◦f1 ← Delegate(skfi◦···◦f1 , fi+1) for
every i ∈ [` − 1]. One can also consider schemes that support ` delegation levels for some
fixed polynomial ` = `(λ), although we note that our scheme in this paper supports any
polynomial number of delegation levels.

Security. As in the work of Ananth et al. [4, Appendix E] we consider the natural extensions
of the existing indistinguishability-based definitions of functional encryption [15, 48] to the
hierarchical setting. Specifically, we consider adversaries that obtain functional keys for
various functions of their choice by issuing key-generation queries and delegation queries.
We require that such adversaries have only a negligible advantage in distinguishing the
encryptions of two challenge messages, x∗0 and x∗1, of their choice as long as for any function
f for which they obtain a functional key it holds that f(x∗0) = f(x∗1).

The experiment ExpHFE
Π,A(λ). Let Π = (Setup,KG,Enc,Dec,Delegate) be a hierarchical

public-key functional encryption scheme over a message space X = {Xλ}λ∈N and a function
space F = {Fλ}λ∈N, and let A be a probabilistic polynomial-time adversary. For each λ ∈ N
we denote by ExpHFE

Π,A(λ) the random variable that is defined via the following experiment
involving the scheme Π, the adversary A, and a challenger:
1. Setup phase: The challenger samples (msk,mpk)← Setup(1λ) and b← {0, 1}.
2. Pre-challenge phase: A on input (1λ,mpk) adaptively issues queries of the form (f,

parent,mode), where f ∈ Fλ, parent ∈ N ∪ {0} and mode ∈ {OutputKey,StoreKey}. The
ith query (fi, parenti,modei) is answered by the challenger as follows:
a. If parent = 0 then the challenger generates hski ← KG(msk, f).
b. Else, if hskparenti had already been generated (and is not ⊥), then the challenger

generates hski ← Delegate(hskparenti , f). Otherwise set hski = ⊥.
c. Finally, if modei = OutputKey then the challenger outputs hski, and if mode =

StoreKey then the challenger outputs ⊥.
3. Challenge phase: A outputs (x∗0, x∗1) ∈ Xλ × Xλ, and then the challenger computes

ct∗ ← Enc(mpk, x∗b) and sends it to A.
4. Post-challenge phase: A adaptively issues queries as in the pre-challenge phase.
5. Output phase: A outputs b′, and the output of the experiment is 1 if and only if b′ = b.

ITCS 2017

8:14 Hierarchical Functional Encryption

Valid adversaries. As standard in functional encryption, we rule out adversaries that
can easily distinguish between the two challenge messages, x∗0 and x∗1, using their quer-
ies. Specifically, we say that an adversary is valid if for any query (fi, parenti,modei)
where modei = OutputKey, it holds that f̃i(x∗0) = f̃i(x∗1), where f̃ is defined recursively
by f̃i = fi ◦ f̃parenti and f0(x) = x (if any of these values is not well defined then f̃i(x) ≡ ⊥
for all x).

Having defined the experiment ExpHFE
Π,A(λ) and the notion of a valid adversary, we are

now ready to present our notion of adaptive security for hierarchical functional encryption
schemes.

I Definition 3.1. A hierarchical functional encryption scheme Π = (Setup,KG,Enc,Dec,
Delegate) over a message space X = {Xλ}λ∈N and a function space F = {Fλ}λ∈N is ad-
aptively secure if for any probabilistic polynomial-time valid adversary A there exists a
negligible function neg(·) such that

AdvHFE
Π,A(λ) def=

∣∣∣∣Pr
[
ExpHFE

Π,A(λ) = 1
]
− 1

2

∣∣∣∣ ≤ neg(λ),

for all sufficiently large λ ∈ N.

In addition to our notion of adaptive security we consider two natural relaxations: semi-
adaptive security, and selective security. Semi-adaptive security is defined via an exper-
iment ExpsemiHFE

Π,A (λ) that is obtained from the experiment ExpHFE
Π,A(λ) by eliminating the

pre-challenge query phase (note that the adversary determines the challenge messages after
receiving the public key). Selective security is defined via an experiment ExpselHFE

Π,A (λ) that is
obtained from the experiment ExpHFE

Π,A(λ) by asking the adversary to determine the challenge
messages in advance (i.e., before receiving the public key).

Discussion: The delegation capabilities of functional encryption. It is important to point
out that given a functional key skf , one cannot hope to delegate anything beyond the set
of functions g ◦ f while maintaining the security properties of functional encryption. To
see this, assume towards contradiction that there exists a function h such that h cannot
be expressed as g ◦ f , but skh can be derived from skf . Since the value of h(x) cannot be
inferred just by examining the value of f(x), there must exist two inputs, x0 and x1 such
that f(x0) = f(x1) but h(x0) 6= h(x1). Given skf , therefore, one should not be able to
distinguish encryptions of x0 and x1, but by delegating to skh, this becomes possible, hence
the contradiction.

The above optimality claim may seem a little confusing when we think about special
cases such as attribute-based encryption (ABE) or even identity-based encryption (IBE). In
ABE for example, each ciphertext contains an attribute x and a message m, and skf reveals
m if and only if f(x) = 1. In hierarchical ABE (HABE) [39, 14], given skf , one should be
able to derive skf∧f ′ for all f ′. At first glance, this seems to not be covered by our definition
since f ∧ f ′ cannot be expressed as g ◦ f . However, we notice that in fact when thinking
about HABE as a special case of functional encryption, it must be the case that what we
call skf , is in fact a functional key for the function f+(x,m) = ((f(x) = 1)?(x,m) : ⊥)
(i.e., the function that takes (x,m) as input, and if f(x) = 1 it returns (x,m) and otherwise
it returns ⊥). This is because if f(x) = 1 then x can always be recovered by considering
delegated keys that fix the value of each bit of x to 0 or 1, and check if decryption still works.
It is clear from this viewpoint that (f ∧ f ′)+ can be seen as g ◦ f+ for an appropriate g.
Therefore, our definition and construction are fully compatible also with the more restricted
settings of HABE and HIBE.

Z. Brakerski et al. 8:15

4 Our Generic Transformation

In this section we show how to transform any general-purpose public-key functional en-
cryption scheme into a hierarchical one. Our construction relies on the following building
blocks:
1. A general-purpose public-key functional encryption scheme FE = (FE.Setup,FE.KG,

FE.Enc,FE.Dec).
2. A private-key encryption scheme SKE = (SKE.KG,SKE.Enc,SKE.Dec).
3. A puncturable pseudorandom function family PRF = (PRF.Gen,PRF.Eval,PRF.Punc).

Our hierarchical scheme HFE = (Setup,KG,Enc,Dec,Delegate) is defined as follows.
The setup algorithm. On input the security parameter 1λ the setup algorithm samples
and outputs (msk,mpk)← FE.Setup(1λ).
The encryption algorithm. On input the public key mpk and a message x, the
encryption algorithm first samples a PRF key K ← PRF.Gen(1λ). Then, it computes
and outputs ct← FE.Enc(mpk, (x,K,⊥)). (Note that the message space of the resulting
scheme is thus smaller than that of the original scheme.)
The key-generation algorithm. On input the master secret key msk and a function f ,
the key-generation algorithm first generates a fresh key pair (msk′,mpk′)← FE.Setup(1λ)
and uniformly samples a tag t← {0, 1}λ. Then, it uniformly samples c← {0, 1}` where
` = `(λ) is the length of an SKE encryption of an FE ciphertext.5 Finally, it computes
skf ← FE.KG(msk,ReEncf,t,mpk′,c), where ReEnc is defined in Figure 1, and outputs
hskf = (skf ,msk′).
The delegation algorithm. On input a (possibly delegated) functional key of the
form hskfi◦···◦f1 = (skf1 , . . . , skfi ,msk′) for some integer i ≥ 1, and a function fi+1,
the delegation algorithm uses the key-generation algorithm described above to compute
(skfi+1 ,msk′′)← HFE .KG(msk′, fi+1), and outputs hskfi+1◦···◦f1 = (skf1 , . . . , skfi , skfi+1 ,

msk′′).
The decryption algorithm. On input a functional key hskfi◦···◦f1 = (skf1 , . . . , skfi ,
msk′) for some integer i ≥ 1, and a ciphertext ct, the decryption algorithm first sets
ct0 = ct and computes ctj ← FE.Dec(skfj , ctj−1) for j = 1, . . . , i. Then, cti is decrypted
by using msk′ for generating a functional key for the identity function ID ∈ F :

w ← FE.Dec(FE.KG(msk′, ID), cti).

Finally, w is parsed as a triplet w = (y, ·, ·), of which the first element y is returned as
output.

In what follows we first discuss the correctness of our resulting scheme, then discuss
its parameters and overhead, and then state and prove its security based on that of its
underlying building blocks.

5 To be accurate, ` is also a function of the message space of the scheme and of the specific properties
of the master secret key. We refrain from mentioning these implicit parameters to avoid cluttering of
notation. We note however that this imposes an a-priori bound on the length of the ciphertext and
thus also on the message space of our resulting scheme. Lifting this restriction is an interesting research
direction.

ITCS 2017

8:16 Hierarchical Functional Encryption

ReEncf,t,mpk′,c(x,K, k)

1. Compute ct← SKE.Dec(k, c), (s, r) = PRF.Eval (K, t), and K ′ = PRF.Gen
(
1λ; s

)
.

2. If ct 6= ⊥ then output ct, and otherwise output FE.Enc
(
mpk′, (f(x),K ′,⊥) ; r

)
.

1 The function ReEncf,t,mpk′,c.

Correctness. The correctness of our scheme follows easily by induction on the delegation
depth i. Let (msk,mpk)← Setup(1λ), and fix a message x ∈ Xλ and a sequence of functions
f1, . . . , fi ∈ Fλ.

For i = 1 the correctness of decrypting a ciphertext ct0 ← FE.Enc(mpk, (x,K0,⊥)) using
a key hskf1 = (skf1 ,msk1) ← KG(msk, f1) follows from that of the underlying scheme FE .
Specifically, the decryption algorithm first computes ct1 ← FE.Dec(skf1 , ct0), and by the
correctness of FE with an overwhelming probability it holds that ct1 = FE.Enc(mpk1, (f1(x),
K1,⊥); r1), where (s1, r1) = PRF.Eval (K0, t) for some t chosen during the key generation,
K1 = PRF.Gen

(
1λ; s1

)
, and mpk1 is a master public key that is sampled together with msk1.

Next, the decryption algorithm decrypts ct1 with msk1, and noting that r1 is pseudorandom
given the triplet (mpk1, f1(x),K1) we can once again rely on the correctness of the underlying
scheme FE and argue that the decryption algorithm outputs f1(x) with an overwhelming
probability.6

Assume that the scheme is correct for up to i − 1 levels of delegation, and consider
decrypting a ciphertext ct0 ← FE.Enc(mpk, (x,K0,⊥)) using a key hskfi◦···◦f1 = (skf1 , . . . ,

skfi ,mski) ← Delegate(hskfi−1 , fi) that is generated using i levels of delegation. Then, the
correctness for up to i− 1 levels guarantees that by repeatedly applying the keys skf1 , . . . ,

skfi−1 starting with the initial ciphertext ct0 as prescribed by the decryption algorithm, we
obtain with an overwhelming probability a ciphertext cti−1 = FE.Enc(mpki−1, ((fi−1 ◦ · · · ◦
f1)(x),Ki−1,⊥); ri−1) for some mpki−1, Ki−1 and ri−1, where ri−1 is pseudorandom given
the triplet (mpki−1, (fi−1 ◦ · · · ◦ f1)(x),Ki−1). Next, the decryption algorithm computes
cti ← FE.Dec(skfi , cti−1), and by the correctness of FE with an overwhelming probability it
holds that cti = FE.Enc(mpki, ((fi◦· · ·◦f1)(x),Ki,⊥); r′), where (si, ri) = PRF.Eval (Ki−1, t)
for some t chosen during the key generation, Ki = PRF.Gen

(
1λ; si−1

)
, and mpki is a master

public key that is sampled together with mski. Note that again ri is pseudorandom given
the triplet (mpki, (fi ◦ · · · ◦ f1)(x),Ki). Therefore, when the decryption algorithm decrypts
cti with mski, it outputs (fi ◦ · · · ◦ f1)(x) with an overwhelming probability.

Parameters and overhead. We now discuss the parameters that govern the properties that
are required of the underlying scheme and thus the overhead of our construction. We address
two parameters of the hierarchy: The width which is the maximal number of delegated keys
that are derived from each key at the previous level, and the depth which is the maximal
number of successive derivations.7 The functionality and security of our scheme hold for
arbitrary and a-priori unbounded width and depth. However, if the underlying scheme is

6 If we further assume that either the underlying functional encryption scheme is perfectly correct, or
that the underlying pseudorandom function produces outputs whose marginal distribution is uniform,
the argument significantly simplifies and there is no need to argue that r1 is pseudorandom given the
triplet (mpk1, f1(x),K1).

7 One could consider a more fine-grained view of the parameters, e.g. that the maximal width itself
depends on the depth of the key. Such analyses follow the same principles presented here.

Z. Brakerski et al. 8:17

restricted in some way, then this restriction could propagate through our reduction. For ex-
ample, if the underlying scheme only supports bounded collusion, then the maximal width
will be restricted. Furthermore, since the ReEnc function produces a functional ciphertext
with respect to the next level of the hierarchy, certain instantiations could produce a cas-
cading effect that will increase the overhead. We analyze these restrictions below and show
that in some cases they can be overcome completely and in others they can be managed.

Define the compactness parameter of a (standard) FE scheme, denoted C(λ, S), as the
computational complexity of encrypting a message of length λ (or some other fixed length
which does not depend on S), while allowing to produce functional keys for size S functions.
Note that C is also a bound on the length of the ciphertext, and in the currently-known
schemes it also governs the complexity of key generation (see Section 2.3 for the currently-
known schemes). Then in our construction, the ciphertext encryption complexity at depth i,
which we denote by Ci is at most Ci ≤ C(λ,Ci+1·poly(λ)). This relation follows immediately
from the description of the scheme.

For a scheme which only allows bounded collusion, the compactness is C(λ, S,B), where
B is the bound on the number of collusions. In this case, the width factors in as well such
that for a scheme with width w it holds that Ci ≤ C(λ,Ci+1 · poly(λ), w).

In particular, in the known schemes with unbounded collusion [30, 53, 32], the encryption
complexity is independent of S and therefore instantiating our construction with such a
scheme will support arbitrary polynomial depth and width while keeping the encryption
complexity polynomial. In fact, one can show, via a little modification of [5], that any
scheme that supports unbounded collusions can be modified using randomized encodings to
one where the compactness is independent of S.

For known schemes with bounded collusion, such as those based on public-key encryption
[38] or on LWE [37], the compactness is C(λ, S,B) ≤ poly(λ) · S ·B, which implies that Ci
is bounded by Ci+1 · poly(λ) · w. If we intend to support a total depth d, then unfolding
the reduction, the bound we have is C0 ≤ wd · λO(d). This means that if we wish to keep
the encryption complexity polynomial in λ, we can only allow d = O(1) and w = poly(λ).
Furthermore, we must know w ahead of time in order to instantiate the parameters of the
scheme.

Security. The following theorem captures the security of our resulting scheme. We note
that the assumptions stated in the theorem are all known to be implied by the existence of
any (selectively-secure) general-purpose public-key functional encryption scheme (see Section
2 for formal descriptions of our building blocks and their known instantiations).

I Theorem 4.1. Assuming that (1) FE is semi-adaptively (resp., selectively) secure (2) SKE
has pseudorandom ciphertexts, and (3) PRF is a puncturable pseudorandom function fam-
ily, then HFE is a semi-adaptively-secure (resp., selectively-secure) hierarchical functional
encryption scheme.

Proof. For ease of exposition we focus here on the case where the underlying scheme FE is
semi-adaptively secure. The proof for the case where FE is only selectively secure is identical,
except for requiring the adversary to provide the challenge messages prior to receiving the
public parameters. Let A be a valid probabilistic polynomial-time adversary (as defined
in Section 3). We present a sequence of experiments and upper bound A’s advantage in
distinguishing each two consecutive experiments. The first experiment is the experiment
ExpsemiHFE
HFE,A (λ) and the last experiment is completely independent of the bit b. This enables

ITCS 2017

8:18 Hierarchical Functional Encryption

us to prove that there exists a negligible function neg(·) such that

AdvsemiHFE
HFE,A (λ) def=

∣∣∣∣Pr
[
ExpsemiHFE
HFE,A (λ) = 1

]
− 1

2

∣∣∣∣ ≤ neg(λ)

for all sufficiently large λ ∈ N.

How to read this proof. To read our proof, one starts from the first hybrid and proceeds
in order to the next, each adjacent hybrid is shown to be computationally indistinguishable
from its predecessor. When a loop is encountered, this means that a sequence of hybrids
is now being defined, one hybrid for each “iteration” of the loop. The hybrid defined in
the first iteration needs to be indistinguishable from the last hybrid before the loop, and
all hybrids except the first need to be indistinguishable from the hybrid of the previous
iteration. In a nested loop, each iteration of the external loop represents a generation of
many hybrids, as many as the internal loop generates. In such case, in the first iteration of
the external loop, and the first iteration of the internal loop, the hybrid being defined needs
to be indistinguishable from the one preceding the loop. However, in the next execution
of the external loop, the first iteration of the internal needs to be indistinguishable with
the last iteration of the internal loop that have been carried out in the previous iteration
of the external loop. For example, say that the external loop iterates for i = 1, . . . , S and
the internal loop iterates for j = 1, . . . , T . Then what we prove for H(i,j) is that: H(1,1) is
indistinguishable from the last hybrid before the loop, H(i,1) for i > 1 is indistinguishable
from H(i−1,T), and for i, j > 1 that H(i,j) is indistinguishable from H(i,j−1).

In order to explain the purpose of the different steps in the proof, we also include invari-
ants which are properties of the distribution of the current experiment. The invariant holds
only at that point in the proof where it appears and does not necessarily hold in following
hybrids. An invariant inside a loop holds whenever the flow of the proof reaches that point
in the loop. Namely, going back to our nested loop example from above, an invariant that
appears after the “for i = 1, . . . , S” statement, holds for the experiment immediately preced-
ing the loop, and for all hybrids H(i,T), except H(S,T). An invariant that appears after the
“for j = 1, . . . , T” statement, should hold for the hybrid immediately preceding the loop, as
well as for all H(i,T), except H(S,T).

We advise the reader to read our proof as if it was an execution of a computer program.
We believe that while this proof writing method is still not very widely used, it is quite
beneficial in writing complicated proofs, and will find additional uses. In what follows we
first describe the notation used throughout the proof, and then describe the experiments.

Notation. Let Q = Q(λ) denote a polynomial upper bound on the number of quer-
ies that are made by A in the experiment ExpsemiHFE

HFE,A (λ). We denote these queries by
{(fi, parenti,modei)}i∈[Q] and we also consider an implicit “zeroth” query which generates
the master key pair (msk,mpk) of the scheme. This allows us to define the depth of the ith
query, denoted d(i), s.t. d(0) = 0 and d(i) = d(p(i)) + 1 for i > 0, where we use p(i) as
shorthand for parenti. Thus we can view A’s queries as a tree rooted by the zeroth query,
where each query (fi, parenti,modei) is the child of the query p(i) and has depth d(i) in the
tree.

For any query i ∈ {0, . . . , Q}, we define a function f̃i as follows: f̃0 is the identity function,
and for all i > 0 we define f̃i = fi ◦ f̃p(i). In other words, the ith query (fi, parenti,modei)
generates a delegated key that allows to compute the function f̃i(x) given an encryption of
x. We say that the ith query is observable if f̃i(x∗0) = f̃i(x∗1), and unobservable otherwise.
We note that if the ith query is unobservable then necessarily modei = StoreKey.

Z. Brakerski et al. 8:19

We let (mski,mpki) denote the key pair generated by the challenger while answering the
ith query, and let (msk0,mpk0) be the master key pair (msk,mpk) that is generated by the
setup algorithm. Similarly, we let ti denote the tag that is sampled while answering the ith
query.

We denote by x∗0 and x∗1 the challenge messages that are chosen by A, and by K∗ the
PRF key that is used for computing the challenge ciphertext. We further define K∗0 = K∗,
and for all i > 0 we define K∗i , s∗i , and r∗i as follows: (s∗i , r∗i) = PRF.Eval(K∗p(i), ti), and
K∗i = PRF.Gen(1λ; s∗i). Note that these are exactly the values that are computed by the
ReEnc function produced in the ith query, when evaluated on the challenge ciphertext.

Finally, throughout the proof we find it convenient to denote by $ a fresh value that is
sampled uniformly and independently of all other existing values.

Experiment H0. This is the experiment ExpsemiHFE
HFE,A (λ) (see Section 3).

Experiment H1. This experiment is obtained from the experiment H0 by having the chal-
lenger sample in advance the tags and the key pairs that are used for replying to A’s queries.
In fact, we will sample these values in a redundant manner so that we prepare several such
triplets for each query, and the choice of which triplet to use is determined by the depth of
the query. We thus have the following claim:

Specifically, at the beginning of the experiment, for all i, d ∈ [Q] the challenger samples
t(o)
i,d, t

(u)
i,d ← {0, 1}λ and (mski,d,mpki,d) ← FE.Setup(1λ). Then, the experiment proceeds

exactly as in H1, and whenever the challenger needs to sample ti and (mski,mpki) for
replying to the ith query, it will use ti = t(o)

i,d(i) if i is an observable query, and ti = t(u)
i,d(i)

otherwise. It will further use (mski,mpki) = (mski,d(i),mpki,d(i)).
looking ahead, this experiment allows the challenger to know in advance, for every pos-

sible depth, a polynomial superset of the tags and key pairs that will be produced for reply-
ing to queries of this depth. The view of the adversary in this experiment is distributed
identically to its view in the experiment H0, yielding the following observation:

I Observation 4.2. For all λ ∈ N it holds that

Pr[H0(λ) = 1] = Pr[H1(λ) = 1] .

Experiment H2. This experiment is obtained from the experimentH1 as follows. After the
generation of the tags t(o)

i,d and t(u)
i,d, and before interacting with the adversary, the challenger

checks if any of the values t(o)
i,d or t(u)

i,d for some (i, d) ∈ [Q]2 appears more than once. In such
case the output of the experiment is defined as ⊥, and otherwise the experiment is identical
to the experiment H1. A standard union bound implies that the experiments H1 and H2
differ with probability at most 2(Q+ 1)4 · 2−λ = neg(λ), yielding the following observation:

I Observation 4.3. For all λ ∈ N it holds that

|Pr[H1(λ) = 1]− Pr[H2(λ) = 1]| ≤ 2(Q+ 1)4

2λ .

Experiment H3. This experiment is obtained from the experiment H2 by sampling a
sequence k0, . . . , kQ−1 ← SKE.KG(1λ) of symmetric keys (one for each possible depth –
recall that Q is always an upper bound on the maximal depth), and modifying the symmetric
ciphertext c that is generated by the key-generation algorithm when replying to each query as

ITCS 2017

8:20 Hierarchical Functional Encryption

follows: When replying to the ith query (fi, parenti,modei), instead of sampling c uniformly,
the key-generation algorithm computes

ci = SKE.Enc
(
kd(i)−1, cti; $

)
where cti = FE.Enc(mpki, (f̃i(x∗b),K∗i ,⊥); r∗i) (recall that throughout the proof we find it
convenient to denote by $ a fresh value that is sampled uniformly and independently of all
other existing values).

Note that cti is exactly the same as the “cti” value that is computed in the process of
decrypting the challenge ciphertext using the ith functional key (and is also computed as
an intermediate value when decrypting the challenge ciphertext with any descendant of the
ith key). See the decryption algorithm above.

It thus makes sense to extend our notation and denote the challenge ciphertext by ct0
(as in the decryption algorithm). Note that while ct0 is encrypted with true randomness and
includes a properly generated PRF key, all other cti’s are encrypted using pseudorandomness
and contain PRF keys that were generated pseudorandomly. We further say that cti is
observable if the ith query is an observable query and unobservable otherwise.

To see why the adversary’s view in H3 is indistinguishable from H2, we note that in
H3, the symmetric keys k0, . . . , kQ−1 are used only for generating the ci’s. In other words,
this experiment can be carried out given only access to an encryption oracle SKE.Enc(kd, ·)
for each d ∈ {0, . . . , Q − 1} (instead of explicit access to the actual keys k0, . . . , kQ−1).
This enables us to use the ciphertext pseudorandomness of SKE to prove computational
indistinguishability fromH2, yielding the following claim in a rather straightforward manner:

I Claim 4.4. Assuming that SKE has pseudorandom ciphertexts, there exists a negligible
function neg(·) such that

|Pr[H2(λ) = 1]− Pr[H3(λ) = 1]| ≤ neg(λ)

for all sufficiently large λ ∈ N.

For d = 0, . . . , Q:

I Invariant 4.5. In the previous experiment, it should hold that all ciphertexts cti that
correspond to unobservable queries (i.e., queries for which f̃i(x∗0) 6= f̃i(x∗1)) such that d(i) <
d are of the form FE.Enc(mpki, (⊥,K∗i , kd(i)); $), and all such ciphertext such that d(i) = d

are of the form cti = FE.Enc(mpki, (f̃i(x∗b),K∗i ,⊥); $). Further, if d(i) ≤ d then K∗i =
PRF.Gen(1λ; $). More specifically:

If i is such that d(i) < d and f̃i(x∗0) 6= f̃i(x∗1), then it holds that

cti = FE.Enc
(
mpki,

(
⊥,K∗i , kd(i)

)
; $
)

and K∗i = PRF.Gen(1λ; $).
If i is such that d(i) = d and f̃i(x∗0) 6= f̃i(x∗1), then it holds that

cti = FE.Enc
(
mpki,

(
f̃i(x∗b),K∗i ,⊥

)
; $
)

and K∗i = PRF.Gen(1λ; $).
If i is such that d(i) > d or f̃i(x∗0) = f̃i(x∗1), then it holds that

cti = FE.Enc
(
mpki,

(
f̃i(x∗b),K∗i ,⊥

)
; r∗i
)

and K∗i = PRF.Gen(1λ; s∗i).
We note that this indeed holds for d = 0 in experiment H3.

Z. Brakerski et al. 8:21

For i = 0, . . . , Q:

Experiment H(i,d)
4 . In this experiment, the challenger changes the way cti is computed as

follows. Before generating cti, the challenger checks if both d(i) = d and cti is unobservable
(f̃i(x∗0) 6= f̃i(x∗1)). If both conditions hold then it sets

cti = FE.Enc(mpki, (⊥,K∗i , kd); $) .

Otherwise cti is computed as in the previous experiment.
To see why the adversary’s view in this experiment is indistinguishable from the previous

hybrid, we note that for any child of i, i.e., j such that p(j) = i,

ReEncfj ,tj ,mpkj ,cj (f̃i(x
∗
b),K∗i ,⊥) = ReEncfj ,tj ,mpkj ,cj (⊥,K

∗
i , kd) = ctj .

This is because necessarily d(j) = d + 1 > d and due to Invariant 4.5. Thus, the security
of the (mski,d,mpki,d) key pair guarantees that this hybrid is indistinguishable from the
previous one: Since cti is unobservable, then necessarily the adversary cannot access mski,d
directly, but rather only via further delegation (i.e., via functional keys to ReEncfj ,tj ,mpkj ,cj).
This yields the following claim in rather straightforward manner:

I Claim 4.6. Assuming that FE is semi-adaptively secure, there exists a negligible function
neg(·) such that∣∣∣Pr

[
H(0,0)

4 (λ) = 1
]
− Pr[H3(λ) = 1]

∣∣∣ ≤ neg(λ)

and∣∣∣Pr
[
H(i,d)

4 (λ) = 1
]
− Pr

[
H(i−1,d)

4 (λ) = 1
]∣∣∣ ≤ neg(λ)

for all d ∈ {0, . . . , Q} and i ∈ {1, . . . , Q}, and for all sufficiently large λ ∈ N.

End For i.

I Invariant 4.7. In the previous experiment, it should hold that all ciphertexts cti correspond-
ing to unobservable queries such that d(i) ≤ d are of the form FE.Enc(mpki, (⊥,K∗i , kd(i)); $)
and further K∗i = PRF.Gen(1λ, $).

Recall that our goal is to restore Invariant 4.5 for value (d + 1). To this end, we next
need to replace r∗j and s∗j for all j such that d(j) = d+ 1, with random values (rather than
values that are generated from K∗p(j)).

For j = 0, . . . , Q:

I Invariant 4.8. This is similar to Invariant 4.7, but for all ciphertexts ctj′ corresponding
to unobservable queries such that j′ < j and d(j′) = d + 1 it holds that r∗j′ and s∗j′ had
already been replaced with random.

ITCS 2017

8:22 Hierarchical Functional Encryption

For i = 0, . . . , Q:

Experiment H(i,j,d)
5 . In this hybrid, we again change cti as follows. If cti is unobservable

and d(i) = d, then define K∗i = PRF.Gen(1λ, $) (as before), K~
i = PRF.Punc(K∗i , t

(u)
j,d+1),

yi,j,d+1 = PRF.Eval(K∗i , t
(u)
j,d+1). We now set:

cti = FE.Enc
(

mpki,
(
⊥,
(
K~
i , (t

(u)
j,d+1, yi,j,d+1)

)
, kd(i)

)
; $
)
.

Namely, we replace the PRF key with a punctured key at the point t(u)
j,d+1, and supply the

value at that point8. We note that the functionality of PRF.Eval((K~
i , (t

(u)
j,d+1, yi,j,d+1)), ·)

is identical to PRF.Eval(K∗i , ·). The security of the key pair (mski,d,mpki,d) guarantees the
indistinguishability of this hybrid (again relying on cti being unobservable and thus mski,d
is not given to the adversary). This yields the following claim in rather straightforward
manner:

I Claim 4.9. Assuming that FE is semi-adaptively secure, there exists a negligible function
neg(·) such that∣∣∣Pr

[
H(0,0,d)

5 (λ) = 1
]
− Pr

[
HQ,d4 (λ) = 1

]∣∣∣ ≤ neg(λ)

for all d ∈ {0, . . . , Q}, and∣∣∣Pr
[
H(i,j,d)

5 (λ) = 1
]
− Pr

[
H(i−1,j,d)

5 (λ) = 1
]∣∣∣ ≤ neg(λ)

for all d, j ∈ {0, . . . , Q} and i ∈ {1, . . . , Q}, and for all sufficiently large λ ∈ N.

End For i.

I Invariant 4.10. In the current experiment, it holds that the PRF key for all depth-d
ciphertexts which are unobservable had been punctured at point t(u)

j,d+1, namely at the point
on which it will be evaluated if indeed ctj is of level d+ 1.

For i = 0, . . . , Q:

Experiment H(i,j,d)
6 . In this hybrid, we again change cti in the case where cti is unobserv-

able and d(i) = d. The change from the previous experiment is only that now yi,j,d+1 ← $,
namely sampled randomly. We notice that already in the previous hybrid we never use K∗
for unobservable queries, only the respective K~ and y values. Therefore swapping the y
value to a completely random will be indistinguishable to the adversary by the punctured
PRF property. This yields the following claim in rather straightforward manner:

I Claim 4.11. Assuming that PRF is a puncturable pseudorandom function, there exists a
negligible function neg(·) such that∣∣∣Pr

[
H(0,j,d)

6 (λ) = 1
]
− Pr

[
HQ,j,d5 (λ) = 1

]∣∣∣ ≤ neg(λ)

8 As discussed in Section 2.1, we find it natural to consider an “augmented” evaluation algorithm that
outputs a pre-determined value at the punctured point. That is, the augmented evaluation algorithm is
given an augmented key (K~

i , (t(u)
j,d+1, yi,j,d+1)), where K~

i is punctured at t(u)
j,d+1, and given an input

t it outputs PRF.EvalK~
i

(t) if t 6= t(u)
j,d+1, and it outputs yi,j,d+1 if t = t(u)

j,d+1.

Z. Brakerski et al. 8:23

and∣∣∣Pr
[
H(i,j,d)

6 (λ) = 1
]
− Pr

[
H(i−1,j,d)

6 (λ) = 1
]∣∣∣ ≤ neg(λ)

for all d, j ∈ {0, . . . , Q} and i ∈ {1, . . . , Q}, and for all sufficiently large λ ∈ N.

End For i.

I Invariant 4.12. In the current experiment, it holds that the PRF key for all depth-d
ciphertexts which are unobservable had been punctured at point tj,d+1, and further that the
punctured value had been substituted with random.

Experiment H(j,d)
7 . In this hybrid, we (finally) change the way ctj is generated in the case

where ctj is unobservable and d(j) = d+ 1 (if these conditions don’t hold then we proceed
as in the previous experiment). In particular, we change the way the randomness for ctj
and K∗j is generated. Note that if ctj is unobservable then it must be the case that ctp(j) is
also unobservable (since f̃j = fj ◦ f̃p(j)). In the previous experiment, we had

(s∗j , r∗j) = PRF.Eval
((
K~

p(j), (t
(u)
j,d+1, yp(j),j,d+1)

)
, t(u)
j,d+1

)
.

We now define instead (s′j , r′j) = yp(j),j,d+1. We set K∗j = PRF.Gen(1λ, s′j) and

ctj = FE.Enc
(
mpkj ,

(
f̃j(x∗b),K∗j ,⊥

)
; r′j
)
.

The view of the adversary here remains exactly the same, since (s′j , r′j) = (s∗j , r∗j). However,
conceptually this means that (s∗j , r∗j) are detached from the value that is embedded in ctp(i).
As we will see in the next experiment, we will remove yi,j,d+1 from cti, but (s′j , r′j) will still
be well defined. This yields the following observation:

I Observation 4.13. For all λ ∈ N it holds that

Pr
[
H(j,d)

7 (λ) = 1
]

= Pr
[
HQ,j,d6 (λ) = 1

]
for all d, j ∈ {0, . . . , Q}.

For i = 0, . . . , Q:

Experiment H(i,j,d)
8 . In this hybrid, we again change cti in the case where cti is unobserv-

able and d(i) = d. We will now undo the puncturing of the PRF keys.

cti = FE.Enc
(
mpki,

(
⊥,K∗i , kd(i)

)
; $
)
.

Indistinguishability holds since in all positions except t(u)
j,d+1 the new and old keys, K∗i and(

K~
i , (tj,d+1, yi,j,d+1)

)
are functionally equivalent. Furthermore, the function PRF.Eval is

never evaluated at t(u)
j,d+1 (since if ctj is unobservable then (r′j , s′j) are used instead of (r∗j , s∗j)).

The functional encryption security of (mski,d,mpki,d) therefore implies indistinguishability.
This yields the following claim in rather straightforward manner:

I Claim 4.14. Assuming that FE is semi-adaptively secure, there exists a negligible function
neg(·) such that∣∣∣Pr

[
H(0,j,d)

8 (λ) = 1
]
− Pr

[
Hj,d7 (λ) = 1

]∣∣∣ ≤ neg(λ)

ITCS 2017

8:24 Hierarchical Functional Encryption

for all d, j ∈ {0, . . . , Q}, and∣∣∣Pr
[
H(i,j,d)

8 (λ) = 1
]
− Pr

[
H(i−1,j,d)

8 (λ) = 1
]∣∣∣ ≤ neg(λ)

for all d, j ∈ {0, . . . , Q} and i ∈ {1, . . . , Q}, and for all sufficiently large λ ∈ N.

End For i.
The proof of the following claim is almost identical to that of Claim 4.9 and is therefore

omitted:

I Claim 4.15. Assuming that FE is semi-adaptively secure, there exists a negligible function
neg(·) such that∣∣∣Pr

[
H(Q,j,d)

8 (λ) = 1
]
− Pr

[
H(0,j+1,d)

5 (λ) = 1
]∣∣∣ ≤ neg(λ)

for all d ∈ {0, . . . , Q} and j ∈ {0, . . . , Q− 1}, and for all sufficiently large λ ∈ N.

End For j.
The proof of the following claim is almost identical to that of Claim 4.6 and is therefore

omitted:

I Claim 4.16. Assuming that FE is semi-adaptively secure, there exists a negligible function
neg(·) such that∣∣∣Pr

[
H(Q,Q,d)

8 (λ) = 1
]
− Pr

[
H(0,d+1)

4 (λ) = 1
]∣∣∣ ≤ neg(λ)

for all d ∈ {0, . . . , Q− 1}, and for all sufficiently large λ ∈ N.

End For d.
We now notice that the proof is practically finished, since the last hybrid H(Q,Q,Q)

8 is
completely independent of the bit b. To see this, note that the only values that depend on b
in the experiment are the values f̃i(x∗b) that appear inside the ciphertexts cti (in particular
inside the challenge ciphertext ct∗ = ct0). We first point out that the value f̃i(x∗b) is in
fact independent of b in observable ciphertexts, since by definition f̃i(x∗0) = f̃i(x∗1). As for
unobservable ciphertexts, in H(Q,Q,Q)

8 none of them contains f̃i(x∗b) at all, as this value had
been replaced by ⊥. This yields the following observation:

I Observation 4.17. For all λ ∈ N it holds that

Pr
[
H(Q,Q,Q)

8 (λ) = 1
]

= 1
2 .

We presented a sequence of polynomially-many experiments starting with the experiment
H0 = ExpsemiHFE

HFE,A and ending with the experiment H(Q,Q,Q)
8 which is completely independent

of the bit b. We showed that the output distributions of each two consecutive experiments
are negligibly close, which implies that there exists a negligible function neg(·) such that

AdvsemiHFE
HFE,A (λ) def=

∣∣∣∣Pr
[
ExpsemiHFE
HFE,A (λ) = 1

]
− 1

2

∣∣∣∣
=
∣∣∣Pr [H0(λ) = 1]− Pr

[
H(Q,Q,Q)

8 (λ) = 1
]∣∣∣

≤ neg(λ)

for all sufficiently large λ ∈ N, as required. J

Z. Brakerski et al. 8:25

References

1 Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard
model. In Advances in Cryptology – EUROCRYPT’10, pages 553–572, 2010.

2 Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed dimension
and shorter-ciphertext hierarchical IBE. In Advances in Cryptology – CRYPTO’10, pages
98–115, 2010.

3 Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional
encryption: New perspectives and lower bounds. In Advances in Cryptology – CRYPTO’13,
pages 500–518, 2013.

4 Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry. Differing-
inputs obfuscation and applications. Cryptology ePrint Archive, Report 2013/689, 2013.

5 Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From select-
ive to adaptive security in functional encryption. In Advances in Cryptology – CRYPTO’15,
pages 657–677, 2015.

6 Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact
functional encryption. In Advances in Cryptology – CRYPTO’15, pages 308–326, 2015.

7 Gilad Asharov and Gil Segev. Limits on the power of indistinguishability obfuscation and
functional encryption. In Proceedings of the 56th Annual IEEE Symposium on Foundations
of Computer Science, pages 191–209, 2015.

8 Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. Journal of the
ACM, 59(2):6, 2012.

9 Mihir Bellare and Adam O’Neill. Semantically-secure functional encryption: Possibility
results, impossibility results and the quest for a general definition. In Proceedings of the
12th International Conference on Cryptology and Network Security, pages 218–234, 2013.

10 Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional
encryption. In Proceedings of the 56th Annual IEEE Symposium on Foundations of Com-
puter Science, pages 171–190, 2015.

11 Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity-based encryption
without random oracles. In Advances in Cryptology – EUROCRYPT’04, pages 223–238,
2004.

12 Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with
constant size ciphertext. In Advances in Cryptology – EUROCRYPT’05, pages 440–456,
2005.

13 Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing.
SIAM Journal on Computing, 32(3):586–615, 2003. Preliminary version in Advances in
Cryptology – CRYPTO’01, pages 213–229, 2001.

14 Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev,
Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryp-
tion, arithmetic circuit ABE and compact garbled circuits. In Advances in Cryptology –
EUROCRYPT’14, pages 533–556, 2014.

15 Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and chal-
lenges. In Proceedings of the 8th Theory of Cryptography Conference, pages 253–273, 2011.

16 Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: a new vision for public-
key cryptography. Communications of the ACM, 55(11):56–64, 2012.

17 Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications.
In Advances in Cryptology - ASIACRYPT’13, pages 280–300, 2013.

18 Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption
(without random oracles). In Advances in Cryptology – CRYPTO’06, pages 290–307, 2006.

ITCS 2017

8:26 Hierarchical Functional Encryption

19 Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In Proceed-
ings of the 11th Theory of Cryptography Conference, pages 52–73, 2014.

20 Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom
functions. In Proceedings of the 17th International Conference on Practice and Theory in
Public-Key Cryptography, pages 501–519, 2014.

21 Zvika Brakerski, Ilan Komargodski, and Gil Segev. Multi-input functional encryption in the
private-key setting: Stronger security from weaker assumptions. In Advances in Cryptology
– EUROCRYPT’16, pages 852–880, 2016.

22 Zvika Brakerski and Gil Segev. Function-private functional encryption in the private-key
setting. In Proceedings of the 12th Theory of Cryptography Conference, pages 306–324,
2015.

23 Zvika Brakerski and Gil Segev. Hierarchical functional encryption. Cryptology ePrint
Archive, Report 2015/1011, 2015.

24 David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to
delegate a lattice basis. Journal of Cryptology, 25(4):601–639, 2012.

25 Nishanth Chandran, Vipul Goyal, Aayush Jain, and Amit Sahai. Functional encryption:
Decentralised and delegatable. Cryptology ePrint Archive, Report 2015/1017, 2015.

26 Jie Chen and Hoeteck Wee. Semi-adaptive attribute-based encryption and improved deleg-
ation for Boolean formula. In Proceedings of the 9th International Conference on Security
and Cryptography for Networks, pages 277–297, 2014.

27 Clifford Cocks. An identity based encryption scheme based on quadratic residues. In
Proceedings of the 8th IMA International Conference on Cryptography and Coding, pages
360–363, 2001.

28 Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share conversion, pseudorandom secret-
sharing and applications to secure computation. In Proceedings of the 2nd Theory of Cryp-
tography Conference, pages 342–362, 2005.

29 Angelo De Caro, Vincenzo Iovino, Abhishek Jain, Adam O’Neill, Omer Paneth, and Gi-
useppe Persiano. On the achievability of simulation-based security for functional encryp-
tion. In Advances in Cryptology – CRYPTO’13, pages 519–535, 2013.

30 Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In
Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science,
pages 40–49, 2013.

31 Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the implausibility of
differing-inputs obfuscation and extractable witness encryption with auxiliary input. In
Advances in Cryptology – CRYPTO’14, pages 518–535, 2014.

32 Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Functional encryption without
obfuscation. In Proceedings of the 1th Theory of Cryptography Conference, pages 480–511,
2016.

33 Craig Gentry and Shai Halevi. Hierarchical identity based encryption with polynomially
many levels. In Proceedings of the 6th Theory of Cryptography Conference, pages 437–456,
2009.

34 Craig Gentry and Alice Silverberg. Hierarchical ID-based cryptography. In Advances in
Cryptology – ASIACRYPT’02, pages 548–566, 2002.

35 Oded Goldreich. Foundations of Cryptography – Volume 2: Basic Applications. Cambridge
University Press, 2004.

36 Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
Journal of the ACM, 33(4):792–807, 1986.

Z. Brakerski et al. 8:27

37 Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai
Zeldovich. Reusable garbled circuits and succinct functional encryption. In Proceedings
of the 45th Annual ACM Symposium on Theory of Computing, pages 555–564, 2013.

38 Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with
bounded collusions via multi-party computation. In Advances in Cryptology – CRYPTO’12,
pages 162–179, 2012.

39 Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption
for circuits. In Proceedings of the 45th Annual ACM Symposium on Theory of Computing,
pages 545–554, 2013.

40 Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryption. In Advances
in Cryptology – EUROCRYPT’02, pages 466–481, 2002.

41 Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Del-
egatable pseudorandom functions and applications. In Proceedings of the 20th Annual ACM
Conference on Computer and Communications Security, pages 669–684, 2013.

42 Ilan Komargodski, Gil Segev, and Eylon Yogev. Functional encryption for randomized
functionalities in the private-key setting from minimal assumptions. In Proceedings of the
12th Theory of Cryptography Conference, pages 352–377, 2015.

43 Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Wa-
ters. Fully secure functional encryption: Attribute-based encryption and (hierarchical)
inner product encryption. In Advances in Cryptology – EUROCRYPT’10, pages 62–91,
2010.

44 Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully
secure HIBE with short ciphertexts. In Poceedings of the 7th Theory of Cryptography
Conference, pages 455–479, 2010.

45 Allison B. Lewko and Brent Waters. Unbounded HIBE and attribute-based encryption. In
Advances in Cryptology – EUROCRYPT’11, pages 547–567, 2011.

46 Allison B. Lewko and Brent Waters. Why proving HIBE systems secure is difficult. In
Advances in Cryptology – EUROCRYPT’14, pages 58–76, 2014.

47 Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-key
FHE. In Advances in Cryptology – EUROCRYPT’16, pages 735–763, 2016.

48 Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556, 2010.

49 Amit Sahai and Brent Waters. Slides on functional encryption. Available at http://www.
cs.utexas.edu/~bwaters/presentations/files/functional.ppt, 2008.

50 Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable en-
cryption, and more. In Proceedings of the 46th Annual ACM Symposium on Theory of
Computing, pages 475–484, 2014.

51 Adi Shamir. Identity-based cryptosystems and signature schemes. In Advances in Crypto-
logy – CRYPTO’84, pages 47–53, 1984.

52 Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple
assumptions. In Advances in Cryptology – CRYPTO’09, pages 619–636, 2009.

53 Brent Waters. A punctured programming approach to adaptively secure functional encryp-
tion. In Advances in Cryptology – CRYPTO’15, pages 678–697, 2015.

ITCS 2017

http://www.cs.utexas.edu/~bwaters/presentations/files/functional.ppt
http://www.cs.utexas.edu/~bwaters/presentations/files/functional.ppt

	Introduction
	Our Contributions
	Overview of Our Approach
	The Multi-Authority Setting and an Alternative Hierarchical Scheme
	Related Work
	Paper Organization

	Preliminaries
	Pseudorandom Functions
	Private-Key Encryption with Pseudorandom Ciphertexts
	Public-Key Functional Encryption

	Hierarchical Functional Encryption
	Our Generic Transformation

