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Abstract
For undirected graphs G = (V,E) and G0 = (V0, E0), say that G is a region intersection graph
over G0 if there is a family of connected subsets {Ru ⊆ V0 : u ∈ V } of G0 such that {u, v} ∈
E ⇐⇒ Ru ∩Rv 6= ∅.

We show if G0 excludes the complete graph Kh as a minor for some h ≥ 1, then every region
intersection graph G over G0 with m edges has a balanced separator with at most ch

√
m nodes,

where ch is a constant depending only on h. If G additionally has uniformly bounded vertex
degrees, then such a separator is found by spectral partitioning.

A string graph is the intersection graph of continuous arcs in the plane. String graphs are
precisely region intersection graphs over planar graphs. Thus the preceding result implies that
every string graph with m edges has a balanced separator of size O(

√
m). This bound is optimal,

as it generalizes the planar separator theorem. It confirms a conjecture of Fox and Pach (2010),
and improves over the O(

√
m logm) bound of Matoušek (2013).
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1 Introduction

Consider an undirected graph G0 = (V0, E0). A graph G = (V,E) is said to be a region
intersection graph (rig) over G0 if the vertices of G correspond to connected subsets of
G0 and there is an edge between two vertices of G precisely when those subsets intersect.
Concretely, there is a family of connected subsets {Ru ⊆ V0 : u ∈ V } such that {u, v} ∈
E ⇐⇒ Ru ∩Rv 6= ∅. For succinctness, we will often refer to G as a rig over G0.

Let rig(G0) denote the family of all finite rigs over G0. Prominent examples of such
graphs include the intersection graphs of pathwise-connected regions on a surface (which are
intersection graphs over graphs that can be drawn on that surface).

For instance, string graphs are the intersection graphs of continuous arcs in the plane. It
is easy to see that every finite string graph G is a rig over some planar graph: By a simple
compactness argument, we may assume that every two strings intersect a finite number of
times. Now consider the planar graph G0 whose vertices lie at the intersection points of
strings and with edges between two vertices that are adjacent on a string (see Figure 1).
Then G ∈ rig(G0). It is not too difficult to see that the converse is also true; see Section 4.

To illustrate the non-trivial nature of such objects, we recall that there are string graphs
on n strings that require 2Ω(n) intersections in any such representation [14]. The recognition
problem for string graphs is NP-hard [13]. Decidability of the recognition problem was
established in [25], and membership in NP was proved in [24]. We refer to the recent survey
[22] for more of the background and history behind string graphs.

Even when G0 is planar, the rigs over G0 can be dense: Every complete graph is a rig
over some planar graph (in particular, every complete graph is a string graph). It has been
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1:2 Separators in Region Intersection Graphs

Figure 1 A string graph as a rig over a planar graph.

conjectured by Fox and Pach [5] that every m-edge string graph has a balanced separator with
O(
√
m) nodes. Fox and Pach proved that such graphs have separators of size O(m3/4

√
logm)

and presented a number of applications of their separator theorem. Matoušek [21] obtained
a near-optimal bound of O(

√
m logm). In the present work, we confirm the conjecture of

Fox and Pach, and generalize the result to include all rigs over graphs that exclude a fixed
minor. This extended abstract contains mostly theorem statements; for detailed proofs and
further arguments, we refer to the full paper [15].

I Theorem 1. If G ∈ rig(G0) and G0 excludes Kh as a minor, then G has a 2
3 -balanced

separator of size at most ch
√
m where m is the number of edges in G. Moreover, one has the

estimate ch ≤ O(h3
√

log h).

In the preceding statement, an ε-balanced separator of G = (V,E) is a subset S ⊆ V

such that in the induced graph G[V \ S], every connected component contains at most ε|V |
vertices.

The proof of Theorem 1 is constructive, as it is based on solving and rounding a linear
program; it yields a polynomial-time algorithm for constructing the claimed separator. In
the case when there is a bound on the maximum degree of G, one can use the well-known
spectral bisection algorithm (see Section 1.5).

Since planar graphs exclude K5 as a minor, Theorem 1 implies that m-edge string graphs
have O(

√
m)-node balanced separators. Since the graphs that can be drawn on any compact

surface of genus g exclude a Kh minor for h ≤ O(
√
g + 1), Theorem 1 also applies to string

graphs over any fixed compact surface.
In addition, it implies the Alon-Seymour-Thomas [1] separator theorem1 for graphs

excluding a fixed minor, for the following reason. Let us define the subdivision of a graph G
to be the graph Ġ obtained by subdividing every edge of G into a path of length two. Then
every graph G is a rig over Ġ, and it is not hard to see that for h ≥ 1, G has a Kh minor if
and only if Ġ has a Kh minor.

1.1 Applications in topological graph theory
We mention two applications of Theorem 1 in graph theory. In [6], the authors present
some applications of separator theorems for string graphs. In two cases, the tight bound
for separators leads to tight bounds for other problems. The next two theorems confirm
conjectures of Fox and Pach; as proved in [6], they follow from Theorem 1. Both results are
tight up to a constant factor.

1 Note that Theorem 1 is quantitatively weaker in the sense that [1] shows the existence of separators
with O(h3/2√

n) vertices. Since every Kh-minor-free graph has at most O(nh
√

log h) edges [12, 27], our
bound is O(h7/2(log h)3/4√

n).
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I Theorem 2. There is a constant c > 0 such that for every t ≥ 1, it holds that every
Kt,t-free string graph on n vertices has at most cnt(log t) edges.

A topological graph is a graph drawn in the plane so that its vertices are represented by
points and its edges by curves connecting the corresponding pairs of points.

I Theorem 3. In every topological graph with n vertices and m ≥ 4n edges, there are two
disjoint sets, each of cardinality

Ω
(

m2

n2 log n
m

)
(1)

so that every edge in one set crosses all edges in the other.

This improves over the bound of Ω
(

m2

n2(log n
m )c

)
for some c > 0 proved in [7], where the

authors also show that the bound (1) is tight. Before we conclude this section, let us justify
the observation made earlier.

I Lemma 4. Finite string graphs are precisely finite region intersection graphs over planar
graphs.

Proof. We have already argued that string graphs are planar rigs. Consider now a planar
graph G0 = (V0, E0) and a finite graph G = (V,E) such that G ∈ rig(G0). Let {Ru ⊆ V0 :
u ∈ V } be a representation of G as a rig over G0.

Since G is finite, we may assume that each region Ru is finite. To see this, for v ∈ V0, let
its type be the set T (v) = {u ∈ V : v ∈ Ru}. Then since G is finite, there are only finitely
many types. For any region Ru ⊆ V0, let R̃u be a finite set of vertices that exhausts every
type in Ru, and let R̂u be a finite spanning tree of R̃u in the induced graph G0[Ru]. Then
the regions {R̂u : u ∈ V } are finite and connected, and also form a representation of G as a
rig over G0.

When each region Ru is finite, we may assume also that G0 is finite. Now take a planar
drawing of G0 in R2 where the edges of G0 are drawn as continuous arcs, and for every
u ∈ V , let Tu ⊆ R2 be the drawing of the spanning tree of Ru. Each Tu can be represented
by a string (simply trace the tree using an in-order traversal that begins and ends at some
fixed node), and thus G is a string graph. J

1.2 Balanced separators and extremal spread
Since complete graphs are string graphs, we do not have access to topological methods based
on the exclusion of minors. Instead, we highlight a more delicate structural theory. The
following fact is an exercise.

Fact: If Ġ is a string graph, then G is planar.

More generally, we recall that H is a minor of G if H can be obtained from G by a
sequence of edge contractions, edge deletions, and vertex deletions. If H can be obtained
using only edge contractions and vertex deletions, we say that H is a strict minor of G.

I Lemma 5. If G ∈ rig(G0) and Ḣ is a strict minor of G, then H is a minor of G0.

This topological structure of (forbidden) strict minors inG interacts nicely with “conformal
geometry” on G. Consider the family of all pseudo-metric spaces that arise from a finite
graph G by assigning non-negative lengths to its edges and taking the induced shortest path

ITCS 2017
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distance. Certainly if we add an edge to G, the family of such spaces can only grow (since
by giving the edge length equal to the diameter of the space, we effectively remove it from
consideration). In particular, if G = Kn is the complete graph on n vertices, then every
n-point metric space is a path metric on G.

A significant tool will be the study of extremal conformal metrics on a graph G. Unlike
in the edge-weighted case, the family of path distances coming from conformal metrics can
be well-behaved even if G contains arbitrarily large complete graph minors. As a simple
example, let KN denote the complete graph on countably many vertices. Then every distance
arising from a conformal metric on KN is bi-Lipschitz to an ultrametric.

1.3 Vertex expansion and observable spread
Fix a graph G = (VG, EG) ∈ rig(G0) with n = |VG| and m = |EG|. Since the family rig(G0)
is closed under taking induced subgraphs, a standard reduction allows us to focus on finding
a subset U ⊆ VG with small isoperimetric ratio: |∂U |

|U | .
√

m
n , where

∂U = {v ∈ U : EG(v, VG \ U) 6= ∅} ,

and EG(v, VG \ U) is the set of edges between v and vertices outside U . Also define the
interior U◦ = U \ ∂U .

Let us define the vertex expansion constant of G as

φG = min
{
|∂U |
|U |

: ∅ 6= U ⊆ VG, |U◦| ≤
|VG|

2

}
. (2)

In [4], it is shown that this quantity is related to the concentration function (in the sense of
Lévy and Milman; see also Gromov’s observable diameter [8]) of extremal conformal metrics
on G .

For a finite metric space (X,dist), we define the spread of X as the quantity

s(X,dist) = 1
|X|2

∑
x,y∈X

dist(x, y) .

Define the observable spread of X by

sobs(X,dist) = sup
f :X→R

 1
|X|2

∑
x,y∈X

|f(x)− f(y)| : f is 1-Lipschitz

 . (3)

I Remark. We remark on the terminology: In general, it is difficult to “view” a large metric
space all at once; this holds both conceptually and from an algorithmic standpoint. If one
thinks of Lipschitz maps f : X → R as “observations” then the observable spread captures
how much of the spread can be “seen.”

We then define the L1-extremal observable spread of G as

s̄obs(G) = sup
ω:VG→R+

{
sobs(VG, distω) : ‖ω‖L1(VG) ≤ 1

}
, (4)

where ‖ω‖L1(VG) := 1
|VG|

∑
v∈VG

ω(v). We recall the following theorem from [4] that relates
expansion to the observable spread.

I Theorem 6 ([4]). For every finite graph G,

1
2 s̄obs(G) ≤ 1

φG
≤ 3s̄obs(G) .
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I Example 7. If G is the subgraph of the lattice Zd on the vertex set {0, 1, . . . , L}d, then
φG � 1/L and s̄(G) � L. This can be achieved by taking ω ≡ 1 and defining f : VG → R by
f(x) = x1.

In light of Theorem 6, to prove Theorem 1, it suffices to give a lower bound on s̄obs(G).
It is natural to compare this quantity to the L1-extremal spread of G:

s̄(G) := max

 1
|VG|2

∑
u,v∈VG

distω(u, v) : ‖ω‖L1(VG) ≤ 1

 . (5)

Let us examine these two notions for planar graphs using the theory of circle packings.

I Example 8 (Circle packings). Suppose that G is a finite planar graph. The Koebe-
Andreev-Thurston circle packing theorem asserts that G is the tangency graph of a family
{Dv : v ∈ VG} of circles on the unit sphere S2 ⊆ R3. Let {cv : v ∈ VG} ⊆ S2 and
{rv > 0 : v ∈ VG} be the centers and radii of the circles, respectively. An argument of
Spielman and Teng [26] (see also Hersch [9] for the analogous result for conformal mappings)
shows that one can take

∑
v∈VG

cv = 0.
If we define ω(v) = rv for v ∈ VG, then distω ≥ distS2 ≥ distR3 on the centers {cv : v ∈ VG}.

(The latter two distances are the geodesic distance on S2 and the Euclidean distance on R3,
respectively).

Using the fact that
∑

v∈VG
cv = 0, we have∑

u,v∈VG

‖cu − cv‖22 = 2n
∑

u∈VG

‖cv‖2 = 2n2 . (6)

This yields∑
u,v∈VG

distω(u, v) ≥
∑

u,v∈VG

‖cu − cv‖ ≥
n2

2 .

Moreover,

‖ω‖L1(VG) ≤ ‖ω‖L2(VG) =
√

1
n

∑
v∈VG

r2
v ≤

√
vol(S2)
πn

=
√

4
n
.

It follows that s̄(G) ≥
√

n
4 .

Observe that the three coordinate projections R3 → R are all Lipschitz with respect to
distω, and one of them contributes at least a 1/3 fraction to the sum (6). We conclude that
s̄obs(G) ≥

√
n

12 . Combined with Theorem 6, this yields a proof of the Lipton-Tarjan separator
theorem [18]. Similar proofs of the separator theorem based on circle packings are known
(see [23]), and this one is not new (certainly it was known to the authors of [26]).

We will prove Theorem 1 in two steps: By first giving a lower bound s̄(G) & n/
√
m and

then establishing s̄obs(G) & s̄(G).

For the first step, we follow [21, 4, 2]. The optimization (5) is a linear program, and
the dual optimization is a maximum multi-flow problem in G. Matoušek shows that a
low-congestion multi-flow can be used to draw the complete graph in the plane with few edge
crossings. Since this is impossible by a simple double-counting argument, one concludes that
there is no low-congestion flow, providing a lower bound on s̄(G) via LP duality. We extend
this argument to rigs over Kh-minor-free graphs using the flow crossing framework of [2].

ITCS 2017



1:6 Separators in Region Intersection Graphs

1.4 Spread vs. observable spread
Our major departure from [21] comes in the second step: Rounding a fractional separator
to an integral separator by establishing that s̄obs(G) ≥ Ch · s̄(G) when G is a rig over a
Kh-minor-free graph. Matoušek used the following result that holds for any metric space. It
follows easily from the methods of [3] or [17] (see also [20, Ch. 15]).

I Theorem 9. For any finite metric space (X, d) with |X| ≥ 2, it holds that

sobs(X, d) ≥ s(X, d)
O(log |X|) .

In particular, for any graph G on n ≥ 2 vertices,

s̄obs(G) ≥ s̄(G)
O(logn) .

Instead of using the preceding result, we employ the graph partitioning method of Klein,
Plotkin, and Rao [11]. Those authors present an iterative process for repeatedly partitioning
a metric graph G until the diameter of the remaining components is bounded. If the
partitioning process fails, they construct a Kh minor in G.

Since rigs over Kh-minor-free graphs do not necessarily exclude any minors, we need to
construct a different sort of forbidden structure. This is the role that Lemma 5 plays in [15].
In order for the argument to work, it is essential that we construct induced partitions: We
remove a subset of the vertices which induces a partitioning of the remainder into connected
components. After constructing a suitable random partition of G, standard methods from
metric embedding theory allow us to conclude

1.5 Eigenvalues and L2-extremal spread
The methods presented here can be used to control eigenvalues of the discrete Laplacian
on rigs. Consider the linear space RVG = {f : VG → R}. Let LG : RVG → RVG be the
symmetric, positive semi-definite linear operator given by

LGf(v) =
∑

u:{u,v}∈EG

(f(v)− f(u)) .

Let 0 = λ0(G) ≤ λ1(G) ≤ · · · ≤ λ|VG|−1(G) denote the spectrum of LG.
Define the Lp-extremal spread of G as

s̄p(G) = max
ω:VG→R+

 1
|VG|2

∑
u,v∈VG

distω(u, v) : ‖ω‖Lp(VG) ≤ 1

 . (7)

In [2], the L2-extremal spread is used to give upper bounds on the first non-trivial
eigenvalue of graphs that exclude a fixed minor. In [10], a stronger property of conformal
metrics is used to bound the higher eigenvalues as well. Roughly speaking, to control the
kth eigenvalue, one requires a conformal metric ω : VG → R+ such that the spread on every
subset of size ≥ |VG|/k remains large. Combining their main theorems with our methods
yields the following.

I Theorem 10. Suppose that G ∈ rig(G0) and G0 excludes Kh as a minor for some h ≥ 3.
If dmax is the maximum degree of G, then for any k = 1, 2, . . . , |VG| − 1, it holds that

λk(G) ≤ O(d2
maxh

6 log h) k

|VG|
.
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In particular, the bound on λ1(G) shows that if dmax(G) ≤ O(1), then recursive spectral
partitioning (see [26]) finds an O(

√
n)-vertex balanced separator in G.

1.6 Additional applications
Treewidth approximations. Bounding s̄obs(G) for rigs over Kh-minor-free graphs leads to
some additional applications. Combined with the rounding algorithm implicit in Theorem 6
(and explicit in [4]), this yields an O(h2)-approximation algorithms for the vertex uniform
Sparsest Cut problem. In particular, it follows that if G ∈ rig(G0) and G0 excludes Kh as a
minor, then there is a polynomial-time algorithm that constructs a tree decomposition of
G with treewidth O(h2tw(G)), where tw(G) is the treewidth of G. This result appears new
even for string graphs. We refer to [4].

Lipschitz extension. Our results on padded decomposability of conformal metrics on string
graphs combine with the Lipschitz extension theory of [16] to show the following. Suppose
that (G,ω) is a conformal graph, where G is a rig over some Kh-minor free graph. Then
for every Banach space Z, subset S ⊆ VG, and L-Lipschitz mapping f : S → Z, there is an
O(h2L)-Lipschitz extension f̃ : VG → Z with f̃ |S = f . See [19] for applications to flow and
cut sparsifiers in such graphs.

Acknowledgements. The author thanks Noga Alon, Nati Linial, and Laci Lovász for helpful
discussions, Janos Pach for emphasizing Jirka’s near-optimal bound for separators in string
graphs, and the organizers of the “Mathematics of Jiří Matoušek” conference, where much of
this work was carried out.
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