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Abstract
Several well-studied models of access to data samples, including statistical queries, local differen-
tial privacy and low-communication algorithms rely on queries that provide information about a
function of a single sample. (For example, a statistical query (SQ) gives an estimate of Ex∼D[q(x)]
for any choice of the query function q : X → R, where D is an unknown data distribution.) Yet
some data analysis algorithms rely on properties of functions that depend on multiple samples.
Such algorithms would be naturally implemented using k-wise queries each of which is specified
by a function q : Xk → R. Hence it is natural to ask whether algorithms using k-wise queries
can solve learning problems more efficiently and by how much.

Blum, Kalai, Wasserman [9] showed that for any weak PAC learning problem over a fixed
distribution, the complexity of learning with k-wise SQs is smaller than the (unary) SQ complexity
by a factor of at most 2k. We show that for more general problems over distributions the picture
is substantially richer. For every k, the complexity of distribution-independent PAC learning with
k-wise queries can be exponentially larger than learning with (k+ 1)-wise queries. We then give
two approaches for simulating a k-wise query using unary queries. The first approach exploits the
structure of the problem that needs to be solved. It generalizes and strengthens (exponentially)
the results of Blum et al. [9]. It allows us to derive strong lower bounds for learning DNF
formulas and stochastic constraint satisfaction problems that hold against algorithms using k-
wise queries. The second approach exploits the k-party communication complexity of the k-wise
query function.
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1 Introduction

In this paper, we consider several well-studied models of learning from i.i.d. samples that
restrict the algorithm’s access to samples to evaluation of functions of an individual sample.
The primary model of interest is the statistical query model introduced by Kearns [31] as a
restriction of Valiant’s PAC learning model [39]. The SQ model allows the learning algorithm
to access the data only via statistical queries, which are estimates of the expectation of
any function of labeled examples with respect to the input distribution D. More precisely,
if the domain of the functions is Z, then a statistical query is specified by a function
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41:2 On the Power of Learning from k-Wise Queries

φ : Z × {±1} → [−1, 1] and by a tolerance parameter τ . Given φ and τ , the statistical query
oracle returns a value v which satisfies |v − E(z,b)∼D[φ(z, b)]| ≤ τ .

The SQ model is known to be closely-related to several other models and concepts: linear
statistical functionals [41], learning with a distance oracle [5], approximate counting (or
linear) queries extensively studied in differential privacy (e.g., [16, 7, 20, 34]), local differential
privacy [30], evolvability [40, 23], and algorithms that extract a small amount of information
from each sample [4, 26, 28, 36]. This allows to easily extend the discussion in the context of
the SQ model to these related models and we will formally state several such corollaries.

Most standard algorithmic approaches used in learning theory are known to be imple-
mentable using SQs (e.g., [8, 17, 7, 11, 28, 3, 27]) leading to numerous theoretical (e.g.,
[2, 14, 19]) and practical (e.g., [11, 35, 38, 18]) applications. SQ algorithms have also been
recently studied outside the context of learning theory [26, 28, 27]. In this case we denote
the domain of data samples by X.

Another reason for the study of SQ algorithms is that it is possible to prove information-
theoretic lower bounds on the complexity of any SQ algorithm that solves a given problem.
Given that a large number of algorithmic approaches to problems defined over data sampled
i.i.d. from some distribution can be implemented using statistical queries, this provides
a strong and unconditional evidence of the problem’s hardness. For a number of central
problems in learning theory and complexity theory, unconditional lower bounds for SQ
algorithms are known that closely match the known computational complexity upper bounds
for those problems (e.g. [6, 26, 28, 12, 15]).

A natural strengthening of the SQ model (and other related models) is to allow function
over k-tuples of samples instead of a single sample. That is, for a k-ary query function
φ : Xk → [−1, 1], the algorithm can obtain an estimate of Ex1,...,xk∼D[φ(x1, . . . , xk)]. It
can be seen as interpolating between the power of algorithms that can see all the samples
at once and those that process a single sample at a time. While most algorithms can be
implemented using standard unary queries, some algorithms are known to require such
more powerful queries. The most well-known example is Gaussian elimination over Fn2
that is used for learning parity functions. Standard hardness amplification techniques rely
on mapping examples of a function f(z) to examples of a function g(f(z1), . . . , f(zk)) (for
example [10, 22]). Implementing such reduction requires k-wise queries and, consequently,
to obtain a lower bound for solving an amplified problem with unary queries one needs a
lower bound against solving the original problem with k-wise queries. A simple example
of 2-wise statistical query is collision probability Prx1,x2∼D[x1 = x2] that is used in several
distribution property testing algorithms.

1.1 Previous work
Blum, Kalai and Wasserman [9] introduced and studied the power of k-wise SQs in the
context of weak distribution-specific PAC learning: that is the learning algorithm observes
pairs (z, b), where z is chosen randomly from some fixed and known distribution P over Z
and b = f(z) for some unknown function f from a class of functions C. They showed that if
a class of functions C can be learned with error 1/2− λ relative to distribution P using q
k-wise SQs of tolerance τ then it can be learned with error max{1/2− λ, 1/2− τ/2k} using
O(q · 2k) unary SQs of tolerance τ/2k.

More recently, Steinhardt et al. [36] considered k-wise queries in the b-bit sampling model
in which for any query function φ : Xk → {0, 1}b an algorithm get the value φ(x1, . . . , xk)
for x1, . . . , xk drawn randomly and independently from D (it is referred to as one-way
communication model in their work). They give a general technique for proving lower bounds
on the number of such queries that are required to solve a given problem.
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1.2 Our results
In this work, we study the relationship between the power of k-wise queries and unary queries
for arbitrary problems in which the input is determined by some unknown input distribution
D that belongs a (known) family of distributions D over domain X.

1.2.1 Separation for distribution-independent learning
We first demonstrate that for distribution-independent PAC learning (k + 1)-wise queries
are exponentially stronger than k-wise queries. We say that the k-wise SQ complexity of a
certain problem is m if m is the smallest such that there exists an algorithm that solves the
problem using m k-wise SQs of tolerance 1/m.

I Theorem 1. (Informal) For every positive integer k and any prime number p, there is
a concept class C of Boolean functions defined over a domain of size pk+1 such that the
(k + 1)-wise SQ complexity of distribution-independent PAC learning C with is Ok(log p)
whereas the k-wise SQ complexity of distribution-independent PAC learning of C is Ωk(p1/4).

The class of functions we use consists of all indicator functions of k-dimensional affine
subspaces of Fk+1

p . Our lower bound is a generalization of the lower bound for unary SQs in
[25] (that corresponds to k = 1 case of the lower bound). A simple but important observation
that allows us to easily adapt the techniques from earlier works on SQs to the k-wise case is
that a k-wise SQ for an input distribution D ∈ D are equivalent to unary SQ for a product
distribution Dk.

The upper bound relies on the ability to find the affine subspace given k + 1 positively
labeled and linearly independent points in Fk+1

p . Unfortunately, for general distributions
the probability of observing such a set of points can be arbitrarily small. Nevertheless, we
argue that there will exist a unique lower-dimensional affine subspace that contains enough
probability mass of all the positive points in this case. This upper bound essentially implies
that given k-wise queries one can solve problems that require Gaussian elimination over a
system of k equations.

1.2.2 Reduction for flat D
The separation in Theorem 1 relies on using an unrestricted class of distributions D. We
now prove that if D is “flat" relative to some “central" distribution D̄ then one can upper
bound the power of k-wise queries in terms of unary queries.

I Definition 1.1 (Flat class of distributions). Let D be a set of distributions over X, and D̄
a distribution over X. For γ ≥ 1 we say that D is γ-flat if there exists some distribution
D̄ over X such that for all D ∈ D and all measurable subsets E ⊆ X, we have that
Prx∼D[x ∈ E] ≤ γ · Prx∼D̄[x ∈ E].

We now state our upper bound for flat classes of distributions, where we use STAT(k)
D (τ)

to refer to the oracle that answers k-wise SQs for D with tolerance τ .

I Theorem 2. Let γ ≥ 1, τ > 0 and k be any positive integer. Let X be a domain and D
a γ-flat class of distributions over X. There exists a randomized algorithm that given any
δ > 0 and a k-ary function φ : Xk → [−1, 1] estimates Dk[φ] within τ for every (unknown)
D ∈ D with success probability at least 1− δ using

Õ

(
γk−1 · k3

τ3 · log(1/δ)
)

ITCS 2017
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queries to STAT(1)
D (τ/(6 · k)).

To prove this result, we use a recent general characterization of SQ complexity [25]. This
characterization reduces the problem of estimating Dk[φ] to the problem of distinguishing
between Dk and Dk

1 for every D ∈ D and some fixed D1. We show that when solving
this problem, any k-wise query can be replaced by a randomly chosen set of unary queries.
Finding these queries requires drawing samples from Dk−1. As we do not know D, we use D̄
instead incurring the γk−1 overhead in sampling. In Section 4 we show that weaker notions
of “flatness" based on different notions of divergence between distributions can also be used
in this reduction.

It is easy to see that, when PAC learning C with respect to a fixed distribution P over Z,
the set of input distributions is 2-flat (relative to the distribution that is equal to P on Z
and gives equal weight 1/2 to each label). Therefore, our result generalizes the results in
[9]. More importantly, the tolerance in our upper bound scales linearly with k rather than
exponentially (namely, τ/2k).

This result can be used to obtain lower bounds against k-wise SQs algorithms from lower
bounds against unary SQ algorithms. In particular, it can be used to rule out reductions
that require looking at k points of the original problem instance to obtain each point of the
new problem instance. As an application, we obtain exponential lower bounds for solving
constraint stochastic satisfaction problems and DNF learning by k-wise SQ algorithm with
k = n1−α for any constant α > 0 from lower bounds for CSPs given in [28]. We state the
result for learning DNF here. Definitions and the lower bound for CSPs can be found in
Section 4.3.

I Theorem 3. For any constant α > 0 (independent of n), there exists a constant β > 0
such that any algorithm that learns DNF formulas of size n with error < 1/2− n−β logn and
success probability at least 2/3 requires at least 2n1−α calls to STAT(n1−α)

D (n−β logn).

This lower bound is based on a simple and direct reduction from solving the stochastic CSP
that arises in Goldreich’s proposed PRG [29] to learning DNF that is of independent interest
(see Lemma 15). For comparison, the standard SQ lower bound for learning polynomial size
DNF [6] relies on hardness of learning parities of size logn over the uniform distribution. Yet,
parities of size logn can be easily learned from (log2 n)-wise statistical queries (since solving
a system of log2 n linear equations will uniquely identify a logn-sparse parity function).
Hence our lower bound holds against qualitatively stronger algorithms. Our lower bound
is also exponential in the number of queries whereas the known argument implies only a
quasipolynomial lower bound1.

1.2.3 Reduction for low-communication queries
Finally, we point out that k-wise queries that require little information about each of the
inputs can also be simulated using unary queries. This result is a simple corollary of the
recent work of Steinhardt et al. [36] who show that any computation that extracts at most b
bits from each of the samples (not necessarily at once) can be simulated using unary SQs.

I Theorem 4. Let φ : Xk → {±1} be a function, and assume that φ has k-party public-coin
randomized communication complexity of b bits per party with success probability 2/3. Then,

1 We remark that an exponential lower bound on the number of queries has not been previously stated
even for unary SQs. The unary version can be derived from known results as explained in Section 4.3.
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there exists a randomized algorithm that, with probability at least 1−δ, estimates Ex∼Dk [φ(x)]
within τ using O(b · k · log(1/δ)/τ2) queries to STAT(1)

D (τ ′) for some τ ′ = τO(b)/k.

As a simple application of Theorem 4, we show a unary SQ algorithm that estimates the
collision probability of an unknown distribution D within τ using 1/τ2 queries STAT(1)

D (τO(1)).
The details appear in Section 5.

1.2.4 Corollaries for related models
Our separation result and reductions imply similar results for k-wise versions of two well-
studied learning models: local differential privacy and the b-bit sampling model.

Local differentially private algorithms [30] (also referred to as randomized response) are
differentially private algorithms in which each sample goes through a differentially private
transformation chosen by the analyst. This model is the focus of recent privacy preserving
industrial applications by Google [21] and Apple. We define a k-wise version of this model
in which analyst’s differentially private transformations are applied to k-tuples of samples.
This model interpolates naturally between the usual (or global) differential privacy and the
local model.

Kasiviswanathan et al. [30] showed that a concept class is learnable by a local differentially
private algorithm if and only if it is learnable in the SQ model. Hence up to polynomial factors
the models are equivalent (naturally, such polynomial factors are important for applications
but here we focus only on the high-level relationships between the models). This result
also implies that k-local differentially private algorithms (formally defined in Section 6.1)
are equivalent to k-wise SQ algorithms (up to a polynomial blow-up in the complexity).
Theorem 1 then implies an exponential separation between k-wise and (k + 1)-wise local
differentially private algorithms (see Corollary 21 for details). It can be seen as a substantial
strengthening of a separation between the local model and the global one also given in [30].
The reductions in Theorem 2 and Theorem 4 imply two approaches for simulating k-local
differentially private algorithms using 1-local algorithms.

The SQ model is also known to be equivalent (up to a factor polynomial in 2b) to the
b-bit sampling model introduced by Ben-David and Dichterman [4] and studied more recently
in [26, 28, 43, 37, 36]. Lower bounds for the k-wise version of this model are given in [43, 36].
Our results can be easily translated to this model as well. We provide additional details in
Section 6.

2 Preliminaries

For any distribution D over a domain X and any positive integer k, we denote by Dk the
distribution over Xk obtained by drawing k i.i.d. samples from D. For a distribution D over
a domain X and a function φ : X → R, we denote D[φ] .= Ex∼D[φ(x)].

Next, we formally define the k-wise SQ oracle.

I Definition 2.1. Let D be a distribution over a domain X and τ > 0. A k-wise statistical
query oracle STAT(k)

D (τ) is an oracle that given as input any function φ : Xk → [−1,+1],
returns some value v such that |v − Ex∼Dk [φ(x)]| ≤ τ .

We say that a k-wise SQ algorithm is given access to STAT(k)(τ), if for every when the
algorithm is given access to STAT(k)

D (τ), where D is the input distribution. We note that for
k = 1, Definition 2.1 reduces to the usual definition of an SQ oracle that was first introduced
by Kearns [31]. The k-wise SQ complexity of solving a problem with access to STAT(k)(τ)

ITCS 2017
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is the minimum number of queries q for which exists a k-wise SQ algorithm with access to
STAT(k)(τ) that solves the problem using at most q queries. Our discussion and results can
also be easily extended to the stronger VSTAT oracle defined in [26] and to more general
real-valued queries using the reductions in [24].

The PAC learning [39] is defined as follows.

I Definition 2.2. For a class C of Boolean-valued functions over a domain Z, a PAC learning
algorithm for C is an algorithm that for every P distribution over Z and f ∈ C, given an
error parameter ε > 0, failure probability δ > 0 and access to i.i.d. labeled examples of the
form (x, f(x)) where x ∼ P , outputs a hypothesis function h that, with probability at least
1− δ, satisfies Prx∼P [h(x) 6= f(x)] ≤ ε.

We next define one-vs-many decision problems, which will be used in the proofs in our
Section 3 and Section 4.

I Definition 2.3 (Decision problem B(D, D0)). Let D be a set of distributions and D0 a
reference distribution over a set X. We denote by B(D, D0) the decision problem where we
are given access to a distribution D ∈ D ∪ {D0} and wish to distinguish whether D ∈ D or
D = D0.

3 Separation of (k + 1)-wise from k-wise queries

We start by describing the concept class C that we use to prove Theorem 1. Let ` and k be
positive integers with ` ≥ k + 1. The domain will be F`p. For every a = (a1, . . . , a`) ∈ F`p, we
consider the hyperplane

Hypa
.= {z = (z1, . . . , z`) ∈ F`p : z` = a1z1 + · · ·+ a`−1z`−1 + a`}.

We then define the Boolean-valued function fa : F`p → {±1} to be the indicator function of
the subset Hypa ⊆ F`p, i.e., for every z ∈ F`p,

fa(z) =
{

+1 if z ∈ Hypa,
−1 otherwise.

Then, we will consider the concept classes C`
.= {fa : a ∈ F`p}. We denote C .= Ck+1. We

start by stating our upper bound on the (k + 1)-wise SQ complexity of the distribution-
independent PAC learning of Ck+1.

I Lemma 3.1 ((k + 1)-wise upper bound). Let p be a prime number and k be a positive
integer. There exists a distribution-independent PAC learning algorithm for Ck+1 that makes
at most t · log(1/ε) queries to STAT(k+1)(ε/t), for some t = Ok(log p).

We next state our lower bound on the k-wise SQ complexity of the same tasks considered
in Lemma 3.1.

I Lemma 3.2 (k-wise lower bound). Let p be a prime number and `, k be positive integers with
` ≥ k+ 1 and k = O(p). There exists t = Ω

(
p(`−k)/4) such that any distribution-independent

PAC learning alogrithm for C` with error at most 1/2−2/t that is given access to STAT(k)(1/t)
needs at least t queries.

Note that Lemma 3.1 and Lemma 3.2 imply Theorem 1.
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3.1 Upper bound
3.1.1 Notation
We first introduce some notation that will be useful in the description of our algorithm. For
any matrix M with entries in the finite field Fp, we denote by rk(M) the rank of M over
Fp. Let (a1, . . . , ak+1) ∈ Fk+1

p be the unknown vector that defines fa and P be the unknown
distribution over tuples (z1, . . . , zk+1) ∈ Fk+1

p .
Note that Hypa is an affine subspace of Fk+1

p . To simplify our treatment of affine subspaces,
we embed the points of Fk+1

p into Fk+2
p by mapping each z ∈ Fk+1

p to (z, 1). This embedding
maps every affine subspace V of Fk+1

p to a linear subspace W of Fk+2
p , namely the span of

the image of V under our embedding. Note that this mapping is one-to-one and allows us to
easily recover V from W as V = {z ∈ Fk+1

p | (z, 1) ∈W}. Hence given k + 1 examples(
(z1,1, . . . , z1,k+1), b1

)
,
(
(z2,1, . . . , z2,k+1), b2

)
, . . . ,

(
(zk+1,1, . . . , zk+1,k+1), bk+1

)
we define the matrix:

Z
.=


z1,1 z1,2 · z1,k+1 1
z2,1 z2,2 · z2,k+1 1
· · · · ·
· · · · ·

zk+1,1 zk+1,2 · zk+1,k+1 1

 . (1)

For ` ∈ [k + 1] we also denote by Z` the matrix that consists of the top ` rows of Z. Further,
for a (k+ 1)-wise query function φ

(
(z1, b1), . . . , (zk+1, bk+1)

)
, we use Z to refer to the matrix

obtained from the inputs to the function.
Let Q be the distribution defined by sampling a random example

(
(z1, . . . , zk+1), b

)
,

conditioning on the event that b = 1 and outputting (z1, . . . , zk+1, 1). Note that if the
examples from which Z is built are positively labeled i.i.d. examples then each row of Z is
sampled i.i.d. from Q and hence Z` is distributed according to Q`. We denote by 1k+1 the
all +1’s vector of length k + 1.

3.1.2 Learning algorithm
We start by explaining the main ideas behind the algorithm. On a high level, in order
to be able to use (k + 1)-wise SQs to learn the unknown subspace, we need to make sure
that there exists an affine subspace that contains most of the probability mass of the
positively-labeled points and that is spanned by k + 1 random positively-labeled points with
noticeable probability. Here, the probability is with respect to the unknown distribution over
labeled examples. Thus, for positively labeled tuples (z1,1, . . . , z1,k+1), (z2,1, . . . , z2,k+1), . . . ,
(zk+1,1, . . . , zk+1,k+1), we consider the (k + 1)× (k + 2) matrix Z defined in Equation (1).
If W is the row-span of Z, then the desired (unknown) affine subspace is the set V of all
points (z1, . . . , zk+1) such that (z1, . . . , zk+1, 1) ∈W .

If the (unknown) distribution over labeled examples is such that with noticeable probability,
k + 1 random positively-labeled points form a full-rank linear system (i.e., the matrix Z
has full-rank with noticeable probability conditioned on (b1, . . . , bk+1) = 1k+1), we can use
(k+ 1)-wise SQs to find, one bit at a time, the (k+ 1)-dimensional row-span W of Z, and we
can then output the set V of all points (z1, . . . , zk+1) such that (z1, . . . , zk+1, 1) ∈W as the
desired affine subspace (below, we refer to this step as the Recovery Procedure).

We now turn to the (more challenging) case where the system is not full-rank with
noticeable probability (i.e., the matrix Z is rank-deficient with high probability conditioned

ITCS 2017
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Algorithm 1 (k + 1)-wise SQ Algorithm.
Inputs. k ∈ N, error probability ε > 0.
Output. Function f : Fk+1

p → {±1}.
1: Set tolerance of each SQ to τ = (ε/2c·(k+2))(k+1)k+3 , where c > 0 is a large enough

absolute constant.
2: Define the threshold τi = 2c·(k+2−i) · k · τ1/(k+1)k+2−i for every i ∈ [k + 1].
3: Ask the SQ φ(z, b) .= 1(b = 1) and let w be the response.
4: if w ≤ ε− τ then
5: Output the all −1’s function.
6: end if
7: Let φ̃

(
(z1, b1), . . . , (zk+1, bk+1)

) .= 1((b1, . . . , bk+1) = 1k+1).
8: Ask the SQ φ̃ and let v be the response.
9: for i = k + 1 down to 1 do

10: Let φi
(
(z1, b1), . . . , (zk+1, bk+1)

) .= 1((b1, . . . , bk+1) = 1k+1 and rk(Z) = i).
11: Ask the SQ φi and let vi be the response.
12: if vi/v ≥ τi then
13: Run Recovery Algorithm on input (i, vi) and let V̂ be the subspace of Fk+1

p it
outputs.

14: Define function f : Fk+1
p → {−1, 1} by:

15: f(z1, . . . , zk+1) = +1 if (z1, . . . , zk+1) ∈ V̂ .
16: f(z1, . . . , zk+1) = −1 otherwise.
17: Return f .
18: end if
19: end for

on (b1, . . . , bk+1) = 1k+1). Then, the system has rank at most i with high probability, for
some i < k + 1. There is a large number of possible i-dimensional subspaces and therefore
it is no longer clear that there exists a single i-dimensional subspace that contains most
of the mass of the positively-labeled points. However, we demonstrate that for every i,
if the rank of Z is at most i with sufficiently high probability, then there exists a fixed
subspace W of dimension at most i that contains a large fraction of the probability under the
row-distribution of Z (it turns out that if this subspace has rank equal to i, then it should
be unique). We can then use (k + 1)-wise SQs to output the affine subspace V consisting of
all points (z1, . . . , zk+1) such that (z1, . . . , zk+1, 1) ∈W (via the Recovery Procedure).

The general description of the algorithm is given in Algorithm 1, and the Recovery
Procedure (allowing the reconstruction of the affine subspace V ) is separately described in
Algorithm 2. We denote the indicator function of event E by 1(E). Note that the statistical
query corresponding to the event 1(E) gives an estimate of the probability of E.

3.1.3 Analysis
We now turn to the analysis of Algorithm 1 and the proof of Lemma 3.1. We will need the
following lemma, which shows that if the rank of Z is at most i with high probability, then
there is a fixed subspace of dimension at most i containing most of the probability mass
under the row-distribution of Z.

I Lemma 3.3. Let i ∈ [k + 1]. If PrQk+1 [rk(Z) ≤ i] ≥ 1− ξ, then there exists a subspace W
of Fk+2

p of dimension at most i such that Prz∼Q[z /∈W ] ≤ ξ1/k.
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Algorithm 2 Recovery Procedure
Input. Integer i ∈ [k + 1].
Output. Subspace V̂ of Fk+1

p of dimension i.
1: Let mi = (k + 2) · i · dlog pe
2: for each bit j ≤ mi do
3: Define event Ej(Z) = 1(bit j of row span of Z is 1).
4: Let φi,j

(
(z1, b1), . . . , (zk+1, bk+1)

) .= 1(Ej(Z) and (b1, . . . , bk+1) = 1k+1 and rk(Z) =
i).

5: Ask the SQ φi,j and let ui,j be the response.
6: if ui,j/vi ≥ (9/10) then
7: Set bit j in binary representation of Ŵ to 1.
8: else
9: Set bit j in binary representation of Ŵ to 0.

10: end if
11: end for
12: Let V̂ be the set all points (z1, . . . , zk+1) such that (z1, . . . , zk+1, 1) ∈ Ŵ .

I Remark. We point out that the exponential dependence on 1/k in the probability upper
bound in Lemma 3.3 is tight. To see this, let p = 2, and {e1, . . . , ek} be the standard basis
in Fk2 . Consider the base distribution P on Fk2 that puts probability mass 1− α on e1, and
probability mass α/(k− 1) on each of e2, e3, . . . , ek. Then, a Chernoff bound implies that if
we draw k i.i.d. samples from P , then the dimension of their span is at most 2 · α · k with
probability at least 1− exp(−k). On the other hand, for any subspace W of Fk2 of dimension
2 · α · k, the probability that a random sample from P lies inside W is only 1−Θ(α).

To prove Lemma 3.3, we will use the following proposition.

I Proposition 3.4. Let ` ∈ [k + 1], i ∈ [` − 1] and η > 0. If PrQ` [rk(Z`) ≤ i] ≥ 1 − η,
then for every ν ∈ (0, 1], either there exists a subspace W of Fk+2

p of dimension i such that
Prz∼Q[z /∈W ] ≤ ν or PrQi [rk(Zi) ≤ i− 1] ≥ 1− η/ν.

Proof. Let p .= PrQi [rk(Zi) ≤ i− 1]. For every (fixed) matrix Ai ∈ Fi×(k+2)
p , define

µ(Ai)
.= Pr
Q`

[rk(Z`) ≤ i | Zi = Ai].

Then,

Pr
Q`

[rk(Z`) ≤ i] = p+ (1− p) · Pr
Q`

[rk(Z`) ≤ i | rk(Zi) = i]

= p+ (1− p) · EQi
[
µ(Zi)

∣∣∣∣ rk(Zi) = i

]
.

Since PrQ` [rk(Z`) ≤ i] ≥ 1− η, we have that

EQi
[
µ(Zi)

∣∣∣∣ rk(Zi) = i

]
≥ 1− η/(1− p).

Hence, there exists a setting Ai ∈ Fi×(k+2)
p of Zi such that rk(Ai) = i and

Pr[rk(Z`) ≤ i | Zi = Ai] ≥ 1− η/(1− p).

We let W be the Fp-span of the rows of Ai. Note that the dimension of W is equal to i
and that Prz∼Q[z /∈ W ] ≤ η/(1 − p). Thus, we conclude that for every ν ∈ (0, 1], either
p ≥ 1− η/ν or Prz∼Q[z /∈W ] ≤ ν, as desired. J
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We now complete the proof of Lemma 3.3.

Proof of Lemma 3.3. Starting with ` = k+1 and η = ξ, we inductively apply Proposition 3.4
with ν = ξ1/k until we either get the desired subspace W or we get to the case where i = 1.
In this case, we have that PrQ` [rk(Z`) ≤ 1] ≥ 1−ξ1/k for ` ≥ 2. Since the last column of Z` is
the all 1’s vector, we conclude that there exists z∗ ∈ Fk+1

p such that Prz∼Q[z 6= (z∗, 1)] ≤ ξ1/k.
We can then set our subspace W to be the Fp-span of the vector (z∗, 1). J

For the proof of Lemma 3.1 we will also need the following lemma, which states sufficient
conditions under which the Recovery Procedure (Algorithm 2) succeeds.

I Lemma 3.5. Let i ∈ [k + 1]. Assume that in Algorithm 1, v > εk+1/2 and vi/v ≥ τi. If
there exists a subspace W of Fk+2

p of dimension equal to i such that

Pr
z∼Q

[z /∈W ] < τi
4 · (k + 1) , (2)

then the affine subspace V̂ output by Algorithm 2 (i.e., the Recovery Procedure) consists of
all points (z1, . . . , zk+1) such that (z1, . . . , zk+1, 1) ∈W .

We note that Lemma 3.5 would still hold under quantitatively weaker assumptions on v,
vi/v and Prz∼Q[z /∈W ] in Equation (2). In order to keep the expressions simple, we however
choose to state the above version which will be sufficient to prove Lemma 3.1. The proof of
Lemma 3.5 appears in Section A.1. We are now ready to complete the proof of Lemma 3.1.

Proof of Lemma 3.1. If Algorithm 1 terminates at Step 5, then the error of the output
hypothesis is at most ε, as desired. Henceforth, we assume that Algorithm 1 does not terminate
at Step 5. Then, we have that Pr[b = 1] > ε, and hence Pr[(b1, . . . , bk+1) = 1k+1] > εk+1.
Thus, the value v obtained in Step 8 of Algorithm 1 satisfies v > εk+1 − τ ≥ εk+1/2, where
the last inequality follows from the setting of τ . Let i∗ be the first (i.e., largest) value of
i ∈ [k + 1] for which vi/v ≥ τi. To prove that such an i∗ exists, we proceed by contradiction,
and assume that for all i ∈ [k + 1], it is the case that vi/v < τi. Note that Z has an all 1’s
column, so it has rank at least 1. Moreover, it has rank at most k + 1. Therefore, we have
that

1 = Pr[1 ≤ rk(Z) ≤ k + 1 | (b1, . . . , bk+1) = 1k+1]

=
k+1∑
i=1

Pr[rk(Z) = i | (b1, . . . , bk+1) = 1k+1]

≤
k+1∑
i=1

vi + τ

v − τ

≤ 2 ·
k+1∑
i=1

vi + τ

v

≤ 2 ·
k+1∑
i=1

(vi
v

+ 2τ
εk+1 )

< 2 ·
k+1∑
i=1

τi + 4 · (k + 1) · τ

εk+1 .

Using the fact that τi is monotonically non-increasing in i and the settings of τ1 and τ , the
last inequality gives

1 ≤ 2 · (k + 1) · τ1 + 4 · (k + 1) · τ

εk+1 < 1,
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a contradiction.
We now fix i∗ as above. We have that

Pr[rk(Z) ≤ i∗ | (b1, . . . , bk+1) = 1k+1] = 1−
k+1∑

i=i∗+1
Pr[rk(Z) = i | (b1, . . . , bk+1) = 1k+1]

≥ 1−
k+1∑

i=i∗+1

vi + τ

v − τ

≥ 1− 2 ·
k+1∑

i=i∗+1
(vi
v

+ 2τ
εk+1 )

> 1− 2 ·
k+1∑

i=i∗+1
(τi + 2 · τ

εk+1 )

≥ 1− 4 ·
k+1∑

i=i∗+1
τi

≥ 1− 4 · k · τi∗+1.

By Lemma 3.3, there exists a subspace W of Fk+2
p of dimension at most i∗ such that

Pr
z∼Q

[z /∈W ] ≤ (4 · k)1/k · τ1/k
i∗+1. (3)

I Proposition 3.6. For every i ∈ [k], we have that (k + 1) · (4 · k)1/k · τ1/k
i+1 ≤ τi/4.

We note that Proposition 3.6 follows immediately from the definitions of τi and τ (and by
letting c by a sufficiently large positive absolute constant). Moreover, Proposition 3.6 (applied
with i = i∗) along with Equation (3) imply that Prz∼Q[z /∈W ] is at most τi∗/(4(k + 1)).

By a union bound, we get that with probability at least

1− (k + 1) · Pr
z∼Q

[z /∈W ] ≥ 1− τi∗

4 , (4)

all the rows of Z belong to W .
Since vi∗/v ≥ τi∗, we also have that:

Pr[rk(Z) = i∗ | (b1, . . . , bk+1) = 1k+1] ≥ vi∗ − τ
v + τ

≥ 1
2 ·

(vi∗ − τ)
v

≥ 1
2 · (τi

∗ − 2 · τ
εk+1 )

≥ τi∗

3 (5)

Combining Equation (4) and Equation (5), we get that the rank of W is equal to i∗.
Let V be the affine subspace consisting of all points (z1, . . . , zk+1) such that

(z1, . . . , zk+1, 1) ∈ W . By Lemma 3.5, we get that Algorithm 2 (and hence Algorithm 1)
correctly recovers the affine subspace V .

We note that the function f output by Algorithm 1 is the ±1 indicator of a subspace
of the true hyperplane Hypa. To see this, note that f is the ±1 indicator function of the
subspace V , and by Equations (3) and (5), we have that with probability at least τi∗/12 over
Z ∼ Qk+1, all the columns of Z belong to W and rk(Z) = i∗. Since the dimension of W
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is equal to i∗ and since we are conditioning on (b1, . . . , bk+1) = 1k+1, this implies that the
correct label of all the points in V is +1. Hence, f only possibly errs on positively-labeled
points (by wrongly giving them the label −1). Moreover, Algorithm 1 ensures that the output
function f gives the label +1 to every (z1, . . . , zk+1) ∈ Fk+1

p for which (z1, . . . , zk+1, 1) ∈W .
Therefore, the function f that is output by Algorithm 1 (when it does not terminate at
Step 5) has error at most the right hand side of (3). So to upper-bound the error probability,
it suffices for us to verify that the right-hand side of (3) is at most ε. This is obtained by
applying the next proposition with i = i∗ + 1.

I Proposition 3.7. For every i ∈ [k + 1], we have that (4 · k)1/k · τ1/k
i ≤ εk.

The proof of Proposition 3.7 follows immediately from the definitions of τi and τ and by
letting c be a sufficiently large positive absolute constant.

The number of queries performed by the (k + 1)-wise algorithm is at most O(k2 · log p),
and their tolerance is τ ≥ (ε/2c·(k+2))(k+1)k+3 , where c is a positive absolute constant. Finally,
we remark that the dependence of the SQ complexity of the above algorithm on the error
parameter ε is ε−kO(k) . It can be improved to a linear dependence on 1/ε by learning with
error 1/3 and then using boosting in the standard way (boosting in the SQ model works
essentially as in the regular PAC model [1]). J

3.2 Lower bound
Our proof of lower bound is a generalization of the lower bound in [25] (for ` = 2 and k = 1).
It relies on a notion of combined randomized statistical dimension (“combined" refers to the
fact that it examines a single parameter that lower bounds both the number of queries and
the inverse of the tolerance). In order to apply this approach we need to extend it to k-wise
queries. This extension follows immediately from a simple observation. If we define the
domain to be X ′ .= Xk and the input distribution to be D′ .= Dk then asking a k-wise query
φ : Xk → [−1, 1] to STAT(k)

D (τ) is equivalent to asking a unary query φ : X ′ → [−1, 1] to
STAT(k)

D′ (τ). Using this observation we define the k-wise versions of the notions from [25]
and give their properties that are needed for the proof of Lemma 3.2.

3.2.1 Preliminaries
Combined randomized statistical dimension is based on the following notion of average
discrimination.

I Definition 3.8 (k-wise average κ1-discrimination). Let k be any positive integer. Let µ be
a probability measure over distributions over X and D0 be a reference distribution over X.
Then,

κ̄
(k)
1 (µ,D0) .= sup

φ:Xk→[−1,+1]

{
ED∼µ[|Dk[φ]−Dk

0 [φ]|]
}
.

We denote the problem of PAC learning a concept class C of Boolean functions up to error
ε by LPAC(C, ε). Let Z be the domain of the Boolean functions in C. For any distribution
D0 over labeled examples (i.e., over Z × {±1}), we define the Bayes error rate of D0 to be

err(D0) =
∑
z∈Z

min{D0(z, 1), D0(z,−1)} = min
h:Z→{±1}

Pr
(z,b)∼D0

[h(z) 6= b].
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I Definition 3.9 (k-wise combined randomized statistical dimension). Let k be any positive
integer. Let D be a set of distributions and D0 a reference distribution over X. The k-wise
combined randomized statistical dimension of the decision problem B(D, D0) is then defined
as

cRSD(k)
κ̄1

(B(D, D0)) .= sup
µ∈SD

(κ̄(k)
1 (µ,D0))−1,

where SD denotes the set of all probability distributions over D.
Further, for any concept class C of Boolean functions over a domain Z, and for any ε > 0,

the k-wise combined randomized statistical dimension of LPAC(C, ε) is defined as

cRSD(k)
κ̄1

(LPAC(C, ε)) .= sup
D0∈SZ×{±1}:err(D0)>ε

cRSD(k)
κ̄1

(B(DC , D0)),

where DC
.= {P f : P ∈ SZ , f ∈ C} with P f denoting the distribution on labeled examples

(x, f(x)) with x ∼ P .

The next theorem lower bounds the randomized k-wise SQ complexity of PAC learning a
concept class in terms of its k-wise combined randomized statistical dimension.

I Theorem 5 ([25]). Let C be a concept class of Boolean functions over a domain Z, k be a
positive integer and ε, δ > 0. Let d .= cRSD(k)

κ̄1
(LPAC(C, ε)). Then, the randomized k-wise SQ

complexity of solving LPAC(C, ε−1/
√
d) with access to STAT(k)(1/

√
d) and success probability

1− δ is at least (1− δ) ·
√
d− 1.

To lower bound the statistical dimension we will use the following “average correlation”
parameter introduced in [26].

I Definition 3.10 (k-wise average correlation). Let k be any positive integer. Let D be a
set of distributions and D0 a reference distribution over X. Assume that the support of
every distribution D ∈ D is a subset of the support of D0. Then, for every x ∈ Xk, define
D̂(x) .= Dk(x)

Dk0 (x) − 1. Then, the k-wise average correlation is defined as

ρ(k)(D, D0) .= 1
|D|2

·
∑

D,D′∈D
|Dk

0 [D̂ · D̂′]|.

Lemma 3.11 relates the average correlation to the average discrimination (from Defini-
tion 3.8).

I Lemma 3.11 ([25]). Let k be any positive integer. Let D be a set of distributions and D0
a reference distribution over X. Let µ be the uniform distribution over D. Then,

κ̄
(k)
1 (µ,D0) ≤ 4 ·

√
ρ(k)(D, D0).

3.2.2 Proof of Lemma 3.2
Denote X .= F`p × {±1}. Let D be the set of all distributions over Xk that are obtained by
sampling from any given distribution over (F`p)k and labeling the k samples according to any
given hyperplane indicator function fa. Let D0 be the uniform distribution over Xk. We
now show that cRSDκ̄1(B(D, D0)) = Ω

(
p(`−k)/2). By definition,

cRSDκ̄1(B(D, D0)) .= sup
µ∈SD

(κ̄1(µ,D0))−1.
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We now choose the distribution µ. For a ∈ F`p, we define Pa to be the distribution over F`p
that has density α = 1/(2(p` − p`−1)) on each of the p` − p`−1 points outside Hypa, and
density β = 1/p`−1 − αp+ α = 1/(2p`−1) on each of the p`−1 points inside Hypa. We then
define Da to be the distribution obtained by sampling k i.i.d. random examples of Hypa,
the marginal of each over F`p being Pa. Let D′

.= {Da | a ∈ F`p}, and let µ be the uniform
distribution over D′. By Lemma 3.11, we have that κ̄1(µ,D0) ≤ 4 ·

√
ρ(D, D0), so it is

enough to upper bound ρ(D, D0).
We first note that for a, a′ ∈ F`p, we have

D0[D̂a · D̂a′ ] = E(z,b)∼D0 [D̂a(z, b) · D̂a′(z, b)]

= E(z,b)∼D0

[(
Da(z, b)
D0(z, b) − 1

)
·
(
Da′(z, b)
D0(z, b) − 1

)]
= E(z,b)∼D0

[
Da(z, b) ·Da′(z, b)

D2
0(z, b) − Da(z, b)

D0(z, b) −
Da′(z, b)
D0(z, b) + 1

]
= E(z,b)∼D0

[
Da(z, b) ·Da′(z, b)

D2
0(z, b)

]
− 2 · E(z,b)∼D0

[
Da(z, b)
D0(z, b)

]
+ 1

= 22k · p2k` · E(z,b)∼D0 [Da(z, b) ·Da′(z, b)]
− 2k+1 · pk` · E(z,b)∼D0 [Da(z, b)] + 1

We now compute each of the two expectations that appear in the last equation above.

I Proposition 3.12. For every a ∈ F`p,

E(z,b)∼D0 [Da(z, b)] = 1
2k ·

(
1
p
· β +

(
1− 1

p

)
· α
)k

= 1
2k · pk·` .

The proof of Proposition 3.12 appears in the appendix.

I Proposition 3.13. For every a, a′ ∈ F`p,

E(z,b)∼D0 [Da(z, b) ·Da′(z, b)] =


1
2k · (

1
p · β

2 + (1− 1
p ) · α2)k if Hypa = Hypa′ ,

1
2k · (α

2 · (1− 2
p ))k if Hypa ∩ Hypa′ = ∅,

1
2k · (

β2

p2 + α2 · (1− 2
p + 1

p2 ))k otherwise.

The proof of Proposition 3.13 appears in the appendix. Using Proposition 3.12 and
Proposition 3.13, we now compute D0[D̂a · D̂a′ ].

I Proposition 3.14. For every a, a′ ∈ F`p,

D0[D̂a · D̂a′ ] =


(p+ 1− 1

p−1 )k − 1 if Hypa = Hypa′ ,

1
2k ·

(1− 2
p )k

(1− 1
p )2k − 1 if Hypa ∩ Hypa′ = ∅,

0 otherwise.

The proof of Proposition 3.14 appears in the appendix. When computing ρ(D, D0), we
will also use the following simple proposition.

I Proposition 3.15.
1. The number of pairs (a, a′) ∈ (F`p)2 such that Hypa = Hypa′ is equal to p`.
2. The number of pairs (a, a′) ∈ (F`p)2 such that Hypa and Hypa′ are distinct and parallel is

equal to p` · (p− 1).
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3. The number of pairs (a, a′) ∈ (F`p)2 such that Hypa and Hypa′ are distinct and intersecting
is equal to p2·` − p`+1.

Using Proposition 3.14 and Proposition 3.15, we are now ready to compute ρ(D, D0) as
follows

ρ(D, D0) ≤ 1
p2·` ·

[
p` · (p+ 1− 1

p− 1)k + p` · (p− 1) + p2·` · 0
]

≤ O
(

1
p`−k

)
+ 1
p`−1

= O

(
1

p`−k

)
,

where we used above the assumption that k = O(p). We deduce that κ̄1(µ,D0) =

O

(
1/p(`−k)/2

)
, and hence cRSDκ̄1(B(D, D0)) = Ω

(
p(`−k)/2

)
. This lower bound on

cRSDκ̄1(B(D, D0)), along with Definition 3.9, Theorem 5 and the fact that D0 has Bayes
error rate equal to 1/2, imply Lemma 3.2.

4 Reduction for flat distributions

To prove Theorem 2 we use the characterization of the SQ complexity of the problem of
estimating Dk[φ] for D ∈ D using a notion of statistical dimension from [25]. Specifically,
we use the characterization of the complexity of solving this problem using unary SQs
and also the generalization of this characterization that characterizes the complexity of
solving a problem using k-wise SQs. The latter is equal to 1 (since a single k-wise SQ
suffices to estimate Dk[φ]). Hence the k-wise statistical dimension is also equal to 1. We
then upper bound the unary statistical dimension by the k-wise statistical dimension. The
characterization then implies that an upper bound on the unary statistical dimension gives
an upper bound on the SQ complexity of estimating Dk[φ].

We also give a slightly different way to define flatness that makes it easier to extend our
results to other notions of divergence.

I Definition 4.1. Let D be a set of distributions over X. Define

R∞(D) .= inf
D̄∈SX

sup
D∈D

D∞(D‖D̄),

where SX denotes the set of all probability distributions over X and

D∞(D‖D̄) .= sup
y∈X

ln Prx∼D[x = y]
Prx∼D̄[x = y]

denotes the max-divergence. We say that D is γ-flat if R∞(D) ≤ ln γ.

For simplicity, we will start by relating the k-wise SQ complexity to unary SQ complexity
for decision problems. The statistical dimension for this type of problems is substantially
simpler than for the general problems but is sufficient to demonstrate the reduction. We
then build on the results for decision problems to obtain the proof of Theorem 2.

4.1 Decision problems
The k-wise generalization of the statistical dimension for decision problems from [25] is
defined as follows.
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I Definition 4.2. Let k be any positive integer. Consider a set of distributions D and a
reference distribution D0 over X. Let µ be a probability measure over D and let τ > 0. The
k-wise maximum covered µ-fraction is defined as

κ1-frac(k)(µ,D0, τ) .= sup
φ:Xk→[−1,+1]

{
Pr
D∼µ

[|Dk[φ]−Dk
0 [φ]| > τ ]

}
.

I Definition 4.3 (k-wise randomized statistical dimension of decision problems). Let k be any
positive integer. For any set of distributions D, a reference distribution D0 over X and
τ > 0, we define

RSD(k)
κ1

(B(D, D0), τ) .= sup
µ∈SD

(κ1-frac(k)(µ,D0, τ))−1,

where SD denotes the set of all probability distributions over D.

As shown in [25], RSD tightly characterizes the randomized statistical query complexity
of solving the problem using k-wise queries. As observed before, the k-wise versions below
are implied by the unary version in [25] simply by defining the domain to be X ′ .= Xk and
the set of input distributions to be D′ .= {Dk | D ∈ D}.

I Theorem 6 ([25]). Let B(D, D0) be a decision problem, τ > 0, δ ∈ (0, 1/2), k ∈ N and
d = RSD(k)

κ1
(B(D, D0), τ). Then there exists a randomized algorithm that solves B(D, D0)

with success probability ≥ 1− δ using d · ln(1/δ) queries to STAT(k)
D (τ/2). Conversely, any

algorithm that solves B(D, D0) with success probability ≥ 1− δ requires at least d · (1− 2δ)
queries to STAT(k)

D (τ).

We will also need the following dual formulation of the statistical dimension given in
Theorem 4.3.

I Lemma 4.4 ([25]). Let k be any positive integer. For any set of distributions D, a reference
distribution D0 over X and τ > 0, the statistical dimension RSD(k)

κ1
(B(D, D0), τ) is equal to

the smallest d for which there exists a distribution P over functions from Xk to [−1,+1]
such that for every D ∈ D,

Pr
φ∼P

[|Dk[φ]−Dk
0 [φ]| > τ ] ≥ 1

d
.

We can now state the relationship between RSD(k)
κ1

and RSD(1)
κ1

for any γ-flat D.

I Lemma 4.5. Let γ ≥ 1, τ > 0 and k ∈ N. Let X be a domain, D be a γ-flat class of
distributions over X and D0 be any distribution over X. Then

RSD(1)
κ1

(B(D, D0), τ/(2k)) ≤ 4k · γk−1

τ
· RSD(k)

κ1
(B(D, D0), τ).

Proof. Let d .= RSD(k)
κ1

(B(D, D0), τ). Fact 4.4 implies the existence of a distribution P over
k-wise functions such that for every D ∈ D,

Pr
φ∼P

[|Dk[φ]−Dk
0 [φ]| > τ ] ≥ 1

d
.

We now fix D and let φ be such that |Dk[φ]−Dk
0 [φ]| > τ .

By the standard hybrid argument,

Ej∼[k]

[∣∣∣DjDk−j
0 [φ]−Dj−1Dk−j+1

0 [φ]
∣∣∣] > τ

k
, (6)
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where j ∼ [k] denotes a random and uniform choice of j from [k]. This implies that

Ej∼[k]Ex<j∼Dj−1Ex>j∼Dk−j0

[∣∣∣∣D[φ(x<j , ·, x>j)]−D0[φ(x<j , ·, x>j)]
∣∣∣∣] > τ

k
.

By an averaging argument (and using the fact that φ takes values between −1 and +1),
we get that with probability at least τ/(4 · k) over the choice of j ∼ [k], x<j ∼ Dj−1 and
x>j ∼ Dk−j

0 , we have that∣∣∣∣D[φ(x<j , ·, x>j)]−D0[φ(x<j , ·, x>j)]
∣∣∣∣ > τ

2 · k .

Since D is a γ-flat class of distributions, there exists a (fixed) distribution D̄ over X
such that for every measurable event E ⊂ X, Prx∼D[x ∈ E] ≤ γ · Prx∼D̄[x ∈ E]. Thus, we
can replace the unknown input distribution D by the distribution D̄ and get that, with
probability at least τ/(4 · k · γk−1) over the choice of j ∼ [k], x<j ∼ D̄j−1 and x>j ∼ Dk−j

0 ,
we have∣∣∣∣D[φ(x<j , ·, x>j)]−D0[φ(x<j , ·, x>j)]

∣∣∣∣ > τ

2 · k . (7)

We now consider the following distribution P ′ over unary SQ functions (i.e., over [−1,+1]X):
Independently sample φ from P, j uniformly from [k], x<j ∼ D̄j−1 and x>j ∼ Dk−j

0 , and
output the (unary) function φ′(x) = φ(x<j , x, x>j). Then, for every D ∈ D, we have
that with probability at least 1

d ·
τ
4k ·

1
γk−1 over the choice of φ′ from P ′, we have that

|D[φ′]−D0[φ′]| > τ/(2 · k). Thus, by Fact 4.4

RSD(1)
κ1

(
B(D, D0), τ

2 · k

)
≤ 4d · γk−1 · k

τ
. J

Lemma 4.5 together with the characterization in Theorem 6 imply the following upper
bound on the SQ complexity of a decision problem in terms of its k-wise SQ complexity.

I Theorem 7. Let γ ≥ 1, τ > 0 and k ∈ N. Let X be a domain, D be a γ-flat class of
distributions over X and D0 be any distribution over X. If there exists an algorithm that,
with probability at least 2/3 solves B(D, D0) using t queries to STAT(k)

D (τ), then for every
δ > 0, there exists an algorithm that, with probability at least 1 − δ solves B(D, D0) using
t · 12k · γk−1 · ln(1/δ)/τ queries to STAT(1)

D (τ/(4k)).

4.2 General problems
We now define the general class of problems over sets of distributions and a notion of
statistical dimension for these types of problems.

I Definition 4.6 (Search problems). A search problem Z over a class D of distributions and
a set F of solutions is a mapping Z : D → 2F \ {∅}, where 2F denotes the set of all subsets
of F . Specifically, for every distribution D ∈ D, Z(D) ⊆ F is the (non-empty) set of valid
solutions for D. For a solution f ∈ F , we denote by Zf the set of all distributions for which
f is a valid solution.

I Definition 4.7 (Statistical dimension for search problems [25]). For τ > 0, k ∈ N, a domain
X and a search problem Z over a class of distributions D over X and a set of solutions F ,
we define the k-wise statistical dimension with κ1-discrimination τ of Z as

SD(k)
κ1

(Z, τ) .= sup
D0∈SX

inf
f∈F

RSD(k)
κ1

(B(D \ Zf , D0), τ),

where SX denotes the set of all probability distributions over X.
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Lemma 8 lower-bounds the deterministic k-wise SQ complexity of a search problem in
terms of its (k-wise) statistical dimension.

I Theorem 8 ([25]). Let Z be a search problem, τ > 0 and k ∈ N. The deterministic k-wise
SQ complexity of solving Z with access to STAT(k)(τ) is at least SD(k)

κ1
(Z, τ).

The following theorem from [25] gives an upper bound on the SQ complexity of a search
problem in terms of its statistical dimension. It relies on the multiplicative weights update
method to reconstruct the unknown distribution sufficiently well for solving the problem.
The use of this algorithm introduces dependence on KL-radius of D. Namely, we define

RKL(D) .= inf
D̄∈SX

sup
D∈D

KL(D‖D̄),

where KL(·‖·) denotes the KL-divergence.

I Theorem 9 ([25]). Let Z be a search problem, τ, δ > 0 and k ∈ N. There is a randomized
k-wise SQ algorithm that solves Z with success probability 1− δ using

O

(
SD(k)

κ1
(Z, τ) · RKL(D)

τ2 · log
(
RKL(D)
τ · δ

))
queries to STAT(k)(τ/3).

Note that KL-divergence between two distributions is upper-bounded (and is usually
much smaller) than the max-divergence we used in the definition of γ-flatness. Specifically, if
D is γ-flat then RKL(D) ≤ ln γ. We are now ready to prove Theorem 2 which we restate
here for convenience.

I Theorem 2 (restated). Let γ ≥ 1, τ > 0 and k be any positive integer. Let X be a domain
and D be a γ-flat class of distributions over X. There exists a randomized algorithm that
given any δ > 0 and a k-ary function φ : Xk → [−1, 1], estimates Dk[φ] within τ for every
(unknown) D ∈ D with success probability at least 1− δ using

Õ

(
γk−1 · k3

τ3 · log(1/δ)
)

queries to STAT(1)
D (τ/(6 · k)).

Proof. We first observe that the task of estimating Dk[φ] up to additive τ can be viewed as
a search problem Z over the set D of distributions and over the class F of solutions that
corresponds to the interval [−1,+1]. Next, observe that one can easily estimate Dk[φ] up to
additive τ using a single query to STAT(k)

D (τ). Lemma 8 implies that SD(k)
κ1

(Z, τ) = 1. By
Definition 4.7, for every D1 ∈ SX , there exists f ∈ F , such that RSD(k)

κ1
(B(D\Zf , D1), τ) = 1.

By Lemma 4.5,

RSD(1)
κ1

(
B(D \ Zf , D1), τ

2 · k

)
≤ 4 · γk−1 · k

τ
.

Thus, Fact 4.4 and Definition 4.7 imply that

SD(1)
κ1

(Z, τ

2 · k ) ≤ 4 · γk−1 · k
τ

.

Applying Lemma 9, we conclude that there exists a randomized unary SQ algorithm that
solves Z with probability at least 1− δ using at most

O

(
γk−1 · k3 · RKL(D)

τ3 · log
(
k ·RKL(D)

τ · δ

))
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queries to STAT(1)(τ/(6 · k)). This – along with the fact that RKL(D) ≤ ln(γ) whenever D
is a γ-flat set of distributions – concludes the proof of Theorem 2. J

4.2.1 Other divergences
While the max-divergence that we used for measuring flatness suffices for the applications we
give in this paper (and is relatively simple), it might be too conservative in other problems.
For example, such divergence is infinite even for two Gaussian distributions with the same
standard deviation but different means. A simple way to obtain a more robust version of our
reduction is to use approximate max-divergence. For δ ∈ [0, 1) it is defined as:

Dδ
∞(D‖D̄) .= ln sup

E⊆X

Prx∼D[x ∈ E]− δ
Prx∼D̄[x ∈ E] .

Note that D0
∞(D‖D̄) = D∞(D‖D̄). Similarly, we can define a radius of D in this divergence

Rδ∞(D) .= inf
D̄∈SX

sup
D∈D

Dδ
∞(D‖D̄).

Now, it is easy to see that, if Dδ
∞(D‖D̄) ≤ r then Dkδ

∞(Dk‖D̄k) ≤ kr. This means that if
in the proof of Lemma 4.5 we use the condition Rτ/(8k

2)
∞ (D) ≤ ln γ instead of γ-flatness then

we will obtain that the event in Equation (7) holds with probability at least( τ
4k − (k − 1) · τ

8k2

)
/γk−1 ≥ τ

γk−1 · 8k

over the same random choices.
This implies the following generalization of Theorem 2.

I Theorem 10. Let τ > 0 and k be any positive integer. Let D be a class of distributions
over a domain X and γ = exp(Rτ/(8k

2)
∞ (D)). There exists a randomized algorithm that

given any δ > 0 and a k-ary function φ : Xk → [−1, 1], estimates Dk[φ] within τ for every
(unknown) D ∈ D with success probability at least 1− δ using

Õ

(
γk−1 · k3 ·RKL(D)

τ3 · log(1/δ)
)

queries to STAT(1)
D (τ/(6 · k)).

An alternative approach is to use Renyi divergence of order α > 1 defined as follows:

Dα(D‖D̄) .= 1
1− α · ln

(
Ey∼D

[(
Prx∼D[x = y]
Prx∼D̄[x = y]

)α−1
])

.

The corresponding radius is defined as

Rα(D) .= inf
D̄∈SX

sup
D∈D

Dα(D‖D̄).

To use it in our application we need the standard property of the Renyi divergence for
product distributions Dα(Dk‖D̄k) = k ·Dα(D‖D̄) and also the following simple lemma from
[33, Lemma 1]:

I Lemma 4.8. For α > 1, any two distributions D, D̄ over X and an event E ⊆ X:

Pr
x∼D

[x ∈ E] ≤
(

exp(Dα(D‖D̄)) · Pr
x∼D̄

[x ∈ E]
)α−1

α

.
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We will need the inverted version of this lemma:

Pr
x∼D̄

[x ∈ E] ≥ (Prx∼D[x ∈ E])
α
α−1

exp(Dα(D‖D̄))
.

Applying this in the proof of Lemma 4.5 for γ = exp(Rα(D)), we obtain that the event in
Equation (7) holds with probability at least( τ

4k

) α
α−1

/γk−1.

This gives the following generalization of Theorem 2.

I Theorem 11. Let τ > 0, α > 1 and k be any positive integer. Let D be a class of
distributions over a domain X and γ = exp(Rα(D)). There exists a randomized algorithm
that given any δ > 0 and a k-ary function φ : Xk → [−1, 1], estimates Dk[φ] within τ for
every (unknown) D ∈ D with success probability at least 1− δ using

Õ

(
γk−1 ·

(
k

τ

)2+ α
α−1

· log(1/δ)
)

queries to STAT(1)
D (τ/(6 · k)).

4.3 Applications to solving CSPs and learning DNF
We now give some examples of the application of our reduction to obtain lower bounds against
k-wise SQ algorithms. Our applications for stochastic constraint satisfaction problems (CSPs)
and DNF learning. We start with the definition of a stochastic CSP with a planted solution
which is a pseudo-random generator based on Goldreich’s proposed one-way function [29].

I Definition 12. Let t ∈ N and P : {±1}t → {±1} be a fixed predicate. We are given access
to samples from a distribution Pσ, corresponding to a (“planted”) assignment σ ∈ {±1}n.
A sample from this distribution is a uniform-random t-tuple (i1, . . . , it) of distinct variable
indices along with the value P (σi1 , . . . , σit). The goal is to recover the assignment σ when
given m independent samples from Pσ. A (potentially) easier problem is to distinguish any
such planted distribution from the distribution Ut in which the value is an independent
uniform-random coin flip (instead of P (σi1 , . . . , σit)).

We say that a predicate P : {±1}t → {±1} has complexity r if r is the degree of the lowest-
degree non-zero Fourier coefficient of P . It can be as large as t (for the parity function). A
lower bound on the (unary) SQ complexity of solving such CSPs was shown by [28] (their
result is for the stronger VSTAT oracle but here we state the version for the STAT oracle).

I Theorem 13 ([28]). Let t, q ∈ N and P : {±1}t → {±1} be a fixed predicate of complexity
r. Then for any q > 0, any algorithm that, given access to a distribution D ∈ {Pσ | σ ∈
{±1}n} ∪ {Ut} decides correctly whether D = Pσ or D = Ut with probability at least 2/3

needs q/2O(t) queries to STAT(1)
D

((
log q
n

)r/2)
.

The set of input distributions in this problem is 2-flat relative to Ut and it is one-to-many
decision problem. Hence Theorem 7 implies2 the following lower bound for k-wise SQ
algorithms.

2 We can also get essentially the same result by applying the simulation of a k-wise SQ using unary SQs
from Theorem 2.
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I Theorem 14. Let t ∈ N and P : {±1}t → {±1} be a fixed predicate of complexity r. Then
for any α > 0, any algorithm that, given access to a distribution D ∈ {Pσ | σ ∈ {±1}n}∪{Ut}
decides correctly whether D = Pσ or D = Ut with probability at least 2/3 needs 2n1−α−O(t)

queries to STAT(n1−α)
D

(
(2/nα)r/2 · n1−α/4

)
.

Proof. Let A be a k-wise SQ algorithm using q′ queries to STAT(n1−α)
D

(
(2/nα)r/2 · n1−α/6

)
which solves the problem with success probability 2/3. We let k = n1−α and apply Theorem
7 to obtain an algorithm that uses unary SQs and solves the problem with success probability
2/3. This algorithm uses q0 = q′ · 2n1−α ·nO(r) queries to STAT(1)

D

(
(2/nα)r/2

)
. Now choosing

q = 22n1−α we get that
(

log q
n

)r/2
≤ (2/nα)r/2. This means that q0 ≥ q/2O(t) = 22n1−α−O(t).

Hence q′ = 22n1−α−O(t)−n1−α−O(r) = 2n1−α−O(t). J

Similar lower bounds can be obtained for other problems considered in [28], namely, planted
satisfiability and t-SAT refutation.

To obtain a lower bound for learning DNF formulas we can use a simple reduction from
the Goldreich’s PRG defined above to learning DNF formulas of polynomial size. It is based
on ideas implicit in the reduction from t-SAT refutation to DNF learning from [13].

I Lemma 15. P : {±1}t → {±1} be a fixed predicate. There exists a mapping M from
t-tuples of indices in [n] to {0, 1}tn such that for every σ ∈ {±1}n there exists a DNF formula
fσ of size 2t satisfying P (σi1 , . . . , σit) = fσ(M(i1, . . . , it)).

Proof. The mappingM maps (i1, . . . , it) to the concatenation of the indicator vectors of each
of the indices. Namely, for j ∈ [t] and ` ∈ [n], M(i1, . . . , it)j,` = 1 if and only if ij = `, where
we use the double index j, ` to refer to element n(j − 1) + ` of the vector. Let vj,` denote the
variable with the index j, `. Let σ be any assignment and we denote by zσj the j-th variable of
our predicate P when the assignment is equal to σ. We first observe that zσj ≡

∧
`∈[n],σ`=0 v̄j,`.

This is true since, by definition, the value of the j-th variable of our predicate is σij . This
value is 1 if and only if ij 6∈ {` ∈ [n] | σ` = 0}. This is equivalent to vj,` being equal to 0
for all ` ∈ [n] such that σ` = 0. Analogously, z̄σj ≡

∧
`∈[n],σ`=1 v̄j,`. This implies that any

conjunction of variables zσ1 , z̄σ1 , . . . , zσt , z̄σt can be expressed as a conjunction over variables
v̄j,`. Any predicate P can be expressed as a disjunction of at most 2t conjunctions and hence
there exists a DNF formula fσ of size at most 2t whose value on M(i1, . . . , it) is equal to
P (σi1 , . . . , σit). J

This reduction implies that by converting a sample ((i1, . . . , it), b) to a sample
(M(i1, . . . , it), b) we can transform the Goldreich’s PRG problem into a problem in which our
goal is to distinguish examples of some DNF formula fσ from randomly labeled examples.
Naturally, an algorithm that can learn DNF formulas can output a hypothesis which predicts
the label (with some non-trivial accuracy), whereas such hypothesis cannot exist for predict-
ing random labels. Hence known SQ lower bounds on planted CSPs [28] immediately imply
lower bounds for learning DNF. Further, by applying Lemma 15 together with Thm. 14
for t = r = logn we obtain the first lower bounds for learning DNF against n1−α-wise SQ
algorithms.

I Theorem 16. For any constant (independent of n) α > 0, there exists a constant β > 0
such that any algorithm that PAC learns DNF formulas of size n with error < 1/2− n−β logn

and success probability at least 2/3 needs at least 2n1−α queries to STAT(n1−α)
D (n−β logn).
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We remark that this is a lower bound for PAC learning polynomial size DNF formulas
with respect to some fixed (albeit non-uniform) distribution over {0, 1}n. The approach for
relating k-wise SQ complexity to unary SQ complexity given in [9] applies to this setting.
Yet, in their proof the tolerance needed for the unary SQ algorithm is τ/2k and therefore it
would not give a non-trivial lower bounds beyond k = O(logn).

5 Reduction for low-communication queries

In this section, we prove Theorem 4 using a recent result of Steinhardt, Valiant and Wager
[36]. Their result can be seen giving a SQ algorithm that simulates a communication
protocol between n parties. Each party is holding a sample drawn i.i.d. from distribution
D and broadcasts at most b bits about its sample (to all the other parties). The bits
can be sent over multiple rounds. This is essentially the standard model of multi-party
communication complexity (e.g. [32]) but with the goal of solving some problem about the
unknown distribution D rather than computing a specific function of the inputs. Alternatively,
one can also see this model as a single algorithm that extracts at most b-bits of information
about each random sample from D and is allowed to extract the bits in an arbitrary order
(generalizing the b-bit sampling model that we discuss in Section 6.2 and in which b-bits
are extracted from each sample at once). We refer to this model simply as algorithms that
extract at most b bits per sample.

I Theorem 17 ([36]). Let A be an algorithm that uses n samples drawn i.i.d. from a
distribution D and extracts at most b bits per sample. Then, for every β > 0, there is an
algorithm B that makes at most 2 · b · n queries to STAT(1)

D (β/(2b+1 · k)) and the output
distributions of A and B are within total variation distance β.

We will use this simulation to estimate the expectation of k-wise functions that have low
communication complexity. Specifically, we recall the following standard model of public-coin
randomized k-party communication complexity.

I Definition 5.1. For a function φ : Xk → {±1} we say that φ has a k-party public-coin
randomized communication complexity of at most b bits per party with success probability
1− δ if there exist a protocol satisfying the following conditions. Each of the parties is given
xi ∈ X and access to shared random bits. In each round one of the parties can compute
one or more bits using its input, random bits and all the previous communication and then
broadcast it to all the other parties. In the last round one of the parties computes a bit that
is the output of the protocol. Each of the parties communicates at most b bits in total. For
every x1, . . . , xk ∈ X, with probability at least 1− δ over the choice of the random bits the
output of the protocol is equal to φ(x1, . . . , xk).

We are now ready to prove Theorem 4 which we restate here for convenience.

I Theorem 4 (restated). Let φ : Xk → {±1} be a function, and assume that φ has k-party
public-coin randomized communication complexity of b bits per party with success probability
2/3. Then, there exists a randomized algorithm that, with probability at least 1− δ, estimates
Ex∼Dk [φ(x)] within τ using O(b·k ·log(1/δ)/τ2) queries to STAT(1)

D (τ ′) for some τ ′ = τO(b)/k.

Proof. We first amplify the success probability of the protocol for computing φ to δ′ .=
τ/8 using the majority vote of O(log(1/δ′)) repetitions. By Yao’s minimax theorem [42]
there exists a deterministic protocol Π′ that succeeds with probability at least 1 − δ′ for
(x1, . . . , xk) ∼ Dk. Applying Theorem 17, we obtain a unary SQ algorithm A whose output
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is within total variation distance at most β .= τ/8 from Π′(x1, . . . , xk) (and we can assume
that the output of A is in {±1}). Therefore:

|E[A]−Dk[φ]| ≤ |E[A]−EDk [Π′(x1, . . . , xk)]|+|EDk [Π′(x1, . . . , xk)]−Dk[φ]| ≤ 2τ
8 + 2τ

8 = τ

2 .

Repeating A O(log(1/δ)/τ2) times and taking the mean, we get an estimate of Dk[φ] within τ
with probability at least 1−δ. This algorithm uses O(b ·k · log(1/δ)/τ2) queries to STAT(1)

D (τ ′)
for τ ′ = τ

8/(2
O(log(8/τ)·b) · k) = τO(b)/k. J

The collision probability for a distribution D is defined as Pr(x1,x2)∼D2 [x1 = x2]. This
corresponds to φ(x1, x2) being the Equality function which, as is well-known, has randomized
2-party communication complexity of O(1) bits per party with success probability 2/3 (see,
e.g., [32]). Applying Theorem 4 with k = 2 we get the following corollary.

I Corollary 18. For any τ, δ > 0, there is a SQ algorithm that estimates the collision
probability of an unknown distribution D within τ with success probability 1 − δ using
O(log(1/δ)/τ2) queries to STAT(1)

D (τO(1)).

6 Corollaries for other models

6.1 k-local differential privacy
We start by formally defining the k-wise version of the local differentially privacy model from
[30].

I Definition 6.1 (k-local randomizer). A k-local ε-differentially private (DP) randomizer is
a randomized map R : Xk → W such that for all u, u′ ∈ Xk and all w ∈ W , we have that
Pr[R(u) = w] ≤ eε · Pr[R(u′) = w] where the probabilities are taken over the coins of R.

The following definition gives a k-wise generalization of the local randomizer (LR) oracle
which was used in [30].

I Definition 6.2 (k-local Randomizer Oracle). Let z = (z1, . . . , zn) ∈ Xn be a database. A
k-LR oracle LRz(·, ·) gets a k-tuple of indices ī ∈ [n]k and a k-local ε-DP randomizer as
inputs, and outputs an element w ∈W which is sampled from the distribution R(zi1 , . . . , zik).

We are now ready to give the definition of k-local differential privacy.

I Definition 6.3 (k-local differentially private algorithm). A k-local ε-differentially private
algorithm is an algorithm that accesses a database z ∈ Xn via a k-LR oracle LRz with the
restriction that for all i ∈ [n], if LRz (̄i1, R1), . . . , LRz (̄it, Rt) are the algorithm’s invocations
of LRz on k-tuples of indices that include index i, where for each j ∈ [t] Rj is a k-local εj-DP
randomizer, then ε1 + · · ·+ εt ≤ ε.

The following two theorems – which follow from Theorem 5.7 and Lemma 5.8 of [30] –
show that k-local differentially private algorithms are equivalent (up to polynomial factors)
to k-wise statistical query algorithms.

I Theorem 19. Let ASQ be a k-wise SQ algorithm that makes at most t queries to STAT(k)
D (τ).

Then, for every β > 0, there exists a k-local ε-DP algorithm ADP such that if the database
z has n ≥ n0 = O(k · t · log(t/β)/(ε2 · τ2)) entries sampled i.i.d. from the distribution D,
then ADP makes n0/k queries and the total variation between ADP ’s and ASQ’s output
distributions is at most β.
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I Theorem 20. Let z ∈ Xn be a database with entries drawn i.i.d. from a distribution D. For
every k-local ε-DP algorithm ADP making t queries to LRz and β > 0, there exists a k-wise
statistical query algorithm ASQ that in expectation makes O(t · eε) queries to STAT(k)

D (τ) for
τ = Θ(β/(e2ε · t)) such that the total variation between ASQ’s and ADP ’s output distributions
is at most β.

By combining Theorem 1, Theorem 19 and Theorem 20 we then obtain the following
corollary.

I Corollary 21. For every positive integer k and any prime number p, there is a concept
class C of Boolean functions defined over a domain of size pk+1 for which there exists a
(k+1)-local 1-DP distribution-independent PAC learning algorithm using a database consisting
of Õk(log p) i.i.d. samples, whereas any k-local 1-DP distribution-independent PAC learning
algorithm requires Ωk(p1/4) samples.

The reduction in Theorem 2 then implies that for γ-flat classes of distributions a k-local
DP algorithm can be simulated by a 1-local DP algorithm with an overhead that is linear in
γk−1 and polynomial in other parameters.

I Theorem 22. Let γ ≥ 1, k be any positive integer. Let X be a domain and D a γ-flat class
of distributions over X. Let z ∈ Xn be a database with entries drawn i.i.d. from a distribution
D ∈ D. For every k-local ε-DP algorithm A making t queries to a k-LR oracle LRz and

β > 0, there exists a 1-local ε-DP algorithm B such that if n ≥ n0 = Õ

(
γk−1·t6·k6·e11ε

β3ε2

)
then

for every D ∈ D, B makes n0/k queries to 1-LR oracle LR′z and the total variation distance
between B’s and A’s output distributions is at most β.

The reduction from Theorem 4 can be translated to this model analogously.

6.2 k-wise b-bit sampling model
For an integer b > 0, a b-bit sampling oracle BSD(b) is defined as follows: Given any function
φ : X → {0, 1}b, BSD(b) returns φ(x) for x drawn randomly and independently from D,
where D is the unknown input distribution. This oracle was first studied by Ben-David
and Dichterman [4] as a weak Restricted Focus of Attention model. They showed that
algorithms in this model can be simulated efficiently using statistical queries and vice versa.
Lower bounds against algorithms that use such an oracle have been studied in [26, 28].
More recently, motivated by communication constraints in distributed systems, the sample
complexity of several basic problems in statistical estimation has been studied in this and
related models [43, 37, 36]. These works also study the natural k-wise generalization of this
model. Specifically, BS(k)

D (b) is the oracle that given any function φ : Xk → {0, 1}b, returns
φ(x) for x drawn randomly and independently from Dk.

The following two theorems – which follow from Theorem 5.2 in [4] and Proposition 3
in [36] (that strengthens a similar result in [4]) – show that k-wise algorithms in the b-bit
sampling model are equivalent (up to polynomial and 2b factors) to k-wise statistical query
algorithms.

I Theorem 23. Let ASQ be a k-wise SQ algorithm that makes at most t Boolean queries
to STAT(k)

D (τ). Then, for every β > 0, there exists a k-wise 1-bit sampling algorithm A1-bit

that uses O( t
τ2 · log(t/β)) queries to BS(k)

D (b) and the total variation distance between ASQ’s
and A1-bit’s output distributions is at most β.
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I Theorem 24. Let Ab-bit be a k-wise b-bit sampling algorithm that makes at most t queries
to BS(k)

D (b). Then, for every β > 0, there exists a k-wise SQ algorithm ASQ that makes 2bt
queries to STAT(k)

D (β/(2b+1t)) and the total variation distance between ASQ’s and Ab-bit’s
output distributions is at most β.

Feldman et al. [26] give a tighter correspondence between the BS oracle and the slightly
stronger VSTAT oracle. Their simulations can be extended to the k-wise case in a similar
way.

The following corollary now follows by combining Theorem 1, Theorem 23 and Theorem 24.

I Corollary 25. Let b = O(1). For every positive integer k and any prime number p, there
is a concept class C of Boolean functions defined over a domain of size pk+1 for which there
exists a (k + 1)-wise b-bit sampling distribution-independent PAC learning algorithm making
Õk(log p) queries, whereas any k-wise b-bit sampling distribution-independent PAC learning
algorithm requires Ω̃k(p1/12) queries.

The reduction in Theorem 2 then implies that for γ-flat classes of distributions a k-wise
1-bit sampling algorithm can be simulated by a 1-wise 1-bit sampling algorithm.

I Theorem 26. Let γ ≥ 1, k be any positive integer. Let X be a domain and D a γ-flat
class of distributions over X. For every algorithm A making t queries to BS(k)

D (1) and every

β > 0, there exists a 1-bit sampling algorithm B that for every D ∈ D, uses Õ
(
γk−1·t6·k5

β3

)
queries to BSD(1) and the total variation distance between B’s and A’s output distributions
is at most β.
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A Omitted proofs

A.1 Proof of Lemma 3.5

In the following, we denote by oc(·) and ωc(·) asymptotic functions obtained by taking the
limit as the parameter c goes to infinity. In particular, oc(1) can be made arbitrarily close to
0 by letting c be large enough.

Let W be as in the statement of Lemma 3.5. To prove the lemma, it suffices to show that
each bit j in the binary representation of the subspace Ŵ constructed by Algorithm 2 is
equal to the corresponding bit of W . Henceforth, we fix j. We consider the two cases where
bit j of W is equal to 1, and where it is equal to 0.

First, we assume that bit j of W is equal to 1, and prove that in the execution of
Algorithm 2, it will be the case that ui,j/vi ≥ 1− oc(1). We can then set c to be sufficiently
large to ensure that ui,j/vi ≥ (9/10). Note that for any positive real numbers N , D and τ
such that τ = o(N) and τ = o(D), we have that

N − τ
D + τ

≥ N

D
· (1− o(1)).

Thus, it is enough to show that the next three statements hold:
(i) τ = oc(vi),
(ii) if bit j of W is 1, then (ui,j/vi) ≥ 1− oc(1),
(iii) if bit j of W is 1, then τ = oc(ui,j),
where ui,j , E[φi,j ] and vi , E[φi].

To show (i) above, note that

vi = Pr
[
(b1, . . . , bk+1) = 1k+1 and rk(Z) = i

]
≥ vi − τ
≥ v · τi − τ
≥ ωc(τ),

where the first inequality follows from the definition of vi and the SQ guarantee, the second
inequality follows from the given assumption (in the statement of Lemma 3.5) that (vi/v) ≥ τi,
and the last inequality follows from the fact that since v > εk+1/2, for every i ∈ [k + 1], we
have that

τ = oc

(
(v · τi − τ) · (1− τi/4)

)
.

.
Recall the definition of the event Ej(Z) from the description of Algorithm 2. To show (ii)

above, note that
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ui,j
vi

= Pr
[
Ej(Z) | (b1, . . . , bk+1) = 1k+1 and rk(Z) = i

]
≥ Pr

[
all rows of Z belong to W | (b1, . . . , bk+1) = 1k+1 and rk(Z) = i

]
= 1− Pr

[
∃ a row of Z that /∈W | (b1, . . . , bk+1) = 1k+1 and rk(Z) = i

]
≥ 1− (k + 1) · Pr

z∼Q
[z /∈W ]

≥ 1− τi
4

≥ 1− oc(1),

where the first inequality uses the assumption that bit j in the binary representation of W
is 1 and the facts that the dimension of W is equal to i and that we are conditioning on
rk[Z] = i. The second inequality follows from the union bound, the third inequality follows
from the assumption given in Lemma 2, and the last inequality follows from the fact that for
every i ∈ [k + 1], we have that τi = oc(1).

To show (iii) above, note that

ui,j = vi ·
ui,j
vi

≥ ωc(τ) · (1− oc(1))
≥ ωc(τ),

where the first inequality follows from (i) and (ii) above.
We now turn to the (slightly different) case where bit j of W is equal to 0, and prove

that in the execution of Algorithm 2, we will have that ui,j/vi = oc(1). Note that for any
positive real numbers N , D and τ such that τ = o(D), we have that

N + τ

D − τ
≤ N

D
· (1 + o(1)) + o(1).

Thus, it is enough to use the fact that τ = oc(vi) (proven in (i) above) and to show the next
statement:
(iv) if bit j of W is 0, then (ui,j/vi) = oc(1).

To prove (iv), note that since bit j of W is 0, we have that

ui,j
vi
≤ Pr

[
∃ a row of Z that /∈W | (b1, . . . , bk+1) = 1k+1 and rk(Z) = i

]
≤ τi

4
≤ oc(1),

where the first inequality above follows from the assumption that bit j in the binary
representation of W is 0 and the facts that the dimension of W is equal to i and that we
are conditioning on rk[Z] = i. The second inequality above follows from the union bound
and the assumption given in Lemma 2, and the last inequality follows from the fact that for
every i ∈ [k + 1], we have that τi = oc(1). As before, we choose c to be sufficiently large to
ensure that this last probability is smaller than (1/10).
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A.2 Proof of Proposition 3.12

Let a ∈ F`p. We have that:

E(z,b)∼D0 [Da(z, b)] = E(z,b)∼D0

[ k∏
i=1

E(zi,bi)∼D0 [Da(zi, bi)
]

=
k∏
i=1

E(zi,bi)∼D0

[
Da(zi, bi)

]

=
k∏
i=1

E(zi,bi)∼D0

[
Da(zi) · 1(bi = fa(zi))

]

=
k∏
i=1

Ezi∼D0

[
Da(zi) · Ebi∈R{±1}[1(bi = fa(zi))]

]

= 1
2k ·

k∏
i=1

Ezi∼D0

[
Da(zi)

]

= 1
2k ·

(
1
p
· β +

(
1− 1

p

)
· α
)k

.

A.3 Proof of Proposition 3.13

Let a, a′ ∈ F`p. First, assume that Hypa = Hypa′ , i.e., that a = a′. Then,

E(z,b)∼D0 [Da(z, b) ·Da′(z, b)] = E(z,b)∼D0 [Da(z, b)2]

= E(z,b)∼D0

[ k∏
i=1

Da(zi, bi)2
]

=
k∏
i=1

E(zi,bi)∼D0 [Da(zi, bi)2]

=
k∏
i=1

E(zi,bi)∼D0 [Da(zi)2 · 1(bi = fa(zi))]

=
k∏
i=1

Ezi
[
Da(zi)2 · Ebi [1(bi = fa(zi))]

]

Thus,

E(z,b)∼D0 [Da(z, b) ·Da′(z, b)] = 1
2k ·

k∏
i=1

Ezi [Da(zi)2]

= 1
2k ·

k∏
i=1

(
1
p
· β2 +

(
1− 1

p

)
· α2

)

= 1
2k ·

(
1
p
· β2 +

(
1− 1

p

)
· α2

)k
.
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Now we assume that Hypa ∩ Hypa′ = ∅. Then,

E(z,b)∼D0 [Da(z, b) ·Da′(z, b)] = E(z,b)∼D0

[ k∏
i=1

Da(zi, bi) ·Da′(zi, bi)
]

=
k∏
i=1

E(zi,bi)∼D0 [Da(zi, bi) ·Da′(zi, bi)]

=
k∏
i=1

E(zi,bi)∼D0 [Da(zi) · 1(bi = fa(zi))

·Da′(zi) · 1(bi = fa′(zi))]

=
k∏
i=1

Ezi
[
Da(zi) ·Da′(zi) · 1(fa(zi) = fa′(zi))

· Ebi [1(bi = fa(zi))]
]

= 1
2k ·

k∏
i=1

Ezi
[
Da(zi) ·Da′(zi) · 1(fa(zi) = fa′(zi))

]

= 1
2k ·

k∏
i=1

(
α2 ·

(
1− 2

p

))

= 1
2k ·

(
α2 ·

(
1− 2

p

))k
.

Finally, we assume that Hypa 6= Hypa′ and Hypa ∩ Hypa′ 6= ∅. Then,

E(z,b)∼D0 [Da(z, b) ·Da′(z, b)] = 1
2k ·

k∏
i=1

Ezi
[
Da(zi) ·Da′(zi) · 1(fa(zi) = fa′(zi))

]

= 1
2k ·

k∏
i=1

(β
2

p2 + α2 · (1− 2
p

+ 1
p2 ))

= 1
2k · (

β2

p2 + α2 · (1− 2
p

+ 1
p2 ))k.

A.4 Proof of Proposition 3.14

First, we assume that a, a′ ∈ F`p are such that Hypa = Hypa′ , i.e., a = a′. Then, by
Proposition 3.13 and by our settings of α and β, we have that

E(z,b)∼D0 [Da(z, b) ·Da′(z, b)] = 1
2k · (

1
p
· β2 + (1− 1

p
) · α2)k

= 1
22k · p(2`−1)·k · (1 + 1

p− 1)k.

Hence, D0[D̂a · D̂a′ ] = (p+ 1− 1
p−1 )k − 1, as desired.

Next, we assume that a, a′ ∈ F`p are such that Hypa∩Hypa′ = ∅. Then, by Proposition 3.13
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and by our setting of α, we have that

E(z,b)∼D0 [Da(z, b) ·Da′(z, b)] = 1
2k · (α

2 · (1− 2
p

))k

= 1
23k · p2k` ·

(1− 2
p )k

(1− 1
p )2k .

Hence, D0[D̂a · D̂a′ ] = 1
2k ·

(1− 2
p )k

(1− 1
p )2k − 1, as desired.

Finally, we assume that a, a′ ∈ F`p are such that Hypa 6= Hypa′ and Hypa ∩ Hypa′ 6= ∅.
Then, by Proposition 3.13 and by our settings of α and β, we have that

E(z,b)∼D0 [Da(z, b) ·Da′(z, b)] = 1
2k · (

β2

p2 + α2 · (1− 2
p

+ 1
p2 ))k

= 1
22k · p2k` .

Hence, D0[D̂a · D̂a′ ] = 0, as desired.
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