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Abstract
Motivated by an attempt to understand the formation and development of (human) language,
we introduce a “distributed compression” problem. In our problem a sequence of pairs of players
from a set of K players are chosen and tasked to communicate messages drawn from an unknown
distribution Q. Arguably languages are created and evolve to compress frequently occurring mes-
sages, and we focus on this aspect. The only knowledge that players have about the distribution
Q is from previously drawn samples, but these samples differ from player to player. The only
common knowledge between the players is restricted to a common prior distribution P and some
constant number of bits of information (such as a learning algorithm). Letting Tε denote the
number of iterations it would take for a typical player to obtain an ε-approximation to Q in total
variation distance, we ask whether Tε iterations suffice to compress the messages down roughly
to their entropy and give a partial positive answer.

We show that a natural uniform algorithm can compress the communication down to an
average cost per message of O(H(Q) + log(D(P ||Q)) in Õ(Tε) iterations while allowing for O(ε)-
error, where D(·||·) denotes the KL-divergence between distributions. For large divergences this
compares favorably with the static algorithm that ignores all samples and compresses down to
H(Q) +D(P ||Q) bits, while not requiring Tε ·K iterations that it would take players to develop
optimal but separate compressions for each pair of players. Along the way we introduce a “data-
structural” view of the task of communicating with a natural language and show that our natural
algorithm can also be implemented by an efficient data structure, whose storage is comparable
to the storage requirements of Q and whose query complexity is comparable to the lengths of the
message to be compressed. Our results give a plausible mathematical analogy to the mechanisms
by which human languages get created and evolve, and in particular highlights the possibility of
coordination towards a joint task (agreeing on a language) while engaging in distributed learning.
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19:2 Compression in a Distributed Setting

1 Introduction

Motivated by the goal of understanding human communication and in particular phenomena
associated with the formation and development of language, we introduce a distributed
compression problem and study it. We start with a description of the compression problem
first, and then give our motivation.

1.1 Model

The Basic Model

We consider a distributed setting where K players, with a complete network of point-to-
point connections, are exchanging a sequence of messages drawn from an, apriori unknown,
distribution Q. In our model the set of possible messages is a countable set, and we use N,
the set of natural numbers to denote this set without loss of generality. The communication
proceeds in rounds: In round t, a message m is chosen from N according to Q independent
of the past. Simultaneously an ordered pair of players i, j ∈ [K] def= {1, . . . ,K} with i 6= j is
chosen uniformly from all such pairs. The goal is for player i to encode the message m into a
sequence of bits and send it to player j. Player j receives this sequence of bits and decodes
it to a message m̂. (Note that the encoding, and decoding, may depend on the history of
interactions involving the sender, respectively receiver.) The round t is said to have an error
if m 6= m̂. The goal is to design encoding and decoding schemes that satisfy the condition
that for every round t, the probability of error, over the history of random choices, is at most
ε and the measure of performance is the expected length of communication averaged over
the rounds up to t, studied as a function of t.

Efficiency Issues

A second measure of performance of the encoding and decoding algorithms is their “computa-
tional efficiency”. We define this notion using a “data-structural” perspective. Note that any
encoder or decoder essentially needs to learn and store (approximations to) the distribution
Q in order to perform moderately well. Thus, such an encoder or decoder needs to work
with the amount of space that it might take to remember Q. At the same time, encoding
or decoding a single message should not, and need not, take time linear in the storage. We
thus measure the efficiency of the encoding and decoding algorithms in terms of its space
requirement, and its processing time to compute the encoding of a message m including the
time it takes to update its memory to incorporate this new message in its history.

Setup Assumptions

Finally, we parameterize one commonality in the initialization of the different players. Note
that to initialize any communication the players must have some way of exchanging messages.
One may consider the natural binary description of messages as one such possibility. Other
possibilities may go via Kolmogorov complexity, i.e., by letting the players share a common
universal machine and then representing a message via the encoding of machine that outputs
the binary representation of the message and halts. Rather than choosing any one of these
representations, we parametrize the setup by the exact initial representation. More precisely,
we consider a distribution P on N for which a given initial representation is optimal and
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assume that all players share P at the outset1. Thus the encoding and decoding algorithms
may depend on this prior distribution, but otherwise the algorithms must be completely
uniform and may not rely on any other shared information. Note that Q is chosen adversarially
and has no relationship to P , however we will allow our performance, i.e., the expected
length of the compression to depend on the gap (distance or divergence) between P and Q.

1.2 Motivation: Language Formation and Development

Our motivation to study this distributed compression problem is to give a fresh perspective on
phenomena associated with the formation and evolution of human languages. We note that
the study of languages is a central quest in linguistics, cognitive science and philosophy and
much is known about it based on empirical studies. Our hope is to add some mathematical
flavors to this.

For our purpose, we may view language as providing a map that describes how to convert
a message in an individual’s brain into a sequence of utterances. Yet no language has a
short description of this map. Part of the challenge seems to be that language is constantly
evolving and if one were to fix any bound, language seems to evolve to a point where the
description length exceeds this bound. The reason for this evolution may be viewed as some
form of compression. While the ultimate goal may not be the time it takes to convey a
message, language certainly evolves by creating shortcuts for currently frequent messages2.
This motivates our use of the compression capability of the message-to-utterance map as a
crude measure of performance. It is not the unique goal, but it is well-aligned with the goals
of language.

A second feature about languages is that no two individuals probably have identical
descriptions of the map. Attempts to give a unified description of the language (say, as in a
dictionary) end up with many different dictionaries and each one capturing some segment of
the population. Yet, language is robust to this variation and for the most part, communication
manages to work despite the lack of agreement on the dictionary. Our view of this diversity
is to consider the process of language acquisition. Individuals (children) learn from examples
and indeed there is major diversity in the set of examples one encounters depending on one’s
own circumstances, but even if one were to factor out this diversity (e.g., by considering
identical twins), their experiences are still different. This inspires our setting: individuals are
all born identical and get samples from the same distribution. (Furthermore there are no
network effects - the underlying graph is a complete graph and the message distribution is
independent of the edge distribution. We will discuss this shortly.) Yet their samples are
not identical and even this minor discrepancy seems to foil simple algorithms to coordinate
on a compression map and introduces either diversity in the map, or complexity in the
coordination process. Thus, the distributed compression problem already gives a potential
reason for the diversity in language.

We emphasize that our choice of a simple graph (the complete graph) and the independence
between the messages and the graph are not restrictions of the “model”. It is quite easy to
extend our model to the setting where the graphs are complex, the distributions on edges
are weighted and to allow the distribution of the messages to depend on the edge. While

1 Intuitively, we can think of P as being a primitive “gesturing language” that is understandable to all
people.

2 For instance, a language could evolve to use the word “Ix” to denote “a boy who is not able to
satisfactorily explain what a Hrung is, nor why it should choose to collapse on Betelgeuse Seven” [1].
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such richness is permitted by the model, we restrict to the simple setting to allow simpler
contrasts between basic options (and our more sophisticated one).

Finally, one intriguing aspect of language is the amount of influence that different players
have on its development. For the most part, language evolution seems to be a decentralized
process, but this does not imply equal influence for all players. The role of books, especially
those on grammar or dictionaries, of the media, and popular figures definitely assigns
disproportionate influence to different players. A question that might be asked is whether
language could manage to gain coherence across the population in the absence of such highly
influential figures. Our model offers a way to study such questions (in our simplified setting
of compression).

1.3 Context and Main Benchmarks

Our main result is a distributed compression algorithm with “decent” performance. To set
the stage for this algorithm, we first describe some basic benchmarks and then some basic
compression schemes.

In what follows, we use Q(m) to denote the probability of a message m being drawn
according to distribution Q. We let H(Q) =

∑
m∈NQ(m) log2(1/Q(m)) denote the binary

entropy of Q and we let D(Q||P ) =
∑
m∈NQ(m) log2(Q(m)/P (m)) denote the KL-divergence

between Q and P . The best possible compression scheme would need at least H(Q) bits per
message in expectation – this is true in the 2-person case and we will discuss below whether
this is achievable in the distributed setting.

We refer to τ = 2t/K as the local time, which roughly measures the number of messages
any one player has seen (either as sender or receiver) at time t. We use Tε to denote the
local time by when a fixed player can obtain a ε-close approximation to Q, with probability
at least 1− ε. Note that Tε can be upper bounded by O(2H(Q)/ε) (and so in particular Tε is
finite for distributions with finite entropy). Intuitively, Tε is a reasonable measure of local
time by which one may expect to be able to compress well according to Q (even in the simple
2-player setting) and this will be a benchmark time for our compression algorithms also.

Finally, a natural upper bound on the space complexity of storing (an ε-approximation
to) Q is again 2H(Q)/ε. We will compare the storage needs of the various solutions below to
this benchmark. Natural measures of update times would be polylogarithmic in space and
we will ask for that. (In what follows, we assume messages are given as black boxes that can
be stored in unit time and space and that basic operations such as comparison of messages
(is m1 ≤ m2?) take unit time.)

We now turn to some basic schemes for compression.

Near Ideal Compression: We first point out the (obvious?) flaw with the most natural hope
one may have: Players could try to learn Q and get ε-close to the right distribution
moderately fast (in local time Tε) and then use the optimal (Huffman) coding applied to
such a distribution. Unfortunately, they can not agree on this naive distribution and so
no naive variation of the 2-player compression mechanism seems to be implementable.

Static Compression: Players simply encode and decode according to the Huffman code for
distribution P . The error probability is zero and the expected length of the compression
will be at most H(Q) +D(Q||P ) + O(1). The good news with this scheme is that the
performance does not depend on K, but the bad news is that players do not learn to
speak more effectively from examples. This is captured by the fact that the gap from
optimal compression is D(Q||P ) and we think of this as a large quantity.
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Point-to-Point Compression: For every ordered pair (i, j), player i uses the Lempel-Ziv (or
any universal) compression algorithm restricted to the sequence of messages that were
directed from i to j and player j decodes according to the same history. This scheme
converges to a compression length of H(Q) but it takes a relatively long time - a local
time of K × Tε. We view dependence on K in the local time as too high. This scheme
also involves memory requirement which is K times larger than the space needed for a
2-player solution.

Dictatorial Compression: Here one player (the dictator) is singled out and tasked with the
compression task. He learns a distribution close to Q and then communicates the resulting
encoding/decoding scheme to all other players. The compression achieved by this scheme
is near-optimal (converges to H(Q)); and the space requirement is also near-optimal. The
main quantitative weakness we see is a mild dependence on K in the time it takes for
this scheme to converge: Specifically it takes about Tε local time for the dictator to learn
the distribution (which is perfectly fine), but then it needs to spread the information out
to all K players and this takes Tε + Θ(logK) additional local time (using any reasonable
gossip algorithm with proper pipelining of messages). The main “criticism” of the scheme
may be that it is centralized. While centralized mechanisms do plausibly play a role in
the development of languages, they do not seem to be the only mechanism, and so we
seek a truly distributed solution below.

1.4 Results
We now state our main theorem.

I Theorem 1 (Main Theorem). Let ε > 0 be a sufficiently small positive absolute constant.
For all K and P , there exists a deterministic distributed compression protocol Π, such that
for any distribution Q over N when run for T iterations,

the amortized communication cost of Π over T iterations approaches O(H(Q)+
logD(Q||P ) + log(1/ε)) as T gets large. More formally, the amortized communication
cost is

O

(
H(Q) + logD(Q||P ) + log(1/ε) + 2Θ(H(Q)+D(Q||P ))/ε ·K

T
·D(Q||P ) + 1

)
in each round, the transmitter and receiver run in time linear in their input and output
sizes.
the space usage is exponential in (H(Q) +D(Q||P ))/ε.

Our scheme is obtained with each player mixing the static scheme (used initially) with
a switch to a more complex scheme once a sufficiently good approximation to Q has been
learned (by the player). A central ingredient in our scheme is a solution to the “Uncertain
Compression” problem studied by Juba et al. [6] and Haramaty and Sudan [4]. In the
uncertain compression problem, two players attempt to compress a single message drawn
from a distribution Q, but only the sender knows P and the receiver only knows some
distribution Q′ which is close to Q. The uncertain compression problem seems to arise
naturally in our setting (neither the sender nor the receiver know Q in our case, but both
are close and this mild difference can simply be ignored). [6] give a “randomized” solution
to this problem which compresses messages roughly down to H(Q) +O(1) bits. Adapting
this solution to our setting, essentially as a black box, achieves similar effects in our setting
(compression down to H(Q) + δ ·D(Q||P ) bits in time δ−1 · Tε local time), but a flaw with
this scheme is that it requires the players to share a large random string in the setup phase.

ITCS 2017
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Instead we turn to the solution of [4] which does not need any randomness, but their solution
assumes that Q is supported on a finite set (of size N) and their compression length is
O(H(Q) + log logN). Since our distributions are not supported on finite sets, we need to
modify their scheme and a careful modification followed by a relatively straightforward
analysis leads to our eventual scheme and analysis. In the process, we are also able to build
a small data structure implementing the encoding and decoding with efficient processing
time. We point out that if one does not care about computational efficiency, then we can
remove the additive log(1/ε) term from the communication cost in Theorem 1 above while
also replacing the multiplicative 2Θ(H(Q)+D(Q||P ))/ε factor by 2Θ(H(Q))/ε (for more details,
see Section 3.6).

1.5 Previous Work on Language Evolution
There have been many works on language evolution (to the best of our knowledge all from
outside the theoretical computer science community). Without trying to be exhaustive, we
briefly mention some of them. In the lingustics field, significant work has been done in the
last decades on trying to understand language evolution, including [2, 3]. Several papers also
study language from the landscape of evolutionary game theory and evolutionary biology,
e.g., [14, 12, 13, 9, 10, 11, 5, 7, 8], and neuroscience, e.g., [16]. There has also been some
previous attempts to connect language evolution to the framework of information theory
(e.g., [15]), but their focus is on word formation in the “two-player” case, unlike our setup
where we consider language as the outcome of the interaction between several players. To
the best of our knowledge, the distributed compression perspective developed in this paper
has not been considered before.

1.6 Conclusions
We believe that the model raised is an extremely interesting one and is quite pertinent to the
analyses of collective distributed phenomena where distributed entities are trying to come
together to form joint actions. We believe the process and notation permit a much richer
study, especially when one starts to allow correlations between the messages generated and
the sender-receiver pairs. The ability to study the encoding and decoding functions – are
they really functions, are they inverses of each other, how do they evolve? – are all intriguing
questions that can now be subject to analyses. While our results do not address all these
aspects, we do hope it will be the subject of future work.

In terms of the constructions and results, one interesting aspect of the compression
protocol we use is that it mimics some of the curious features shown in human language.
For every message m, player i and round t, the encoding function describes a specific word
which is player i’s encoding of m, i.e., it gives a (encoding) dictionary. The same player also
possesses at the same round a decoding dictionary which we may view as saying, for every
messagem, which words this player would decode tom. Unlike in the basic schemes described,
in our scheme the encoding dictionary is not identical to the decoding dictionary. While the
encoding dictionary is a function mapping messages to words, the decoding dictionary is
not: It is more conservative and lists many words for any given message. This phenomenon
is definitely visible in human languages and our work suggests a plausible reason for the
occurence of this phenomenon.

We now mention some important questions that arise from this work. On the conceptual
side, it would be very interesting to further use the formalism and ideas developed in
theoretical computer science over the last decades in order to capture the phenomena
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exhibited by human languages. In particular, it would be interesting to extend our model to
take into account other objectives along with compression. It would also be very interesting
to consider the case where Q and the set of interacting players vary (slightly) with time, in
the hope of modelling cultural changes that take place from one generation to another.

On the more technical side, we sticked in this work to the complete graph representing
the interactions between various players. It would be worthwile to investigate other graph
structures that favor the creation of communities, and study the properties of the language(s)
that evolve in this case. Moreover, while we have considered in this work generic distributions
Q, it would be nice to explore the data-structural aspects in the case where Q comes from a
well-structured family of distributions (e.g, a Markov Chain). Finally, a concrete question is
to determine whether the O(log(D(P ||Q))) additive term in Theorem 3 is actually needed,
which seems to be related to some intriguing questions about the chromatic number of certain
families of graphs (see [4]).

Outline of the Rest of the Paper

In Section 2, we formally define our distributed compression model. In Section 3, we
describe our main protocol along with its computationally efficient implementation (Sec-
tion 3.1, Section 3.2, Section 3.3, Section 3.4 and Section 3.5). In Section 3.6, we describe a
computationally inefficient variant of our protocol that requires smaller communication.

2 Formal Definitions

Throughout this paper, we denote by H(Q) ,
∑
xQ(x) log(1/Q(x)) the Shannon entropy of

a probability distribution Q, and by D(Q||P ) ,
∑
xQ(x) log(Q(x)/P (x)) the KL divergence

between probability distributions Q and P . For any set S of elements, we write u ∈R S to
mean that u is sampled uniformly at random from the set S. We also denote by N the set of
all natural numbers.

We now formally define our setup.

I Definition 2 (Distributed Compression). A distributed compression protocol Π is paramet-
rized by a tuple (K,P, ε) where

K is the number of players.
P is a prior distribution over N, which the players all agree on.
ε is an error parameter.

The protocol is run on an instance parametrized by a pair (Q,T ) where Q is the “true”
distribution over N, and T is the total number of iterations for which the protocol is run.
Both Q and T are unknown to the players. In any iteration t ∈ [T ],

Two distinct players i and j are chosen uniformly at random from [K].
A message m is sampled from distribution Q, and is given to player i.
Player i attempts to communicate m to player j by sending a single message comprising
of Ct bits.
Player j outputs a message m̂.

The protocol is required to be such that, for any Q, and in any iteration t, it holds that
Pr[m̂ 6= m] ≤ ε, where the the probability is over the randomness of the messages and players
chosen in the history of the protocol. The amortized communication cost of Π is defined to
be
∑
t∈[T ] Ct/T .

ITCS 2017
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During the description of the protocol and the analysis, we will use t to denote the current
iteration. Also, we will use ti to denote the ‘local time’ of player i. That is, ti is the number
of times player i was picked as the sender. Note that t =

∑
i∈[K] ti.

3 A Distributed Compression Protocol

In this section, we prove the following theorem, which is the same as Theorem 1 but
“without the computational efficiency” part. The proof of the computational efficiency part
of Theorem 1 appears in Section 3.5.

I Theorem 3. Let ε > 0 be a sufficiently small positive absolute constant. For all K and P ,
there exists a deterministic distributed compression protocol Π, such that for any distribution
Q over N when run for T iterations, the amortized communication cost of Π over T iterations
approaches O(H(Q) + logD(Q||P ) + log(1/ε)) as T gets large.

More formally, for T ≥ 8 · 22H(Q)/ε · log(8/ε) ·K, the amortized communication cost is

O

(
H(Q) + logD(Q||P ) + log(1/ε) + 22H(Q)/ε · log(8/ε) ·K

T
·D(Q||P ) + 1

)
.

In the rest of this section, we describe the protocol behind the proof of Theorem 3.

3.1 Overview of the Protocol
We begin by giving a brief overview of the protocol. In any iteration, the chosen players will
use one of two protocols that we call Static protocol (Section 3.2) and Uncertain protocol
(Section 3.3).

On a high level, the Static protocol communicates messages with zero error, but it
uses H(Q) + D(Q||P ) + O(1) bits of communication in expectation. On the other hand,
the Uncertain protocol communicates O(H(Q) + log(D(Q||P ))) bits in expectation, but it
makes errors with some probability.

Suppose during iteration t, a message m is chosen to be sent by player i to player j,
where m is sampled from the unknown distribution Q. In this case, player i will decide to
communicate using either the Static protocol or the Uncertain protocol. Intuitively, in
the initial few rounds in which player i is the sender, she will use the Static protocol as
she does not want to risk incurring large error by using the Uncertain protocol. But, once
player i has seen enough messages, she will switch to using the Uncertain protocol. The
final bound on the amortized communication cost comes about by showing that the protocol
ends up using the Uncertain protocol much more often than the Static protocol.

In Section 3.4, we describe exactly how the players switch between the two protocols and
prove Theorem 3.

3.2 The Static Protocol
In the Static protocol, player i uses the Huffman codebook for distribution P in order
to communicate the message m. The expected communication cost of doing so is H(Q) +
D(Q||P ) + O(1). The good aspects of this protocol are that the error probability is zero,
and the players do not require any knowledge about the unknown distribution Q. However,
the downside is that the communication cost is quite high in terms of the dependence on
D(Q||P ).

We summarize the Static protocol in the following straightforward lemma.
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I Lemma 4 (Static Protocol). Suppose that during iteration t, a message m is chosen to
be sent by player i to player j, where m is sampled according to the unknown distribution
Q. Then, player i can communicate m to player j with zero error, such that the expected
communication length is upper bounded by

H(Q) +D(Q||P ) + 1.

3.3 The Uncertain Protocol
The Uncertain protocol is suitable when the players have individually learnt good estimates
of the distribution Q. However, since the players do not exactly agree on their learned
estimates, we need an approach for the players to communicate when their estimates of Q
are close but may not be exactly identical. Our approach is inspired from [4], and we obtain
a protocol that in expectation communicates roughly O(H(Q) + logD(Q||P )) +O(1) bits.
We summarize the Uncertain protocol in the following lemma,

I Lemma 5 (Uncertain Protocol). Suppose that during iteration t, a message m is chosen
to be sent by player i to player j, where m is sampled according to the unknown distribution
Q. Then, player i can communicate m to player j, such that the expected communication
length is upper bounded by

O (H(Q) + logD(Q||P ) + log(1/ε) + 1) .

Moreover, the error probability is at most

2 · e− 1
8
Q(m)
K t + ε

4 ,

where the randomness is over all past messages and players chosen in the previous iterations.

Isolating Hash Families

In order to describe the Uncertain protocol achieving Lemma 5, we will need the following
notion of an isolating hash family which generalizes that of [4].

I Definition 6 (Isolating Hash Families). Let N , R and ` be positive integers and ε ∈ (0, 1].
Then, a collection H = {h1, h2, . . . , hM : [N ]→ [R]} is said to be (N, `, ε)-isolating if for every
subset S ⊆ [N ] with |S| ≤ 2`−1 and every m ∈ [N ]\S, we have that Prh∈H[h(m) ∈ h(S)] < ε.
We call M the size and R the range-size of the isolating hash family H. The family H is said
to be efficiently computable if there is an algorithm that takes as input i ∈ [M ] and j ∈ [N ]
and computes hi(j) in time polynomial in logM , logN and logR.

We note that the family used in [4] corresponds to setting ε = 1 in Definition 6. The next
lemma shows the existence of an explicit and efficiently computable (N, `, ε)-isolating hash
family of relatively small size and small range-size.

I Lemma 7. For every positive integers N and ` and every ε ∈ (0, 1], there exists an explicit
and efficiently computable (N, `, ε)-isolating hash family H(N,`,ε) of size and range-size at
most 2` · logN

ε .

Proof. Let q = 2`+dlogn+log 1
εe. For each x ∈ Fq, define the function hx to be the evaluation

of the polynomial defined by m on x, i.e.,

hx(m0, ...,mn−1) ,
n−1∑
i=0

mix
i.

ITCS 2017
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By the fundamental theorem of algebra, for every m′ 6= m, we have that Prx[hx(m) =
hx(m′)] ≤ n

q ≤ 2−`−log 1
ε . Thus, by the union bound, for every set S of size at most 2`−1, we

have Pr[f(m) ∈ f(S)] ≤ ε, as required. J

Pre-Processing Step

As stated earlier, all the players come in with a prior distribution P . In addition, as part of
the pre-processing, they compute and store the following:

Divide the input space N into a countable number of buckets indexed by r ∈ N>0, given
by Ar =

{
m : 2−r < P (m) ≤ 2−r+1}. Clearly, for any r, it holds that |Ar| ≤ 2r. In

addition, define the function r(m) := dlog(1/P (m))e for every m ∈ N, that is, r(m) is
the index of the bucket to which m belongs.
For every r, fix an (arbitrary) choice of isolating hash families H(N,`,ε/4), for N = |Ar|
and every choice of ` ∈ {1, 2, · · · , dlogNe}.

Suppose during iteration t, a message m is chosen to be sent by player i to player j,
where m is sampled according to the unknown distribution Q. Define Qit to be the empirical
distribution of the samples seen by player i up to iteration t (which includes the iteration t,
where the message seen is m). Similarly, define Qjt to be the empirical distribution of the
samples seen by player j up to iteration t (this includes iteration t, but by definition player
j does not see any message in this iteration). The players use the encoding and decoding
strategies described next.

Encoding

Upon receiving message m, player i does the following,
(i) let A def= Ar(m) and N def= |A|.
(ii) let ` =

⌈
log(4/Qit(m))

⌉
.

(iii) let u ∈R [H(N,`,ε/4)].
(iv) Send the tuple (r, `, u, hu(m)) to player j.

The intuition for this encoding is as follows: upon receiving r, player j understands that
m ∈ Ar, upon receiving `, she understands which hash family to use, upon receiving u, she
knows which hash function to use, and hopefully with hu(m), she will be able to recover m
correctly.

Decoding

Upon receiving the tuple (r, `, u, h∗), player j does the following:
(i) Set A = Ar and N def= |A|.
(ii) Identify hu ∈ H(N,`,ε/4).
(iii) Output arg maxm′∈A:hu(m′)=h∗ Q

j
t (m′).

3.3.1 Analysis
We now analyze the operation of the above protocol.

Communication Cost

Suppose the message m is chosen to be sent by player i to player j. The communication cost
of sending the tuple (r, `, u, hu(m)) is as follows:
(i) log dlog(1/P (m))e bits to send r.
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(ii) log(log(1/Qit(m)) + 3) bits to send `, since ` ≤ log |S|+ 1 ≤ log(4/Qit(m)) + 1.
(iii) log(1/Qit(m)) + log dlog(1/P (m))e+ log(1/ε) + 5 bits to send u (it takes `+ log logN +

log(4/ε) bits).
(iv) log(1/Qit(m)) + log dlog(1/P (m))e+ log(1/ε) + 5 bits to send hu(m).
Thus, the total communication is given by,

2 log(1/Qit(m))︸ ︷︷ ︸
(I)

+3 log dlog(1/P (m))e︸ ︷︷ ︸
(II)

+ log(log(1/Qit(m)) + 3) + 10︸ ︷︷ ︸
(III)

+2 log(1/ε)

We wish to prove guarantees on the expected communication cost, when m is drawn from
Q. The terms in (III) are lesser order terms, which are smaller than (I), thus we can ignore
them. Term (II) in expectation is,

E
m∼Q

[
log
(⌈

log 1
P (m)

⌉)]
≤ log

(
E

m∼Q

⌈
log 1

P (m)

⌉)
≤ log(H(Q) +D(Q||P ) + 1)

Term (I) is slightly more tricky to bound in expectation. Note that the empirical distribution
changes on receiving messagem (this turns out to be critical in bounding the communication!).
That is, Qit(m) = 1+(t−1)Qi(t−1)(m)

t . Also letMi
t be the multi-set of all messages that player

i has seen up to time t. Thus, Term (I) in expectation is as follows,

E
Mi

(t−1)

E
m∼Q

[
log 1

Qit(m)

]
= H(Q) + E

Mi
(t−1)

E
m∼Q

log Q(m)
1
ti

+
(ti−1)Qi(t−1)(m)

ti


In order to bound the second term above, we consider two cases, (i) Qi(t−1)(m) ≥ Q(m)/2 or
(ii) Qi(t−1)(m) < Q(m)/2. After fixing ti and m, by Chernoff bound over the randomness of
Mi

(t−1) we have that case (i) happens with probability at least 1− exp(−t ·Q(m)/8).

Case (i) Qi(t−1)(m) ≥ Q(m)/2 =⇒ log

 Q(m)

1
ti

+
(t−1)Qi

(t)
(m)

ti

 ≤ 1

Case (ii) Qi(t−1)(m) < Q(m)/2 =⇒ log

 Q(m)

1
ti

+
(ti−1)Qi

(t−1)
(m)

ti

 ≤ log(ti ·Q(m))

Using these upper bounds we get that,

E
Mi

(t−1)

E
m∼Q

log Q(m)
1
t +

(ti−1)Qi(t−1)(m)
ti

 ≤ E
m∼Q

[
1 ·
(
1− e−ti·Q(m)/8)+ log(ti ·Q(m)) · e−ti·Q(m)/8]

≤ 1 + E
m∼Q

[
log(ti ·Q(m)) · e−ti·Q(m)/8]

≤ 2 ,

where the last inequality just follows from the fact that log(x) · e−x/8 ≤ 1 for all x.
Thus the overall communication is bounded by

(2 + o(1))H(Q) + 3 logD(Q||P ) + 2 log(1/ε) +O(1) .

Error Guarantee

We now show that the error probability in iteration t, denoted by perr
t of the protocol is

upper bounded by 2 · e− 1
8
Q(m)
K t + ε/4, where m is fixed to be the message sent in round t.
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Since player i has communicated (r, `, u), player j knows the correct bucket of messages
Ar to which m belongs. Knowing ` and u, player j also knows which hash function is being
used, which is chosen to ensure that for every set S of size ≤ 2`, with probability 1− ε/4, for
all m′ ∈ S \ {m}, hu(m) 6= hu(m′).

Thus, if ` ≤ log(1/Qjt (m)) then the j-th player will distinguish m from the set S = {m′ ∈
A | Qjt (m′) ≥ Q

j
t (m)} with probability 1− ε/4. We will bound the probability that this does

not happen.

perr
t ≤ Pr

[
` > log(1/Qjt (m))

]
+ ε

4
≤ Pr

[
4 ·Qit(m) ≥ Qjt (m)

]
+ ε

4

≤ Pr
[
Qit(m) ≥ 2 ·Q(m)

]
+ Pr

[
Qjt (m) ≤ 1

2Q(m)
]

+ ε

4

≤ e−
1
3
Q(m)
K t + e−

1
8
Q(m)
K t + ε

4 ,

where the last equality follows by Chernoff bound and the fact that Qit, Q
j
t are binomial

distributions with parameters t and Q(m)
K .

3.4 Final Protocol
We are now ready to present the protocol desired in Theorem 3. As before, suppose that
during iteration t, a message m is chosen to be sent by player i to player j, where m is
sampled according to the unknown distribution Q. As defined in Section 3.3, define Qit to be
the empirical distribution of the samples seen by player i up to iteration t (which includes the
iteration t, where the message seen is m). Similarly define Qjt to be the empirical distribution
of the samples seen by player j up to iteration t (this includes iteration t, but by definition
player j does not see any message in this iteration).

For ease of presentation, we will first assume that the players know the entropy of
the distribution Q. This is not a natural assumption, and indeed we do get around it in
Section 3.4.2. However, we will describe the main protocol with this assumption to make the
analysis more intuitive.

Encoding

Upon receiving message m, player i does the following:
If ti < 80 · 22H(Q)/ε · log(8/ε),
− send the bit b = 0
− use the Static protocol (Lemma 4) to send message m.
Else,
− send the bit b = 1
− use the Uncertain protocol (Lemma 5) to send message m.

(where the bit b indicates whether player i is using the Static protocol or the Uncertain
protocol).

Decoding

Depending on the value of the received bit b, player j uses either the Static protocol or the
Uncertain protocol to decode and output m̂.
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3.4.1 Analysis
We now upper-bound the amortized communication cost and the error probability in any
iteration of the above protocol.

Communication Cost
By the design of the final protocol, each player uses the Static protocol at most 80 ·22H(Q)/ε ·
log(8/ε) times, and hence overall, the Static protocol is used at most O(22H(Q)/ε ·log(1/ε)·K)
times. Thus, if the total number of iterations is T , then the total communication cost in
expectation is at most,

O
(
22H(Q)/ε · log(1/ε) ·K

)
· (H(Q) +D(Q||P ) + 1)︸ ︷︷ ︸

Static

+ T ·O
(
H(Q) + logD(Q||P ) +O(1)

)
︸ ︷︷ ︸

Uncertain

.

And hence, the expected amortized communication cost is at most

O

(
H(Q) + logD(Q||P ) + 22H(Q)/ε · log(1/ε) ·K

T
·D(Q||P ) + 1

)
.

Error Guarantee

We first show the following lemma, which is an easy consequence of Markov’s inequality.

I Lemma 8. For any distribution Q over N, it holds that,

Pr
m∼Q

[
Q(m) ≥ 2−H(Q)/ε

]
≥ 1− ε.

Proof. By the definition of the entropy H(Q), we have that E
m∼Q

[
log 1

Q(m)

]
= H(Q). Thus,

the following application of Markov’s inequality immediately implies the lemma:

Pr
m∼Q

[
log 1

Q(m) ≥
H(Q)
ε

]
≤ ε. J

We will show that in any iteration t, the error probability is at most ε, where the
randomness is over all the past and current messages and chosen players. We distinguish two
cases:

Case 1. If t < 8 · 22H(Q)/ε · log(8/ε) ·K:
Using the Chernoff bound, it is easy to see that

Pr
[
ti > 80 · 22H(Q)/ε · log(8/ε)

∣∣∣∣ t < 22H(Q)/ε · log(8/ε) ·K
]
≤ exp

[
−Ω
(
22H(Q)/ε · log(8/ε)

)]
� ε.

Thus, it follows that with probability ≥ 1− ε, player i uses the Static protocol in which
case there is zero error. Thus, the probability of error is at most ε.

Case 2. If t ≥ 8 · 22H(Q)/ε · log(8/ε) ·K:
Section 8 implies that when a message m is sampled from Q, with probability at least
1 − ε/2 it holds that Q(m) ≥ 2−2H(Q)/ε. In this situation, player i may choose to use
either the Static or the Uncertain protocol. In the former case, the protocol makes no
error. In the latter case, by Lemma 5, the protocol makes error with probability at most

2 · e−
1
8K

t
Q(m) + ε

4 ≤ 2 · e− 1
8 2−2H(Q)/ε22H(Q)/ε·log(8/ε) + ε

4 ,

which is at most ε/2 if Q(m) ≥ 2−2H(Q)/ε. Hence, the total error probability is at most ε.
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3.4.2 Getting around the entropy assumption
We let ε > 0 be a sufficiently small positive absolute constant. We now informally describe
how to construct a protocol that does not assume that the players know the entropy
of the distribution Q. We note that the main reason for the “switching” criterion ti <

80 · 22H(Q)/ε · log(8/ε) was to ensure that when we are using the Uncertain protocol and
we encounter a message m with Q(m) ≥ 2−2H(Q)/ε (which happens with probability at least
1− ε/2), it holds that ti ·Q(m)� log(1/ε).

Thus, the protocol guarantees will still hold as long as the players switch to the Uncertain
protocol after a sufficiently “large” time ti. Indeed, we show that it is possible to switch to
the Uncertain protocol after time ti such that Prm∼Q [ti ·Q(m)� log(1/ε)] ≥ 1− ε

4 .
We now describe the “switching” criterion. In what follows, we prove that for every

player, the switching criterion is not met too early, nor is it met too late. Lemma 10 shows
that the probability that the switching criterion is met “too early” (i.e., before the time T0
defined below) is very small. Moreover, it turns out that the probability that the switching
criterion is met “too late” (i.e., after time 2O

(
H(Q)
ε

)
·K) is also very small (see Lemma 9

below). Together, these two properties allow individual players to switch from the Static
protocol to the Uncertain protocol based on their observed history of messages. In turn,
this allows us to carry out an analysis of the communication cost and the error probability
without knowledge of the entropy of Q.

We say that at player i, the switching criterion is met at iteration ti if

ti ≥ ε−3 and
∑

m:Qit(m)>t
− 1

2
i

Qit(m) ≥ 1− ε

2 .

We first show that, with high probability, the switching criterion is met in time 2O
(
H(Q)
ε

)
·K

I Lemma 9. For every player i, the probability that the switching criterion is met before
time t > 4 · 2

16H(Q)
ε K is at least 1− exp

(
− 1

64ε
22−

4H(Q)
ε

t
K

)
.

Proof. Let m be such that Q(m) ≥ 2−
4H(Q)
ε . By the Chernoff bound,

Pr
[
Qit(m) ≤ (1− ε

4)Q(m)
]
≤ exp

(
− 1

32ε
2Q(m)

K
t

)
.

Moreover, by the Chernoff bound, we have that Pr[ti ≤ t
2K ] ≤ exp

(
− t

8K
)
. We define the

event

E =
[
ti ≤

t

2K ∨ ∃m : Q(m) ≥ 2−
4H(Q)
ε ∧Qit(m) ≤ (1− ε

4)Q(m)
]
.

By the union bound, we get that

Pr [E] ≤ exp
(
− t

8K

)
+ exp

(
4H(Q)
ε

− 1
32ε

2 2−
4H(Q)
ε

K
t

)

≤ exp
(
− 1

64ε
22−

4H(Q)
ε

t

K

)
.

If the event E does not hold, then for every m that satisfies Q(m) > 2−
4H(Q)
ε we get that

Qit(m) > (1− ε

4)Q(m) > (1− ε

4)2−
4H(Q)
ε >

(
t

2K

)− 1
2

> t
− 1

2
i .
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Thus, ∑
m:Qit(m)>t

− 1
2

i

Qit(m) ≥
∑

m:Q(m)>2−
4H(Q)
ε

Qit(m)

≥ (1− ε

4) ·
∑

m:Q(m)>2−
4H(Q)
ε

Q(m)

= (1− ε

4) · Pr
m∼Q

[
Q(m) > 2−

4H(Q)
ε

]
= (1− ε

4) · Pr
m∼Q

[
log 1

Q(m) <
4H(Q)
ε

]
≥ (1− ε

4) · (1− ε

4)

≥ 1− ε

2 .

Moreover, ti > t
2K > ε−3. Hence, in this case, the switching criterion is met. J

Let T0 be the smallest t > 1
ε3K that satisfies Prm∼Q

[
Q(m) ≥ 1

4

√
K
t

]
> 1− 3

4ε. First, we
will observe that after time T0, it is indeed safe to switch to the Uncertain protocol.

I Observation 3.1. For every time t ≥ T0, the Uncertain protocol succeeds with probability
at least 1− ε.

Proof. By Lemma 5, with probability at least 1− 3
4ε, the protocol succeeds with probability

at least 1− ε
4 . J

It remains to show that with high probability, we will not use the Uncertain protocol
before T0.

I Lemma 10. The probability that player i meet the switching criterion before time T0 is at
most ε.

Proof. We will show that for any fixed ti ≤ 2T0
K , we have that the probability that for player

i, the switching criterion is met in local time ti, is at most 2 · exp
(
− 1

12
√
ti
)
. By the union

bound, we will get that the probability that for player i, the switching criterion is met before
local time 2T0

K is bounded by
∞∑

ti=ε−3+1

2 ·exp
(
− 1

12
√
ti

)
≤
∫ ∞
ε−3

2 ·exp
(
− 1

12
√
ti

)
dti = 24 · (

√
ε−3 +12) ·exp

(
− 1

12
√
ε−3
)
≤ ε

2 .

Moreover, by the Chernoff bound, we have that the probability that the local time of player
i in (global) time T0 exceeds 2T0

K is at most exp(− T0
3K ). Thus, the probability that for player

i the switching criterion is met before time T0 is at most ε
2 + exp(− T0

3K ) ≤ ε, as required.
Fix ti and let M =

{
m ∈ N | Q(m) ≥ 1

2
√
ti

}
. Since ti < 2T0

K , we have that

Pr
m∼Q

[m ∈M ] = Pr
m∼Q

[
Q(m) ≥ 1

2
√
ti

]
≤ Pr
m∼Q

[
Q(m) ≥

√
K

2
√

2T0

]
≤ Pr
m∼Q

[
Q(m) ≥

√
K

4
√
T0

]
≤ 1− 3

4 ε .

Thus, by the Chernoff bound,

Pr
[ ∑
m∈M

Qit(m) ≥ 1− ε

2

]
≤ exp

(
−ε · ti25

)
(1)

ITCS 2017



19:16 Compression in a Distributed Setting

Now we upper bound Pr
[
∃m /∈M : Qit(m) > 1

2

√
K
t

]
. To prove this bound, we can

assume without lost of generality that for all m except one, we have that Q(m) > 1
5
√
ti
: if

there exist two elements of such a small probability, we can merge them together to a single
element and only increase the probability Pr

[
∃m /∈M : Qit(m) > 1

2

√
K
t

]
. So we will assume

that there are at most 5
√
ti + 1 such elements. By the Chernoff bound, we have that for

each m /∈M , Pr
[
Qit(m) > 1√

ti

]
≤ exp

(
− 1

6
√
ti
)
and by a union bound we can get that

Pr
[
∃m /∈M : Qit(m) > 1√

ti

]
≤ (5
√
ti + 1) · exp

(
−1

6
√
ti

)
≤ exp

(
− 1

12
√
ti

)
. (2)

By Combining Equations 1 and 2 , assuming ti ≥ ε−3, we get

Pr

 ∑
m:Qi

t
(m)> 1√

ti

Qit(m)

 ≤ Pr

[∑
m∈M

Qit(m) ≥ 1− ε

2 ∨ ∃m /∈M : Qit(m) > 1√
ti

]
≤ 2·exp

(
− 1

12
√
ti

)
.

This gives an upper bound of 2 · exp
(
− 1

12
√
ti
)
on the probability that at player i, the

switching criterion is met in local time ti, as needed. J

3.5 Efficient Implementation
We briefly sketch how to efficiently implement the encoding and decoding strategies of
Section 3. The details are deferred to the full version. The overall update time will be
linear in (H(Q) +D(Q||P ))/ε, and the used memory will be proportional to the dictionary-
size which is exponential in (H(Q) + D(Q||P ))/ε. The key question of interest is how to
compute the uncertain compression function efficiently. Note that while we would like a
fast “processing time” per update, the model naturally allows us to amortize the cost over
many operations. In particular, the switch from the Static protocol to the Uncertain one
does not have to be carried out in an instant. We will exploit this feature strongly. The
corresponding efficient algorithm will have three phases:
1. A phase where we simply use the Static protocol while updating the empirical distribu-

tions.
2. A phase where the encoding and decoding dictionaries are being built, but where we still

use the Static protocol.
3. A phase where we use the Uncertain protocol.

In what follows, we assume that the messagesm and the prior distribution P are presented
jointly so that the message m given to player i in round t is EP (m), namely the Static
(Huffman) encoding of m under P . This is a natural assumption about P – after all P is
meant to represent a simple and natural, though unoptimized, distribution over the message
space. We now recall the statement of Theorem 1.

I Theorem 1. Let ε > 0 be a sufficiently small positive absolute constant. For all K and P ,
there exists a deterministic distributed compression protocol Π, such that for any distribution
Q over N when run for T iterations,

the amortized communication cost of Π over T iterations approaches O(H(Q)+
logD(Q||P ) + log(1/ε)) as T gets large. More formally, the amortized communication
cost is

O

(
H(Q) + logD(Q||P ) + log(1/ε) + 2Θ(H(Q)+D(Q||P ))/ε ·K

T
·D(Q||P ) + 1

)
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in each round, the transmitter and receiver run in time linear in their input and output
sizes.
the space usage is exponential in (H(Q) +D(Q||P ))/ε.

Note that in Theorem 1, the input to the transmitter is EP (m) and the input to the
receiver is the message that she gets from the transmitter.

Proof Sketch. Let Tε = 2Θ(H(Q)+D(Q||P ))/ε denote the local time at which our inefficient
transmitter and receiver – described in the previous section – should switch from the Static
protocol to the Uncertain one. In the efficient protocol, during the execution of the Static
protocol for the first Tε units of local time, each player will also maintain a count of the
number of times she has seen each message using a simple binary tree indexed by EP (m).
At local time Tε, player i updates his empirical distribution QiTε . Note that we can amortize
this update time over several rounds. After round Tε, the efficient protocol will start building
an encoding and decoding table for the uncertain compression algorithm, but will take
T ′ = poly(Tε) rounds to do so (as we will explain below), and in the meanwhile, it will
continue using the Static protocol for these T ′ rounds. At round Tε +T ′, it will then switch
to the Uncertain protocol, and at this stage it will have a complete table (for all relevant
messages) for the encoding and decoding functions, and so it can encode and decode by a
simple table lookup.

We also note that the upper bound on the amortized communication cost follows from a
similar argument as in the proof of Theorem 3 in Section 3.

So it suffices to show that the encoding and decoding tables can be computed in time
poly(Tε). A straightforward implementation of the algorithm used in the proof of Theorem 3
essentially works, with a few additional observations. First, we note that we do not need
to encode messages m with P (m) ≤ 2−Θ(H(Q)+D(Q||P ))/ε since by Markov’s inequality such
messages occur with probability less than ε. This makes sure that the hash families that
we need work with a value of N which is at most 2(H(Q)+D(Q||P ))/ε and the logN factor in
the size of these hash families is equal to (H(Q) +D(Q||P ))/ε, which is affordable. Next,
we use the efficiently computable hash functions which are given by Lemma 7. We apply
these hash functions to EP (m) rather than m in order to make sure that their domain is
also small. The upper bound on the encoding time now follows.

For the decoding time, we note that filling in one entry of the decoding table takes time
linear in N which is exponentially larger than the budget in the statement of Theorem 1.
However, we can divide this task over N rounds while performing O(1) computations per
round. The upper bound on the decoding time now follows.

Finally, the space usage is proportional to the size of the encoding and decoding lookup
tables which is exponential in (H(Q) +D(Q||P ))/ε. J

3.6 A Computationally Inefficient Protocol with Smaller
Communication

In this section, we show that if one does not care about computational efficiency, then we
can remove the additive log(1/ε) term from the communication cost in Theorem 1 while
also replacing the multiplicative 2Θ(H(Q)+D(Q||P ))/ε factor by 2Θ(H(Q))/ε. The details are
deferred to the full version.

The general structure of the protocol is similar to the one in Section 3 except that for the
description and analysis of the Uncertain protocol (Section 3.3). We now describe a com-
putationally inefficient variant of the Uncertain protocol which has smaller communication.
The performance of this variant is summarized in the following lemma.
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I Lemma 11 (Uncertain Protocol). Suppose that during iteration t, a message m is chosen
to be sent by player i to player j, where m is sampled according to the unknown distribution
Q. Then, player i can communicate m to player j, such that the expected communication
length is upper bounded by

O (H(Q) + logD(Q||P )) +O(1).

Morever, the error probability is at most

1
Q(m) · exp

(
−Ω

(
t ·Q(m)

K

))
,

where the randomness is over all past messages and players chosen in the previous iterations.

We now describe the corresponding encoding and decoding procedures (along with the
pre-processing step). Recall Definition 6 of an (N, `, ε)-isolating hash family. We now define
an (N, `)-isolating hash family to be an (N, `, 1)-isolating hash family.

Pre-Processing Step

As stated earlier, all the players come in with a prior distribution P . In addition, as part of
the pre-processing, they compute and store the following:

Divide the input space N into a countable number of buckets indexed by r ∈ N>0, given
by Ar =

{
m : 2−r < P (m) ≤ 2−r+1}. Clearly, for any r, it holds that |Ar| ≤ 2r. In

addition, define the function r(m) := dlog(1/P (m))e for every m ∈ N, that is, r(m) is
the index of the bucket to which m belongs.
For every r, fix an (arbitrary) choice of isolating hash families H(N,`), for N = |Ar| and
every choice of ` ∈ {1, 2, · · · , dlogNe}.

Suppose during iteration t, a message m is chosen to be sent by player i to player j,
where m is sampled according to the unknown distribution Q. Define Qit to be the empirical
distribution of the samples seen by player i up to iteration t (which includes the iteration t,
where the message seen is m). Similarly, define Qjt to be the empirical distribution of the
samples seen by player j up to iteration t (this includes iteration t, but by definition player
j does not see any message in this iteration). The players use the encoding and decoding
strategies described next.

Encoding

Upon receiving message m, player i does the following,
(i) let A def= Ar(m) and N def= |A|.
(ii) let S def=

{
m′ ∈ A \ {m} : Qit(m′) ≥ 1

16Q
i
t(m)

}
.

(iii) let ` = dlog |S|e.
(iv) let u ∈ [|H(N,`)|] and hu ∈ H(N,`) such that hu(m) /∈ hu(S).
(v) Send the tuple (r, `, u, hu(m)) to player j.
Note that the property of isolating hash families (see Definition 6) guarantees the existence
of hu ∈ H(N,`) as desired in (iv).

The intuition for this encoding is as follows: upon receiving r, player j understands that
m ∈ Ar, upon receiving `, she understands which hash family to use, upon receiving u, she
knows which hash function to use, and hopefully with hu(m), she will be able to recover m
correctly.
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Decoding

Upon receiving the tuple (r, `, u, h∗), player j does the following:
(i) Set A = Ar and N def= |A|.
(ii) Identify hu ∈ H(N,`).
(iii) Output arg maxm′∈A:hu(m′)=h∗ Q

j
t (m′).

The analysis of the communication cost and the error guarantee appears in Appendix A,
where Lemma 11 is proved.
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A Analysis of Computationally Inefficient Protocol

We now analyze the operation of the protocol described in Section 3.6.

Communication Cost

Suppose the message m is chosen to be sent by player i to player j. The communication cost
of sending the tuple (r, `, u, hu(m)) is as follows:
(i) log dlog(1/P (m))e bits to send r.
(ii) log(log(1/Qit(m)) + 5) bits to send `, since ` ≤ log |S|+ 1 ≤ log(16/Qit(m)) + 1.
(iii) log(1/Qit(m)) + log dlog(1/P (m))e+ 5 bits to send u (it takes `+ logN bits).
(iv) log(1/Qit(m)) + 5 bits to send hu(m).
Thus, the total communication is given by,

2 log(1/Qit(m))︸ ︷︷ ︸
(I)

+ 2 log dlog(1/P (m))e︸ ︷︷ ︸
(II)

+ log(log(1/Qit(m)) + 5) + 10︸ ︷︷ ︸
(III)

We wish to prove guarantees on the expected communication cost, when m is drawn from
Q. The terms in (III) are lesser order terms, which are smaller than (I), thus we choose to
ignore them. Term (II) in expectation is,

E
m∼Q

[
log
(⌈

log 1
P (m)

⌉)]
≤ log

(
E

m∼Q

⌈
log 1

P (m)

⌉)
≤ log(H(Q) +D(Q||P ) + 1)

Term (I) is slightly more tricky to bound in expectation. Note that the empirical distribution
changes on receiving messagem (this turns out to be critical in bounding the communication!).
That is, Qit(m) = 1+(t−1)Qi(t−1)(m)

t . Also letMi
t be the multi-set of all messages that player

i has seen up to time t. Thus, Term (I) in expectation is as follows,

E
Mi

(t−1)

E
m∼Q

[
log 1

Qit(m)

]
= H(Q) + E

Mi
(t−1)

E
m∼Q

log Q(m)
1
ti

+
(ti−1)Qi(t−1)(m)

ti


In order to bound the second term above, we consider two cases, (i) Qi(t−1)(m) ≥ Q(m)/2 or
(ii) Qi(t−1)(m) < Q(m)/2. After fixing ti and m, by Chernoff bound over the randomness of
Mi

(t−1) we have that case (i) happens with probability at least 1− exp(−t ·Q(m)/8).

Case (i) Qi(t−1)(m) ≥ Q(m)/2 =⇒ log

 Q(m)

1
ti

+
(t−1)Qi

(t)
(m)

ti

 ≤ 1

Case (ii) Qi(t−1)(m) < Q(m)/2 =⇒ log

 Q(m)

1
ti

+
(ti−1)Qi

(t−1)
(m)

ti

 ≤ log(ti ·Q(m))

Using these upper bounds we get that,

E
Mi

(t−1)

E
m∼Q

log Q(m)
1
t +

(ti−1)Qi(t−1)(m)
ti

 ≤ E
m∼Q

[
1 ·
(
1− e−ti·Q(m)/8)+ log(ti ·Q(m)) · e−ti·Q(m)/8]

≤ 1 + E
m∼Q

[
log(ti ·Q(m)) · e−ti·Q(m)/8]

≤ 2 ,

where the last inequality just follows from the fact that log(x) · e−x/8 ≤ 1 for all x.
Thus the overall communication is bounded by

(2 + o(1))H(Q) + 2 logD(Q||P ) +O(1) .
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Error Guarantee

We now show that the error probability in iteration t, denoted by perr
t of the protocol is

upper bounded by 1
Q(m) · 2

−Ω
(
t·Q(m)
K

)
, where m is fixed to be the message sent in round t.

We first give an intuitive explanation for the error bound. Since player i has communicated
(r, `, u), player j knows the correct bucket of messages Ar to which m belongs. Knowing `
and u, player j also knows which hash function is being used, which is chosen to ensure that
for every m′ ∈ S \ {m}, hu(m) 6= hu(m′). Thus, the only way in which an error can happen
is that there exists some m′ /∈ S such that hu(m) = hu(m′) and Qjt (m′) > Qjt (m).

Since m′ /∈ S, it implies by definition of S that Qit(m′) ≤ Qit(m)/16, which means that
player i has seen the message m′ significantly fewer times compared to the message m. On
the other hand, we also have that Qjt (m′) > Qjt (m), which means that player j has seen
the message m′ at least as many times as message m. For “large” t, it is very unlikely that
players i and j have seen m and m′ in such disproportionate manner.

To make the arguments go through, we need to union bound over allm′ ∈ Ar\S. However,
a naive union bound is too lossy because we do not have any reasonable upper bound on the
number of m′s. To get around this issue, we do a simple bucketing argument.

The formal upper bound on perr
t is shown as follows,

perr
t = Pr[∃m′ ∈ A : hu(m′) = hu(m) and Qjt (m′) > Qjt (m)]

≤ Pr
[
∃m′ ∈ A : Qit(m′) <

1
16Q

i
t(m) and Qjt (m′) > Qjt (m)

]
≤ Pr

[
∃m′ ∈ A : Q(m′) > 1

4Q(m) and Qit(m′) <
1
16Q

i
t(m)

]
+ Pr

[
∃m′ ∈ A : Q(m′) ≤ 1

4Q(m) and Qjt (m′) > Qjt (m)
]

≤ Pr
[
∃m′ ∈ A : Q(m′) > 1

4Q(m) and Qit−1(m′) < 1
16

(
Qit−1(m) + 1

ti − 1

)]
+ Pr

[
∃m′ ∈ A : Q(m′) ≤ 1

4Q(m) and Qjt (m′) > Qjt (m)
]

≤ Pr
[
∃m′ ∈ A : Q(m′) > 1

4Q(m) and Qit−1(m′) < 1
8Q(m)

]
︸ ︷︷ ︸

(I)

+ Pr
[
Qit−1(m) + 1

ti − 1 > 2 ·Q(m)
∣∣∣∣ ti ≥ t

2K

]
︸ ︷︷ ︸

(II)

+ Pr
[
ti ≤

t

2K

]
︸ ︷︷ ︸

(III)

+ Pr
[
∃m′ ∈ A : Q(m′) ≤ 1

4Q(m) and Qjt (m′) >
1
2Q(m)

]
︸ ︷︷ ︸

(IV )

+ Pr
[
Qjt (m) < 1

2Q(m)
]

︸ ︷︷ ︸
(V )

.

We bound each term individually. Firstly, since
{
Qit−1(m)|ti

}
(i.e., Qit−1(m) conditioned on

a fixed ti), ti and Qjt (m) are binomial random variables with probabilities Q(m), 1
K and

Q(m)
K respectively, the terms (II), (III) and (V) are easily upper bounded using the Chernoff
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bound. In particular,

Pr
[
Qit−1(m) + 1

ti − 1 > 2 ·Q(m)
∣∣∣∣ ti ≥ t

2K

]
≤ exp

(
−Ω

(
t ·Q(m)

K

))
Pr
[
ti ≤

t

2K

]
≤ exp

(
−Ω

(
t ·Q(m)

K

))
Pr
[
Qjt (m) < 1

2Q(m)
]
≤ exp

(
−Ω

(
t ·Q(m)

K

))
.

Term (I) is also upper bounded by Chernoff bound and a union bound over m′, since the
number of m′ satisfying Q(m′) > 1

4Q(m) is at most 4/Q(m). Thus,

Pr
[
∃m′ ∈ A : Q(m′) > 1

4Q(m) and Qit(m′) <
1
8Q(m)

]
≤ 4
Q(m) · exp(−Ω(ti ·Q(m))).

To bound term (IV), we can assume without loss of generality that there is at most one
m′ ∈ A, such that, Q(m′) ≤ 1

8Q(m). This is because, if there were to exist m′1,m′2 ∈ A, such
that, Q(m′1), Q(m′2) ≤ 1

8Q(m), then we can identify m′1 and m′2 as the same message m′0.
Note that we can do this because we will still have that Pr[Q(m′0) ≤ 1

4Q(m)] and

Pr
[
Qjt (m′1) > 1

2Q(m) or Qjt (m′2) > 1
2Q(m)

]
≤ Pr

[
Qjt (m′0) > 1

2Q(m)
]

Thus, to bound term (IV), we can again use a Chernoff bound and a union bound over
m′, since the number of m′ such that Q(m′) > 1

8Q(m) is at most 8/Q(m). Thus, we get
that,

Pr
[
∃m′ ∈ A : Q(m′) ≤ 1

4Q(m) and Qjt (m′) >
1
2Q(m)

]
≤ 1
Q(m) ·exp

(
−Ω

(
t ·Q(m)

K

))
Thus, overall in any individual round, we have that,

perr
t ≤

1
Q(m) · exp

(
−Ω

(
t ·Q(m)

K

))
.

This concludes the proof of Lemma 5.
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