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Abstract
We present a complete classification of all possible sets of classical reversible gates acting on bits,
in terms of which reversible transformations they generate, assuming swaps and ancilla bits are
available for free. Our classification can be seen as the reversible-computing analogue of Post’s
lattice, a central result in mathematical logic from the 1940s. It is a step toward the ambitious
goal of classifying all possible quantum gate sets acting on qubits.

Our theorem implies a linear-time algorithm (which we have implemented), that takes as
input the truth tables of reversible gates G and H, and that decides whether G generates H.
Previously, this problem was not even known to be decidable (though with effort, one can derive
from abstract considerations an algorithm that takes triply-exponential time). The theorem also
implies that any n-bit reversible circuit can be “compressed” to an equivalent circuit, over the
same gates, that uses at most 2n poly (n) gates and O(1) ancilla bits; these are the first upper
bounds on these quantities known, and are close to optimal. Finally, the theorem implies that
every non-degenerate reversible gate can implement either every reversible transformation, or
every affine transformation, when restricted to an “encoded subspace.”

Briefly, the theorem says that every set of reversible gates generates either all reversible
transformations on n-bit strings (as the Toffoli gate does); no transformations; all transformations
that preserve Hamming weight (as the Fredkin gate does); all transformations that preserve
Hamming weight mod k for some k; all affine transformations (as the Controlled-NOT gate
does); all affine transformations that preserve Hamming weight mod 2 or mod 4, inner products
mod 2, or a combination thereof; or a previous class augmented by a NOT or NOTNOT gate.
Prior to this work, it was not even known that every class was finitely generated. Ruling out the
possibility of additional classes, not in the list, requires involved arguments about polynomials,
lattices, and Diophantine equations.

Due to the length of the proof, some parts of it have been omitted and may be found in the
full version of the paper online.
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23:2 The Classification of Reversible Bit Operations

1 Introduction

The pervasiveness of universality – that is, the likelihood that a small number of simple
operations already generate all operations in some relevant class – is one of the central
phenomena in computer science. It appears, among other places, in the ability of simple
logic gates to generate all Boolean functions (and of simple quantum gates to generate all
unitary transformations); and in the simplicity of the rule sets that lead to Turing-universality,
or to formal systems to which Gödel’s theorems apply. Yet precisely because universality is
so pervasive, it is often more interesting to understand the ways in which systems can fail to
be universal.

In 1941, the great logician Emil Post [23] published a complete classification of all the
ways in which sets of Boolean logic gates can fail to be universal: for example, by being
monotone (like the AND and OR gates) or by being affine over F2 (like NOT and XOR).
In universal algebra, closed classes of functions are known, somewhat opaquely, as clones,
while the inclusion diagram of all Boolean clones is called Post’s lattice. Post’s lattice is
surprisingly complicated, in part because Post did not assume that the constant functions 0
and 1 were available for free.1

This paper had its origin in our ambition to find the analogue of Post’s lattice for all
possible sets of quantum gates acting on qubits. We view this as a large, important, and
underappreciated goal: something that could be to quantum computing theory almost what
the Classification of Finite Simple Groups was to group theory. To provide some context,
there are many sets of 1-, 2- and 3-qubit quantum gates that are known to be universal
– either in the strong sense that they can be used to approximate any n-qubit unitary
transformation to any desired precision, or in the weaker sense that they suffice to perform
universal quantum computation (possibly in an encoded subspace). To take two examples,
Barenco et al. [6] showed universality for the CNOT gate plus the set of all 1-qubit gates,
while Shi [27] showed universality for the Toffoli and Hadamard gates.

There are also sets of quantum gates that are known not to be universal: for example,
the basis-preserving gates, the 1-qubit gates, and most interestingly, the so-called stabilizer
gates [12, 3] (that is, the CNOT, Hadamard, and π/4-Phase gates), as well as the stabilizer
gates conjugated by 1-qubit unitary transformations2. What is not known is whether the
preceding list basically exhausts the ways in which quantum gates on qubits can fail to be
universal. Are there other elegant discrete structures, analogous to the stabilizer gates,
waiting to be discovered? Are there any gate sets, other than conjugated stabilizer gates,
that might give rise to intermediate complexity classes, neither contained in P nor equal
to BQP?3 How can we claim to understand quantum circuits – the bread-and-butter of
quantum computing textbooks and introductory quantum computing courses – if we do not
know the answers to such questions?

1 If one does assume constants are free, then Post’s lattice dramatically simplifies, with all non-universal
gate sets either monotone or affine.

2 In fact, Grier and Schaeffer [13] have extended our classification to these quantum stabilizer operations
under the same model and with a similar proof structure. In the same paper, the authors classify the
classical reversible transformations in the quantum regime (i.e., with quantum ancillas), heavily relying
on the classification in this paper.

3 To clarify, there are many restricted models of quantum computing known that are plausibly “inter-
mediate” in that sense, including BosonSampling [1], the one-clean-qubit model [18], and log-depth
quantum circuits [9]. However, with the exception of conjugated stabilizer gates, none of those models
arises from simply considering which unitary transformations can be generated by some set of k-qubit
gates. They all involve non-standard initial states, building blocks other than qubits, or restrictions on
how the gates can be composed.
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Unfortunately, working out the full “quantum Post’s lattice” appears out of reach at
present. This might surprise readers, given how much is known about particular quantum
gate sets (e.g., those containing CNOT gates), but keep in mind that what is asked for is an
accounting of all possibilities, no matter how exotic. Indeed, even classifying 1- and 2-qubit
quantum gate sets remains wide open (!), and seems, without a new idea, to require studying
the irreducible representations of thousands of groups. Recently, Aaronson and Bouland [2]
completed a much simpler task, the classification of 2-mode beamsplitters; that was already
a complicated undertaking.

Due to its length, this paper has been shortened for these proceedings. Its full version
can be found on the arXiv [4].

1.1 Classical Reversible Gates
So one might wonder: can we at least understand all the possible sets of classical reversible
gates acting on bits, in terms of which reversible transformations they generate? This is an
obvious precursor to the quantum case, since every classical reversible gate is also a unitary
quantum gate. But beyond that, the classical problem is extremely interesting in its own
right, with (as it turns out) a rich algebraic and number-theoretic structure, and with many
implications for reversible computing as a whole.

The notion of reversible computing [11, 29, 19, 8, 21, 24] arose from early work on the
physics of computation, by such figures as Feynman, Bennett, Benioff, Landauer, Fredkin,
Toffoli, and Lloyd. This community was interested in questions like: does universal
computation inherently require the generation of entropy (say, in the form of waste heat)?
Surprisingly, the theory of reversible computing showed that, in principle, the answer to
this question is “no.” Deleting information unavoidably generates entropy, according to
Landauer’s principle [19], but deleting information is not necessary for universal computation.

Formally, a reversible gate is just a permutation G : {0, 1}k → {0, 1}k of the set of k-bit
strings, for some positive integer k. The most famous examples are:

the 2-bit CNOT (Controlled-NOT) gate, which flips the second bit if and only if the first
bit is 1;
the 3-bit Toffoli gate, which flips the third bit if and only if the first two bits are both 1;
the 3-bit Fredkin gate, which swaps the second and third bits if and only if the first bit
is 1.

These three gates already illustrate some of the concepts that play important roles in this
paper. The CNOT gate can be used to copy information in a reversible way, since it maps
x0 to xx; and also to compute arbitrary affine functions over the finite field F2. However,
because CNOT is limited to affine transformations, it is not computationally universal.
Indeed, in contrast to the situation with irreversible logic gates, one can show that no 2-bit
classical reversible gate is computationally universal. The Toffoli gate is computationally
universal, because (for example) it maps x, y, 1 to x, y, xy, thereby computing the NAND
function. Moreover, Toffoli showed [29] – and we prove for completeness in Section 7.1
– that the Toffoli gate is universal in a stronger sense: it generates all possible reversible
transformations F : {0, 1}n → {0, 1}n if one allows the use of ancilla bits, which must be
returned to their initial states by the end.

But perhaps the most interesting case is that of the Fredkin gate. Like the Toffoli gate, the
Fredkin gate is computationally universal: for example, it maps x, y, 0 to x, xy, xy, thereby
computing the AND function. But the Fredkin gate is not universal in the stronger sense.
The reason is that it is conservative: that is, it never changes the total Hamming weight of
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the input. Far from being just a technical issue, conservativity was regarded by Fredkin and
the other reversible computing pioneers as a sort of discrete analogue of the conservation
of energy – and indeed, it plays a central role in certain physical realizations of reversible
computing (for example, billiard-ball models, in which the total number of billiard balls must
be conserved).

However, all we have seen so far are three specific examples of reversible gates, each
leading to a different behavior. To anyone with a mathematical mindset, the question
remains: what are all the possible behaviors? For example: is Hamming weight the only
possible “conserved quantity” in reversible computation? Are there other ways, besides
being affine, to fail to be computationally universal? Can one derive, from first principles,
why the classes of reversible transformations generated by CNOT, Fredkin, etc. are somehow
special, rather than just pointing to the sociological fact that these are classes that people in
the early 1980s happened to study?

1.2 Ground Rules
In this work, we achieve a complete classification of all possible sets of reversible gates acting
on bits, in terms of which reversible transformations F : {0, 1}n → {0, 1}n they generate.
Before describing our result, let us carefully explain the ground rules.

First, we assume that swapping bits is free. This simply means that we do not care
how the input bits are labeled – or, if we imagine the bits carried by wires, then we can
permute the wires in any way we like. The second rule is that an unlimited number of ancilla
bits may be used, provided the ancilla bits are returned to their initial states by the end of
the computation. This second rule might look unfamiliar, but in the context of reversible
computing, it is the right choice.

We need to allow ancilla bits because if we do not, then countless transformations are
disallowed for trivial reasons. (Restricting a reversible circuit to use no ancillas is like
restricting a Turing machine to use no memory, besides the n bits that are used to write down
the input.) We are forced to say that, although our gates might generate some reversible
transformation F (x, 0) = (G (x) , 0), they do not generate the smaller transformation G.
The exact value of n then also takes on undeserved importance, as we need to worry about
“small-n effects”: e.g., that a 3-bit gate cannot be applied to a 2-bit input.

As for the number of ancilla bits: it will turn out, because of our classification theorem,
that every reversible gate needs only O(1) ancilla bits4 to generate every n-bit reversible
transformation that it can generate at all. However, we do not wish to prejudge this question;
if there had been reversible gates that could generate certain transformations, but only by
using (say) 22n ancilla bits, then that would have been fascinating to know. For the same
reason, we do not wish prematurely to restrict the number of ancilla bits that can be 0, or
the number that can be 1.

On the other hand, the ancilla bits must be returned to their original states because if
they are not, then the computation was not really reversible. One can then learn something
about the computation by examining the ancilla bits – if nothing else, then the fact that
the computation was done at all. The symmetry between input and output is broken; one
cannot then run the computation backwards without setting the ancilla bits differently. This
is not just a philosophical problem: if the ancilla bits carry away information about the input

4 Since it is easy to show that a constant number of ancilla bits are sometimes needed (see Proposition 9),
this is the optimal answer, up to the value of the constant (which might depend on the gate set).
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x, then entropy, or waste heat, has been leaked into the computer’s environment. Worse
yet, if the reversible computation is a subroutine of a quantum computation, then the leaked
entropy will cause decoherence, preventing the branches of the quantum superposition with
different x values from interfering with each other, as is needed to obtain a quantum speedup.
In reversible computing, the technical term for ancilla bits that still depend on x after a
computation is complete is garbage.5

1.3 Our Results
Even after we assume that bit swaps and ancilla bits are free, it remains a significant
undertaking to work out the complete list of reversible gate classes, and (especially!) to
prove that the list is complete. Doing so is this paper’s main technical contribution.

We give a formal statement of the classification theorem in Section 3, and we show the
lattice of reversible gate classes in Figure 3. For now, let us simply state the main conclusions
informally.

1. Conserved Quantities. The following is the complete list of the “global quantities”
that reversible gate sets can conserve (if we restrict attention to non-degenerate gate sets,
and ignore certain complications caused by linearity and affineness): Hamming weight,
Hamming weight mod k for any k ≥ 2, and inner product mod 2 between pairs of inputs.

2. Anti-Conservation. There are gates, such as the NOT gate, that “anti-conserve” the
Hamming weight mod 2 (i.e., always change it by a fixed nonzero amount). However,
there are no analogues of these for any of the other conserved quantities.

3. Encoded Universality. In terms of their “computational power,” there are only three
kinds of reversible gate sets: degenerate (e.g., NOTs, bit-swaps), non-degenerate but affine
(e.g., CNOT), and non-affine (e.g., Toffoli, Fredkin). More interestingly, every non-affine
gate set can implement every reversible transformation, and every non-degenerate affine
gate set can implement every affine transformation, if the input and output bits are
encoded by longer strings in a suitable way. For details about “encoded universality,”
see Section 4.4.

4. Sporadic Gate Sets. The conserved quantities interact with linearity and affineness
in complicated ways, producing “sporadic” affine gate sets that we have classified. For
example, non-degenerate affine gates can preserve Hamming weight mod k, but only if
k = 2 or k = 4. All gates that preserve inner product mod 2 are linear, and all linear
gates that preserve Hamming weight mod 4 also preserve inner product mod 2. As a
further complication, for an affine transformation F (x) = Ax + b, it is possible for A
to be orthogonal, mod-2-preserving, or mod-4-preserving without F being orthogonal,
mod-2-preserving, or mod-4-preserving, respectively.

5. Finite Generation. For each closed class of reversible transformations, there is a single
gate that generates the entire class. (A priori, it is not even obvious that every class is
finitely generated, or that there is “only” a countable infinity of classes!) For more, see
Section 4.1.

6. Symmetry. Every reversible gate set is symmetric under interchanging the roles of 0
and 1. For more, see Section 4.1.

5 In Section 2.3, we will discuss a modified rule, which allows a reversible circuit to change the ancilla
bits, as long as they change in a way that is independent of the input x. We will show that this “loose
ancilla rule” causes only a small change to our classification theorem.
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1.4 Algorithmic and Complexity Aspects
Perhaps most relevant to theoretical computer scientists, our classification theorem leads
to new algorithms and complexity results about reversible gates and circuits: results that
follow easily from the classification, but that we have no idea how to prove otherwise.

Let RevGen (Reversible Generation) be the following problem: we are given as input
the truth tables of reversible gates G1, . . . , GK , as well as of a target gate H, and wish to
decide whether the Gi’s generate H. Then we obtain a linear-time algorithm for RevGen.
Here, of course, “linear” means linear in the sizes of the truth tables, which is n2n for an
n-bit gate. However, if just a tiny amount of “summary data” about each gate G is provided
– namely, the possible values of |G (x)| − |x|, where |·| is the Hamming weight, as well as
which affine transformation G performs if it is affine – then the algorithm actually runs in
O (nω) time, where ω is the matrix multiplication exponent.

We have implemented this algorithm; code is available for download at [25]. For more
details see Section 4.2.

Our classification theorem also implies the first general upper bounds (i.e., bounds that
hold for all possible gate sets) on the number of gates and ancilla bits needed to implement
reversible transformations. In particular, we show (see Section 4.3) that if a set of reversible
gates generates an n-bit transformation F at all, then it does so via a circuit with at most
2n poly (n) gates and O(1) ancilla bits. These bounds are close to optimal.

By contrast, let us consider the situation for these problems without the classification
theorem. Suppose, for example, that we want to know whether a reversible transformation
H : {0, 1}n → {0, 1}n can be synthesized using gates G1, . . . , GK . If we knew some upper
bound on the number of ancilla bits that might be needed by the generating circuit, then
if nothing else, we could of course solve this problem by brute force. The trouble is that,
without the classification, it is not obvious how to prove any upper bound on the number of
ancillas – not even, say, Ackermann (n). This makes it unclear, a priori, whether RevGen
is even decidable, never mind its complexity!

One can show on abstract grounds that RevGen is decidable, but with an astronomical
running time. To explain this requires a short digression. In universal algebra, there is a
body of theory (see e.g. [20]), which grew out of Post’s original work [23], about the general
problem of classifying closed classes of functions (clones) of various kinds. The upshot is
that every clone is characterized by an invariant that all functions in the clone preserve:
for example, affineness for the NOT and XOR functions, or monotonicity for the AND and
OR functions. The clone can then be shown to contain all functions that preserve the
invariant. (There is a formal definition of “invariant,” involving polymorphisms, which
makes this statement not a tautology, but we omit it.) Alongside the lattice of clones of
functions, there is a dual lattice of coclones of invariants, and there is a Galois connection
relating the two: as one adds more functions, one preserves fewer invariants, and vice versa.

In response to an inquiry by us, Emil Jeřábek recently showed [15] that the clone/coclone
duality can be adapted to the setting of reversible gates. This means that we know, even
without a classification theorem, that every closed class of reversible transformations is
uniquely determined by the invariants that it preserves.

Unfortunately, this elegant characterization does not give rise to feasible algorithms. The
reason is that, for an n-bit gate G : {0, 1}n → {0, 1}n, the invariants could in principle involve
all 2n inputs, as well arbitrary polymorphisms mapping those inputs into a commutative
monoid. Thus the number of polymorphisms one needs to consider grows at least like 222n

.
Now, the word problem for commutative monoids is decidable, by reduction to the ideal
membership problem (see, e.g., [17, p. 55]). And by putting these facts together, one can
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derive an algorithm for RevGen that uses doubly-exponential space and triply-exponential
time, as a function of the truth table sizes: in other words, exp (exp (exp (exp (n)))) time,
as a function of n. We believe it should also be possible to extract exp (exp (exp (exp (n))))
upper bounds on the number of gates and ancillas from this algorithm, although we have not
verified the details.

1.5 Proof Ideas

We hope we have made the case that the classification theorem improves the complexity
situation for reversible circuit synthesis! Even so, some people might regard classifying all
possible reversible gate sets as a complicated, maybe worthwhile, but fundamentally tedious
exercise. Can’t such problems be automated via computer search? On the contrary, there
are specific aspects of reversible computation that make this classification problem both
unusually rich, and unusually hard to reduce to any finite number of cases.

We already discussed the astronomical number of possible invariants that even a tiny
reversible gate (say, a 3-bit gate) might satisfy, and the hopelessness of enumerating them
by brute force. However, even if we could cut down the number of invariants to something
reasonable, there would still be the problem that the size, n, of a reversible gate can be
arbitrarily large – and as one considers larger gates, one can discover more and more invariants.
Indeed, that is precisely what happens in our case, since the Hamming weight mod k invariant
can only be “noticed” by considering gates on k bits or more. There are also “sporadic”
affine classes that can only be found by considering 6-bit gates.

Of course, it is not hard just to guess a large number of reversible gate classes (affine
transformations, parity-preserving and parity-flipping transformations, etc.), prove that these
classes are all distinct, and then prove that each one can be generated by a simple set of
gates (e.g., CNOT or Fredkin + NOT). Also, once one has a sufficiently powerful gate (say,
the CNOT gate), it is often straightforward to classify all the classes containing that gate.
So for example, it is relatively easy to show that CNOT, together with any non-affine gate,
generates all reversible transformations.

As usual with classification problems, the hard part is to rule out exotic additional classes:
most of the work, one might say, is not about what is there, but about what isn’t there.
It is one thing to synthesize some random 1000-bit reversible transformation using only
Toffoli gates, but quite another to synthesize a Toffoli gate using only the random 1000-bit
transformation!

Thinking about this brings to the fore the central issue: that in reversible computation, it
is not enough to output some desired string F (x); one needs to output nothing else besides
F (x). And hence, for example, it does not suffice to look inside the random 1000-bit
reversible gate G, to show that it contains a NAND gate, which is computationally universal.
Rather, one needs to deal with all of G’s outputs, and show that one can eliminate the
undesired ones.

The way we do that involves another characteristic property of reversible circuits: that
they can have “global conserved quantities,” such as Hamming weight. Again and again,
we need to prove that if a reversible gate G fails to conserve some quantity, such as the
Hamming weight mod k, then that fact alone implies that we can use G to implement a
desired behavior. This is where elementary algebra and number theory come in.

There are two aspects to the problem. First, we need to understand something about
the possible quantities that a reversible gate can conserve. For example, we will need the
following three results:
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Generators

(1,0) (2,0)

Copying Sequence

Figure 1 Moving within first quadrant of lattice to construct a COPY gate.

No reversible gate can change the Hamming weight of some input and also conserve inner
products mod k, unless k = 2.
No reversible gate can change Hamming weight mod k by a fixed, nonzero amount, unless
k = 2.
No nontrivial linear gate can conserve Hamming weight mod k, unless k = 2 or k = 4.

We prove each of these statements in Section 6, using arguments based on complex
polynomials.

Next, using our knowledge about the possible conserved quantities, we need procedures
that take any gate G that fails to conserve some quantity, and that use G to implement a
desired behavior (say, making a single copy of a bit, or changing an inner product by exactly
1). We then leverage that behavior to generate a desired gate (say, a Fredkin gate). The
two core tasks turn out to be the following:

Given any non-affine gate, we need to construct a Fredkin gate.
Given any non-orthogonal linear gate, we need to construct a CNOTNOT gate, a parity-
preserving version of CNOT that maps x, y, z to x, y ⊕ x, z ⊕ x.

These proofs are quite lengthy and are included in the full version of our paper [4].
The solution involves 3-dimensional lattices: that is, subsets of Z3 closed under integer
linear combinations. We argue, in essence, that the only possible obstruction to the desired
behavior is a “modularity obstruction,” but the assumption about the gate G rules out such
an obstruction.

We can illustrate this with an example that ends up not being needed in the final
classification proof, but that we worked out earlier in this research.6 Let G be any gate that
does not conserve (or anti-conserve) the Hamming weight mod k for any k ≥ 2, and suppose
we want to use G to construct a CNOT gate.

6 In general, after completing the classification proof, we were able to go back and simplify it substantially,
by removing results – for example, about the generation of CNOT gates – that were important for
working out the lattice in the first place, but which then turned out to be subsumed (or which could be
subsumed, with modest additional effort) by later parts of the classification. Our current proof reflects
these simplifications.
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Then we examine how G behaves on restricted inputs: in this case, on inputs that consist
entirely of some number of copies of x and x, where x ∈ {0, 1} is a bit, as well as constant
0 and 1 bits. For example, perhaps G can increase the number of copies of x by 5 while
decreasing the number of copies of x by 7, and can also decrease the number of copies of x
by 6 without changing the number of copies of x. Whatever the case, the set of possible
behaviors generates some lattice: in this case, a lattice in Z2 (see Figure 1). We need to
argue that the lattice contains a distinguished point encoding the desired “copying” behavior.
In the case of the CNOT gate, the point is (1, 0), since we want one more copy of x and no
more copies of x. Showing that the lattice contains (1, 0), in turn, boils down to arguing
that a certain system of Diophantine linear equations must have a solution. One can do this,
finally, by using the assumption that G does not conserve or anti-conserve the Hamming
weight mod k for any k.

To generate the Fredkin gate, we instead use the Chinese Remainder Theorem to combine
gates that change the inner product mod p for various primes p into a gate that changes the
inner product between two inputs by exactly 1; while to generate the CNOTNOT gate, we
exploit the assumption that our generating gates are linear. In all these cases, it is crucial
that we know, from Section 6, that certain quantities cannot be conserved by any reversible
gate.

There are a few parts of the classification proof that basically do come down to enumerating
cases, but we hope to have given a sense for the interesting parts.

1.6 Related Work

Surprisingly, the general question of classifying reversible gates such as Toffoli and Fredkin
appears never to have been asked, let alone answered, prior to this work.

In the reversible computing literature, there are hundreds of papers on synthesizing
reversible circuits (see [24] for a survey), but most of them focus on practical considerations:
for example, trying to minimize the number of Toffoli gates or other measures of interest,
often using software optimization tools. We found only a tiny amount of work relevant
to the classification problem: notably, an unpublished preprint by Lloyd [21], which shows
that every non-affine reversible gate is computationally universal, if one does not care what
garbage is generated in addition to the desired output. Lloyd’s result was subsequently
rediscovered by Kerntopf et al. [16] and De Vos and Storme [30].

There is also work by Morita et al. [22] that uses brute-force enumeration to classify
certain reversible computing elements with 2, 3, or 4 wires, but the notion of “reversible gate”
there is very different from the standard one (the gates are for routing a single “billiard ball”
element rather than for transforming bit strings, and they have internal state). Finally, there
is work by Strazdins [28], not motivated by reversible computing, which considers classifying
reversible Boolean functions, but which imposes a separate requirement on each output bit
that it belong to one of the classes from Post’s original lattice, and which thereby misses all
the reversible gates that conserve “global” quantities, such as the Fredkin gate.7

7 Because of different rules regarding constants, developed with Post’s lattice rather than reversible
computing in mind, Strazdins also includes classes that we do not (e.g., functions that always map
0n or 1n to themselves, but are otherwise arbitrary). To use our notation, his 13-class lattice ends
up intersecting our infinite lattice in just five classes: 〈∅〉, 〈NOT〉, 〈CNOTNOT,NOT〉, 〈CNOT〉, and
〈Toffoli〉.
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2 Notation and Definitions

F2 means the field of 2 elements. [n] means {1, . . . , n}. We denote by e1, . . . , en the standard
basis for the vector space Fn2 : that is, e1 = (1, 0, . . . , 0), etc.

Let x = x1 . . . xn be an n-bit string. Then x means x with all n of its bits inverted.
Also, x⊕ y means bitwise XOR, x, y or xy means concatenation, xk means the concatenation
of k copies of x, and |x| means the Hamming weight. The parity of x is |x|mod 2. The
inner product of x and y is the integer x · y = x1y1 + · · ·+ xnyn. Note that

x · (y ⊕ z) ≡ x · y + x · z (mod 2) ,

but the above need not hold if we are not working mod 2.
By gar (x), we mean garbage depending on x: that is, “scratch work” that a reversible

computation generates along the way to computing some desired function f (x). Typically,
the garbage later needs to be uncomputed. Uncomputing, a term introduced by Bennett
[8], simply means running an entire computation in reverse, after the output f (x) has been
safely stored.

2.1 Gates
By a (reversible) gate, throughout this paper we will mean a reversible transformation G on
the set of k-bit strings: that is, a permutation of {0, 1}k, for some fixed k. Formally, the
terms ‘gate’ and ‘reversible transformation’ will mean the same thing; ‘gate’ just connotes a
reversible transformation that is particularly small or simple.

A gate is nontrivial if it does something other than permute its input bits, and non-
degenerate if it does something other than permute its input bits and/or apply NOT’s to
some subset of them.

A gate G is conservative if it satisfies |G (x)| = |x| for all x. A gate is mod-k-respecting
if there exists a j such that

|G (x)| ≡ |x|+ j (mod k)

for all x. It’s mod-k-preserving if moreover j = 0. It’s mod-preserving if it’s mod-k-preserving
for some k ≥ 2, and mod-respecting if it’s mod-k-respecting for some k ≥ 2.

As special cases, mod-2-respecting gates and mod-2-preserving gates are called is also
called parity-respecting and parity-preserving respectively. A gate G such that

|G (x)| 6≡ |x| (mod 2)

for all x is called parity-flipping. In Theorem 12, we will prove that parity-flipping gates are
the only examples of mod-respecting gates that are not mod-preserving.

The respecting number of a gate G, denoted k (G), is the largest k such that G is
mod-k-respecting. (By convention, if G is conservative then k (G) = ∞, while if G is
non-mod-respecting then k (G) = 1.) We have the following fact:

I Proposition 1. G is mod-`-respecting if and only if ` divides k (G).

Proof. If ` divides k (G), then certainly G is mod-`-respecting. Now, suppose G is mod-`-
respecting but ` does not divide k (G). Then G is both mod-`-respecting and mod-k(G)-
respecting. So by the Chinese Remainder Theorem, G is mod-lcm (`, k (G))-respecting. But
this contradicts the definition of k (G). J



S. Aaronson, D. Grier, and L. Schaeffer 23:11

A gate G is affine if it implements an affine transformation over F2: that is, if there exists
an invertible matrix A ∈ Fk×k2 , and a vector b ∈ Fk2 , such that G (x) = Ax⊕ b for all x. A
gate is linear if moreover b = 0. A gate is orthogonal if it satisfies

G (x) ·G (y) ≡ x · y (mod 2)

for all x, y. (We will observe, in Lemma 14, that every orthogonal gate is linear.) Also, if
G (x) = Ax⊕ b is affine, then the linear part of G is the linear transformation G′ (x) = Ax.
We call G orthogonal in its linear part, mod-k-preserving in its linear part, etc. if G′ satisfies
the corresponding invariant. A gate that is orthogonal in its linear part is also called an
isometry.

Given two gates G and H, their tensor product, G⊗H, is a gate that applies G and H
to disjoint sets of bits. We will often use the tensor product to produce a single gate that
combines the properties of two previous gates. Also, we denote by G⊗t the tensor product
of t copies of G.

2.2 Gate Classes
Let S = {G1, G2, . . .} be a set of gates, possibly on different numbers of bits and possibly
infinite. Then 〈S〉 = 〈G1, G2, . . .〉, the class of reversible transformations generated by S,
can be defined as the smallest set of reversible transformations F : {0, 1}n → {0, 1}n that
satisfies the following closure properties:
1. Base case. 〈S〉 contains S, as well as the identity function F (x1 . . . xn) = x1 . . . xn for

all n ≥ 1.
2. Composition rule. If 〈S〉 contains F (x1 . . . xn) andG (x1 . . . xn), then 〈S〉 also contains

F (G (x1 . . . xn)).
3. Swapping rule. If 〈S〉 contains F (x1 . . . xn), then 〈S〉 also contains all possible functions

σ
(
F
(
xτ(1) . . . xτ(n)

))
obtained by permuting F ’s input and output bits.

4. Extension rule. If 〈S〉 contains F (x1 . . . xn), then 〈S〉 also contains the function

G (x1 . . . xn, b) := (F (x1 . . . xn) , b) ,

in which b occurs as a “dummy” bit.
5. Ancilla rule. If 〈S〉 contains a function F that satisfies

F (x1 . . . xn, a1 . . . ak) = (G (x1 . . . xn) , a1 . . . ak) ∀x1 . . . xn ∈ {0, 1}n ,

for some smaller function G and fixed “ancilla” string a1 . . . ak ∈ {0, 1}k that does not
depend on x, then 〈S〉 also contains G. (Note that, if the ai’s are set to other values,
then F need not have the above form.)

Note that because of reversibility, the set of n-bit transformations in 〈S〉 (for any n)
always forms a group. Indeed, if 〈S〉 contains F , then clearly 〈S〉 contains all the iterates
F 2 (x) = F (F (x)), etc. But since there must be some positive integer m such that
Fm (x) = x, this means that Fm−1 (x) = F−1 (x). Thus, we do not need a separate rule
stating that 〈S〉 is closed under inverses.

We say S generates the reversible transformation F if F ∈ 〈S〉. We also say that S
generates 〈S〉.

Given an arbitrary set C of reversible transformations, we call C a reversible gate class
(or class for short) if C is closed under rules (1)-(5) above: in other words, if there exists an
S such that C = 〈S〉.
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x1 • •
x2 × ×
x3 ×
x4 ×
0 × • ×

Figure 2 Generating a Controlled-Controlled-Swap gate from Fredkin.

A reversible circuit for the function F , over the gate set S, is an explicit procedure for
generating F by applying gates in S, and thereby showing that F ∈ 〈S〉. An example is
shown in Figure 2. Reversible circuit diagrams are read from left to right, with each bit
that occurs in the circuit (both input and ancilla bits) represented by a horizontal line, and
each gate represented by a vertical line.

If every gate G ∈ S satisfies some invariant, then we can also describe S and 〈S〉 as
satisfying that invariant. So for example, the set {CNOTNOT,NOT} is affine and parity-
respecting, and so is the class that it generates. Conversely, S violates an invariant if any
G ∈ S violates it.

Just as we defined the respecting number k (G) of a gate, we would like to define the
respecting number k (S) of an entire gate set. To do so, we need a proposition about the
behavior of k (G) under tensor products.

I Proposition 2. For all gates G and H,

k (G⊗H) = gcd (k (G) , k (H)) .

Proof. Letting γ = gcd (k (G) , k (H)), clearly G ⊗ H is mod-γ-respecting. To see that
G⊗H is not mod-`-respecting for any ` > γ: by definition, ` must fail to divide either k (G)
or k (H). Suppose it fails to divide k (G) without loss of generality. Then G cannot be
mod-`-respecting, by Proposition 1. But if we consider pairs of inputs to G⊗H that differ
only on G’s input, then this implies that G⊗H is not mod-`-respecting either. J

If S = {G1, G2, . . .}, then because of Proposition 2, we can define k on the set S as
gcd (k(G1), k(G2), . . .). For then not only will every transformation in 〈S〉 be mod-k (S)-
respecting, but there will exist transformations in 〈S〉 that are not mod-`-respecting for any
` > k (S).

We then have that S is mod-k-respecting if and only if k divides k (S), and mod-respecting
if and only if S is mod-k-respecting for some k ≥ 2.

2.3 Alternative Kinds of Generation
We now discuss four alternative notions of what it can mean for a reversible gate set to
“generate” a transformation. Besides being interesting in their own right, some of these
notions will also be used in the proof of our main classification theorem.

Partial Gates. A partial reversible gate is an injective function H : D → {0, 1}n,
where D is some subset of {0, 1}n. Such an H is consistent with a full reversible gate G
if G (x) = H (x) whenever x ∈ D. Also, we say that a reversible gate set S generates H if
S generates any G with which H is consistent. As an example, COPY is the 2-bit partial
reversible gate defined by the following relations:

COPY (00) = 00, COPY (10) = 11.

If a gate set S can implement the above behavior, using ancilla bits that are returned to
their original states by the end, then we say S “generates COPY”; the behavior on inputs 01
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and 11 is irrelevant. Note that COPY is consistent with CNOT. One can think of COPY
as a bargain-basement CNOT, but one that might be bootstrapped up to a full CNOT with
further effort.

Generation With Garbage. Let D ⊆ {0, 1}m, and H : D → {0, 1}n be some function,
which need not be injective or surjective, or even have the same number of input and output
bits. Then we say that a reversible gate set S generates H with garbage if there exists a
reversible transformation G ∈ 〈S〉, as well as an ancilla string a and a function gar, such
that G (x, a) = (H (x) , gar (x)) for all x ∈ D. As an example, consider the ordinary 2-bit
AND function, from {0, 1}2 to {0, 1}. Since AND destroys information, clearly no reversible
gate can generate it in the usual sense, but many reversible gates can generate AND with
garbage: for instance, the Toffoli and Fredkin gates, as we saw in Section 1.1.

Encoded Universality. This is a concept borrowed from quantum computing [5]. In
our setting, encoded universality means that there is some way of encoding 0’s and 1’s by
longer strings, such that our gate set can implement any desired transformation on the
encoded bits. Note that, while this is a weaker notion of universality than the ability
to generate arbitrary permutations of {0, 1}n, it is stronger than “merely” computational
universality, because it still requires a transformation to be performed reversibly, with no
garbage left around. Formally, given a reversible gate set S, we say that S supports encoded
universality if there are k-bit strings α (0) and α (1) such that for every n-bit reversible
transformation F (x1 . . . xn) = y1 . . . yn, there exists a transformation G ∈ 〈S〉 that satisfies

G (α (x1) . . . α (xn)) = α (y1) . . . α (yn)

for all x ∈ {0, 1}n. Also, we say that S supports affine encoded universality if this is true for
every affine F .

As a well-known example, the Fredkin gate is not universal in the usual sense, because it
preserves Hamming weight. But it is easy to see that Fredkin supports encoded universality,
using the so-called dual-rail encoding, in which every 0 bit is encoded as 01, and every 1
bit is encoded as 10. In Section 4.4, we will show, as a consequence of our classification
theorem, that every reversible gate set (except for degenerate sets) supports either encoded
universality or affine encoded universality.

Loose Generation. Finally, we say that a gate set S loosely generates a reversible
transformation F : {0, 1}n → {0, 1}n, if there exists a transformation G ∈ 〈S〉, as well as
ancilla strings a and b, such that

G (x, a) = (F (x) , b)

for all x ∈ {0, 1}n. In other words, G is allowed to change the ancilla bits, so long as they
change in a way that is independent of the input x. Under this rule, one could perhaps
tell by examining the ancilla bits that G was applied, but one could not tell to which input.
This suffices for some applications of reversible computing, though not for others.8

3 Stating the Classification Theorem

In this section we state our main result, and make a few preliminary remarks about it. First
let us define the gates that appear in the classification theorem.

8 For example, if G were applied to a quantum superposition, then it would still maintain coherence
among all the inputs to which it was applied – though perhaps not between those inputs and other
inputs in the superposition to which it was not applied.
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NOT is the 1-bit gate that maps x to x.
NOTNOT, or NOT⊗2, is the 2-bit gate that maps x, y to x, y. NOTNOT is a parity-
preserving variant of NOT.
CNOT (Controlled-NOT) is the 2-bit gate that maps x, y to x, y ⊕ x. CNOT is affine.
CNOTNOT is the 3-bit gate that maps x, y, z to x, y ⊕ x, z ⊕ x. CNOTNOT is affine
and parity-preserving.
Toffoli (also called Controlled-Controlled-NOT, or CCNOT) is the 3-bit gate that maps
x, y, z to x, y, z ⊕ xy.
Fredkin (also called Controlled-SWAP, or CSWAP) is the 3-bit gate that maps x, y, z
to x, y ⊕ x (y ⊕ z) , z ⊕ x (y ⊕ z). In other words, it swaps y with z if x = 1, and does
nothing if x = 0. Fredkin is conservative: it never changes the Hamming weight.
Ck is a k-bit gate that maps 0k to 1k and 1k to 0k, and all other k-bit strings to themselves.
Ck preserves the Hamming weight mod k. Note that C1 = NOT, while C2 is equivalent
to NOTNOT, up to a bit-swap.
Tk is a k-bit gate (for even k) that maps x = (x1, x2, . . . , xk) to x = (x1, x2, . . . , xk) if
|x| is odd, or to x if |x| is even. A different definition is

Tk (x1, . . . , xk) = (x1 ⊕ bx, . . . , xk ⊕ bx) ,

where bx := x1 ⊕ · · · ⊕ xk. This shows that Tk is linear. Indeed, we also have

Tk (x) · Tk (y) ≡ x · y (mod 2) ,

which shows that Tk is orthogonal. Note also that, if k ≡ 2 (mod 4), then Tk preserves
Hamming weight mod 4: if |x| is even then |Tk (x)| = |x|, while if |x| is odd then

|Tk (x)| ≡ k − |x| ≡ 2− |x| ≡ |x| (mod 4) .

Fk is a k-bit gate (for even k) that maps x to x if |x| is even, or to x if |x| is odd. A
different definition is

Fk (x1 . . . xk) = Tk (x1 . . . xk) = (x1 ⊕ bx ⊕ 1, . . . , xk ⊕ bx ⊕ 1)

where bx is as above. This shows that Fk is affine. Indeed, if k is a multiple of 4, then
Fk preserves Hamming weight mod 4: if |x| is odd then |Fk (x)| = |x|, while if |x| is even
then

|Fk (x)| ≡ k − |x| ≡ |x| (mod 4) .

Since Fk is equal to Tk in its linear part, Fk is also an isometry.

We can now state the classification theorem.

I Theorem 3 (Main Result). Every set of reversible gates generates one of the following
classes:
1. The trivial class (which contains only bit-swaps).
2. The class of all transformations (generated by Toffoli).
3. The class of all conservative transformations (generated by Fredkin).
4. For each k ≥ 3, the class of all mod-k-preserving transformations (generated by Ck).
5. The class of all affine transformations (generated by CNOT).
6. The class of all parity-preserving affine transformations (generated by CNOTNOT).
7. The class of all mod-4-preserving affine transformations (generated by F4).
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8. The class of all orthogonal linear transformations (generated by T4).
9. The class of all mod-4-preserving orthogonal linear transformations (generated by T6).
10. Classes 1, 3, 7, 8, or 9 augmented by a NOTNOT gate (note: 7 and 8 become equivalent

this way).
11. Classes 1, 3, 6, 7, 8, or 9 augmented by a NOT gate (note: 7 and 8 become equivalent

this way).
Furthermore, all the above classes are distinct except when noted otherwise, and they fit

together in the lattice diagram shown in Figure 3.9

Let us make some comments about the structure of the lattice. The lattice has a
countably infinite number of classes, with the one infinite part given by the mod-k-preserving
classes. The mod-k-preserving classes are partially ordered by divisibility, which means,
for example, that the lattice is not planar.10 While there are infinite descending chains in
the lattice, there is no infinite ascending chain. This means that, if we start from some
reversible gate class and then add new gates that extend its power, we must terminate after
finitely many steps with the class of all reversible transformations.

In the full version [4], we prove that if we allow loose generation, then the only change to
Theorem 3 is that every class C containing a NOTNOT gate collapses with C + NOT.

4 Consequences of the Classification

To illustrate the power of the classification theorem, in this section we use it to prove four
general implications for reversible computation. While these implications are easy to prove
with the classification in hand, we do not know how to prove any of them without it.

4.1 Nature of the Classes
Here is one immediate (though already non-obvious) corollary of Theorem 3.

I Corollary 4. Every reversible gate class C is finitely generated: that is, there exists a finite
set S such that C = 〈S〉.

Indeed, we have something stronger.

I Corollary 5. Every reversible gate class C is generated by a single gate G ∈ C.

Proof. This is immediate for all the classes listed in Theorem 3, except the ones involving
NOT or NOTNOT gates. For classes of the form C = 〈G,NOT〉 or C = 〈G,NOTNOT〉, we
just need a single gate G′ that is clearly generated by C, and clearly not generated by a
smaller class. We can then appeal to Theorem 3 to assert that G′ must generate C. For
each of the relevant G’s – namely, Fredkin, CNOTNOT, F4, and T6 – one such G′ is the
tensor product, G⊗NOT or G⊗NOTNOT. J

9 Let us mention that Fredkin + NOTNOT generates the class of all parity-preserving transformations,
while Fredkin + NOT generates the class of all parity-respecting transformations. We could have listed
the parity-preserving transformations as a special case of the mod-k-preserving transformations: namely,
the case k = 2. If we had done so, though, we would have had to include the caveat that Ck only
generates all mod-k-preserving transformations when k ≥ 3 (when k = 2, we also need Fredkin in the
generating set). And in any case, the parity-respecting class would still need to be listed separately.

10For consider the graph with the integers 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 21, 24, and 28 as its
vertices, and with an edge between each pair whose ratio is a prime. One can check that this graph
contains K3,3 as a minor.
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>

CNOT Fredkin
+NOT

CNOTNOT
+NOT MOD2 · · ·

F4 + NOT CNOTNOT MOD4 · · ·

T6 + NOT F4 +
NOTNOT MOD8 · · ·

NOT T6 +
NOTNOT

T4 F4 ... · · ·

NOTNOT T6 Fredkin

⊥ Non-affine

Affine

Isometry

Degenerate

Figure 3 The inclusion lattice of reversible gate classes.

We also wish to point out a non-obvious symmetry property that follows from the
classification theorem. Given an n-bit reversible transformation F , let F ∗, or the dual of F ,
be F ∗ (x1 . . . xn) := F (x1 . . . xn). The dual can be thought of as F with the roles of 0 and 1
interchanged: for example, Toffoli∗ (xyz) flips z if and only if x = y = 0. Also, call a gate F
self-dual if F ∗ = F , and call a reversible gate class C dual-closed if F ∗ ∈ C whenever F ∈ C.
Then:

I Corollary 6. Every reversible gate class C is dual-closed.

Proof. This is obvious for all the classes listed in Theorem 3 that include a NOT or NOTNOT
gate. For the others, we simply need to consider the classes one by one: the notions of
“conservative,” “mod-k-respecting,” and “mod-k-preserving” are manifestly the same after
we interchange 0 and 1. This is less manifest for the notion of “orthogonal,” but one can
check that Tk and Fk are self-dual for all even k. J
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4.2 Linear-Time Algorithm
If one wanted, one could interpret this entire paper as addressing a straightforward algorithms
problem: namely, the RevGen problem defined in Section 1.4, where we are given as input
a set of reversible gates G1, . . . , GK , as well as a target reversible transformation H, and we
want to know whether the Gi’s generate H. From that perspective, our contribution is to
reduce the known upper bound on the complexity of RevGen: from recursively-enumerable
(!), or triply-exponential time if we use Jeřábek’s recent clone/coclone duality for reversible
gates [15], all the way down to linear time.

I Theorem 7. There is a linear-time algorithm for RevGen.

Proof. It suffices to give a linear-time algorithm that takes as input the truth table of a single
reversible transformation G : {0, 1}n → {0, 1}n, and that decides which class it generates.
For we can then compute 〈G1, . . . , GK〉 by taking the least upper bound of 〈G1〉 , . . . , 〈GK〉,
and can also solve the membership problem by checking whether

〈G1, . . . , GK〉 = 〈G1, . . . , GK , H〉 .

The algorithm is as follows: first, make a single pass through G’s truth table, in order to
answer the following two questions.

Is G affine, and if so, what is its matrix representation, G (x) = Ax⊕ b?
What is W (G) := {|G (x)| − |x| : x ∈ {0, 1}n}?

In any reasonable RAM model, both questions can easily be answered in O (n2n) time,
which is the number of bits in G’s truth table.

If G is non-affine, then Theorem 3 implies that we can determine 〈G〉 from W (G) alone.
If G is affine, then Theorem 3 implies we can determine 〈G〉 from (A, b) alone, though it is
also convenient to use W (G). We need to take the gcd of the numbers in W (G), check
whether A is orthogonal, etc., but the time needed for these operations is only poly (n),
which is negligible compared to the input size of n2n. J

We have implemented the algorithm described in Theorem 7, and Java code is available
for download [25].

4.3 Compression of Reversible Circuits
We now state a “complexity-theoretic” consequence of Theorem 3.

I Theorem 8. Let R be a reversible circuit, over any gate set S, that maps {0, 1}n to {0, 1}n,
using an unlimited number of gates and ancilla bits. Then there is another reversible circuit,
over the same gate set S, that applies the same transformation as R does, and that uses only
2n poly(n) gates and O(1) ancilla bits.11

Proof. If S is one of the gate sets listed in Theorem 3, then this follows immediately by
examining the reversible circuit constructions in Section 7, for each class in the classification.
Building, in relevant parts, on results by others [26, 7], we will take care in Section 7 to ensure
that each non-affine circuit construction uses at most 2n poly(n) gates and O(1) ancilla bits,
while each affine construction uses at most O(n2) gates and O(1) ancilla bits (most actually
use no ancilla bits).

11Here the big-O’s suppress constant factors that depend on the gate set in question.
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Now suppose S is not one of the sets listed in Theorem 3, but some other set that
generates one of the listed classes. So for example, suppose 〈S〉 = 〈Fredkin,NOT〉. Even
then, we know that S generates Fredkin and NOT, and the number of gates and ancillas
needed to do so is just some constant, independent of n. Furthermore, each time we need
a Fredkin or NOT, we can reuse the same ancilla bits, by the assumption that those bits
are returned to their original states. So we can simply simulate the appropriate circuit
construction from Section 7, using only a constant factor more gates and O (1) more ancilla
bits than the original construction. J

As we said in Section 1.4, without the classification theorem, it is not obvious how to
prove any upper bound whatsoever on the number of gates or ancillas, for arbitrary gate sets
S. Of course, any circuit that uses T gates also uses at most O (T ) ancillas; and conversely,
any circuit that uses M ancillas needs at most

(
2n+M)! gates, for counting reasons. But the

best upper bounds on either quantity that follow from clone theory and the ideal membership
problem appear to have the form exp (exp (exp (exp (n)))).

A constant number of ancilla bits is sometimes needed, and not only for the trivial reasons
that our gates might act on more than n bits, or only (e.g.) be able to map 0n to 0n if no
ancillas are available.

I Proposition 9 (Toffoli [29]). If no ancillas are allowed, then there exist reversible trans-
formations of {0, 1}n that cannot be generated by any sequence of reversible gates on n− 1
bits or fewer.

Proof. For all k ≥ 1, any (n− k)-bit gate induces an even permutation of {0, 1}n – since
each cycle is repeated 2k times, once for every setting of the k bits on which the gate doesn’t
act. But there are also odd permutations of {0, 1}n. J

It is also easy to show, using a Shannon counting argument, that there exist n-bit reversible
transformations that require Ω (2n) gates to implement, and n-bit affine transformations
that require Ω

(
n2/ logn

)
gates. Thus the bounds in Theorem 8 on the number of gates T

are, for each class, off from the optimal bounds only by polylog T factors.

4.4 Encoded Universality
If we only care about which Boolean functions f : {0, 1}n → {0, 1} can be computed, and
are completely uninterested in what garbage is output along with f , then it is not hard to
see that all reversible gate sets fall into three classes. Namely, non-affine gate sets (such
as Toffoli and Fredkin) can compute all Boolean functions;12 non-degenerate affine gate
sets (such as CNOT and CNOTNOT) can compute all affine functions; and degenerate
gate sets (such as NOT and NOTNOT) can compute only 1-bit functions. However, the
classification theorem lets us make a more interesting statement. Recall the notion of encoded
universality from Section 2.3, which demands that every reversible transformation (or every
affine transformation) be implementable without garbage, once 0 and 1 are “encoded” by
longer strings α (0) and α (1) respectively.

I Theorem 10. Besides the trivial, NOT, and NOTNOT classes, every reversible gate class
supports encoded universality if non-affine, or affine encoded universality if affine.

12This was proven by Lloyd [21], as well as by Kerntopf et al. [16] and De Vos and Storme [30]; we include
a proof for completeness in the full version of this paper [4].
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Proof. For 〈Fredkin〉, and for all the non-affine classes above 〈Fredkin〉, we use the so-called
“dual-rail encoding,” where 0 is encoded by 01 and 1 is encoded by 10. Given three encoded
bits, xxyyzz, we can simulate a Fredkin gate by applying one Fredkin to xyz and another to
xyz, and can also simulate a CNOT by applying a Fredkin to xyy. But Fredkin + CNOT
generates everything.

The dual-rail encoding also works for simulating all affine transformations using an F4
gate. For note that

F4 (xyy1) = (1, x⊕ y, x⊕ y, x)
= (x, x⊕ y, x⊕ y, 1) ,

where we used that we can permute bits for free. So given two encoded bits, xxyy, we can
simulate a CNOT from x to y by applying F4 to x, y, y, and one ancilla bit initialized to 1.

For 〈CNOTNOT〉, we use a repetition encoding, where 0 is encoded by 00 and 1 is
encoded by 11. Given two encoded bits, xxyy, we can simulate a CNOT from x to y by
applying a CNOTNOT from either copy of x to both copies of y. This lets us perform all
affine transformations on the encoded subspace.

The repetition encoding also works for 〈T4〉. For notice that

T4 (xyy0) = (0, x⊕ y, x⊕ y, x)
= (x, x⊕ y, x⊕ y, 0) .

Thus, to simulate a CNOT from x to y, we use one copy of x, both copies of y, and one
ancilla bit initialized to 0.

Finally, for 〈T6〉, we encode 0 by 0011 and 1 by 1100. Notice that

T6 (xyyyy0) = (0, x⊕ y, x⊕ y, x⊕ y, x⊕ y, x)
= (x, x⊕ y, x⊕ y, x⊕ y, x⊕ y, 0) .

So given two encoded bits, xxxxyyyy, we can simulate a CNOT from x to y by using one
copy of x, all four copies of y and y, and one ancilla bit initialized to 0. J

In the proof of Theorem 10, notice that, every time we simulated Fredkin (xyz) or
CNOT (xy), we had to examine only a single bit in the encoding of the control bit x. Thus,
Theorem 10 actually yields a stronger consequence: that given an ordinary, unencoded input
string x1 . . . xn, we can use any non-degenerate reversible gate first to translate x into its
encoded version α (x1) . . . α (xn), and then to perform arbitrary transformations or affine
transformations on the encoding.

5 Structure of the Proof

The proof of Theorem 3 naturally divides into four components. First, we need to verify
that all the gates mentioned in the theorem really do satisfy the invariants that they are
claimed to satisfy – and as a consequence, that any reversible transformation they generate
also satisfies the invariants. This is completely routine.

Second, we need to verify that all pairs of classes that Theorem 3 says are distinct, are
distinct. We handle this in Theorem 11 below (there are only a few non-obvious cases).

Third, we need to verify that the “gate definition” of each class coincides with its “invariant
definition”– i.e., that each gate really does generate all reversible transformations that satisfy
its associated invariant. For example, we need to show that Fredkin generates all conservative
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transformations, that Ck generates all transformations that preserve Hamming weight mod
k, and that T4 generates all orthogonal linear transformations. Many of these results are
already known, but for completeness, we prove all of them in Section 7, by giving explicit
constructions of reversible circuits.13

Finally, we need to show that there are no additional reversible gate classes, besides the
ones listed in Theorem 3. This is by far the most interesting part, but it appears only in the
full version of the paper [4] due to its length. Nevertheless, the organization of the complete
proof is as follows:

In Section 6, we collect numerous results about what reversible transformations can and
cannot do to Hamming weights mod k and inner products mod k, in both the affine and
the non-affine cases; these results are then drawn on in the rest of the paper. (Some of
them are even used for the circuit constructions in Section 7.)
In the full version, we complete the classification of all non-affine gate sets. We show that
the only classes that contain a Fredkin gate (equivalently, the classes above 〈Fredkin〉
in the lattice) are 〈Fredkin〉 itself, 〈Fredkin,NOTNOT〉, 〈Fredkin,NOT〉, 〈Ck〉 for k ≥ 3,
and 〈Toffoli〉. Next, we show that every nontrivial conservative gate generates Fredkin.
We then build on that result to show that every non-affine gate set generates Fredkin.
The complete classification of all affine gate sets is also contained in the full version.
For simplicity, we start with linear gate sets only, and show that every nontrivial mod-
4-preserving linear gate generates T6, and that every nontrivial, non-mod-4-preserving
orthogonal gate generates T4. Next, we show that every non-orthogonal linear gate
generates CNOTNOT. Then, we show that every non-parity-preserving linear gate
generates CNOT. Since CNOT generates all linear transformations, this completes the
classification of linear gate sets. Finally, we “put back the affine part,” showing that it can
lead to only 8 additional classes besides the linear classes 〈∅〉, 〈T6〉, 〈T4〉, 〈CNOTNOT〉,
and 〈CNOT〉.

I Theorem 11. All pairs of classes asserted to be distinct by Theorem 3, are distinct.

Proof. In each case, one just needs to observe that the gate that generates a given class A,
satisfies some invariant violated by the gate that generates another class B. (Here we are
using the “gate definitions” of the classes, which will be proven equivalent to the invariant
definitions in Section 7.) So for example, 〈Fredkin〉 cannot contain CNOT because Fredkin
is conservative; conversely, 〈CNOT〉 cannot contain Fredkin because CNOT is affine.

The only tricky classes are those involving NOT and NOTNOT gates: indeed, these
classes do sometimes coincide, as noted in Theorem 3. However, in all cases where the
classes are distinct, their distinctness is witnessed by the following invariants:
〈Fredkin,NOT〉 and 〈Fredkin,NOTNOT〉 are conservative in their linear part.
〈CNOTNOT,NOT〉 is parity-preserving in its linear part.
〈F4,NOT〉 = 〈T4,NOT〉 and 〈F4,NOTNOT〉 = 〈T4,NOTNOT〉 are orthogonal in their
linear part (isometries).
〈T6,NOT〉 and 〈T6,NOTNOT〉 are orthogonal and mod-4-preserving in their linear part.

13The upshot of the Galois connection for clones [15] is that, if we could prove that a list of invariants for
a given gate set S was the complete list of invariants satisfied by S, then this second part of the proof
would be unnecessary: it would follow automatically that S generates all reversible transformations
that satisfy the invariants. But this raises the question: how do we prove that a list of invariants for S
is complete? In each case, the easiest way we could find to do this, was just by explicitly describing
circuits of S-gates to generate all transformations that satisfy the stated invariants.
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As a final remark, even if a reversible transformation is implemented with the help of
ancilla bits, as long as the ancilla bits start and end in the same state a1 . . . ak, they have no
effect on any of the invariants discussed above, and for that reason are irrelevant. J

6 Hamming Weights and Inner Products

The purpose of this section is to collect various mathematical results about what a reversible
transformation G : {0, 1}n → {0, 1}n can and cannot do to the Hamming weight of its input,
or to the inner product of two inputs. That is, we study the possible relationships that can
hold between |x| and |G (x)|, or between x · y and G (x) ·G (y) (especially modulo various
positive integers k). Not only are these results used heavily in the rest of the classification,
but some of them might be of independent interest.

6.1 Ruling Out Mod-Shifters
Call a reversible transformation a mod-shifter if it always shifts the Hamming weight mod k
of its input string by some fixed, nonzero amount. When k = 2, clearly mod-shifters exist:
indeed, the humble NOT gate satisfies |NOT (x)| ≡ |x| + 1 (mod 2) for all x ∈ {0, 1}, and
likewise for any other parity-flipping gate. However, we now show that k = 2 is the only
possibility: mod-shifters do not exist for any larger k.

I Theorem 12. There are no mod-shifters for k ≥ 3. In other words: let G be a reversible
transformation on n-bit strings, and suppose

|G (x)| ≡ |x|+ j (mod k)

for all x ∈ {0, 1}n. Then either j = 0 or k = 2.

Proof. Suppose the above equation holds for all x. Then introducing a new complex variable
z, we have

z|G(x)| ≡ z|x|+j
(
mod

(
zk − 1

))
(since working mod zk − 1 is equivalent to setting zk = 1). Since the above is true for all x,∑

x∈{0,1}n

z|G(x)| ≡
∑

x∈{0,1}n

z|x|zj
(
mod

(
zk − 1

))
. (1)

By reversibility, we have∑
x∈{0,1}n

z|G(x)| =
∑

x∈{0,1}n

z|x| = (z + 1)n .

Therefore equation (1) simplifies to

(z + 1)n
(
zj − 1

)
≡ 0

(
mod

(
zk − 1

))
.

Now, since zk − 1 has no repeated roots, it can divide (z + 1)n
(
zj − 1

)
only if it divides

(z + 1)
(
zj − 1

)
. For this we need either j = 0, causing zj − 1 = 0, or else j = k − 1 (from

degree considerations). But it is easily checked that the equality

zk − 1 = (z + 1)
(
zk−1 − 1

)
holds only if k = 2. J

ITCS 2017



23:22 The Classification of Reversible Bit Operations

6.2 Inner Products Mod k

We have seen that there exist orthogonal gates (such as the Tk gates), which preserve inner
products mod 2. In this section, we first show that no reversible gate that changes Hamming
weights can preserve inner products mod k for any k ≥ 3. We then observe that, if a
reversible gate is orthogonal, then it must be linear, and we give necessary and conditions
for orthogonality.

I Theorem 13. Let G be a non-conservative n-bit reversible gate, and suppose

G (x) ·G (y) ≡ x · y (mod k)

for all x, y ∈ {0, 1}n. Then k = 2.

Proof. As in the proof of Theorem 12, we promote the congruence to a congruence over
complex polynomials:

zG(x)·G(y) ≡ zx·y (mod zk − 1)

Fix a string x ∈ {0, 1}n such that |G(x)| > |x|, which must exist because G is non-conservative.
Then sum the congruence over all y:∑

y∈{0,1}n

zG(x)·G(y) ≡
∑

y∈{0,1}n

zx·y (mod zk − 1).

The summation on the right simplifies as follows.

∑
y∈{0,1}n

zx·y =
∑

y∈{0,1}n

n∏
i=1

zxiyi =
n∏
i=1

∑
yi∈{0,1}

zxiyi =
n∏
i=1

(1 + zxi) = (1 + z)|x| 2n−|x|,

=
(

1 + z

2

)|x|
2n.

Similarly,

∑
y∈{0,1}n

zG(x)·G(y) =
(

1 + z

2

)|G(x)|
2n,

since summing over all y is the same as summing over all G(y). So we have(
1 + z

2

)|G(x)|
2n ≡

(
1 + z

2

)|x|
2n (mod zk − 1),

0 ≡ (1 + z)|x|2−|G(x)|
(

2|G(x)|−|x| − (1 + z)|G(x)|−|x|
)

(mod zk − 1),

or equivalently, letting

p(x) := 2|G(x)|−|x| − (1 + z)|G(x)|−|x|,

we find that zk − 1 divides (1 + z)|x|p (x) as a polynomial. Now, the roots of zk − 1 lie on
the unit circle centered at 0. Meanwhile, the roots of p (x) lie on the circle in the complex
plane of radius 2, centered at −1. The only point of intersection of these two circles is z = 1,
so that is the only root of zk − 1 that can be covered by p (x). On the other hand, clearly
z = −1 is the only root of (1 + z)|x|. Hence, the only roots of zk − 1 are 1 and −1, so we
conclude that k = 2. J
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We now study reversible transformations that preserve inner products mod 2.

I Lemma 14. Every orthogonal gate G is linear.

Proof. Suppose

G (x) ·G (y) ≡ x · y (mod 2) .

Then for all x, y, z,

G (x⊕ y) ·G (z) ≡ (x⊕ y) · z
≡ x · z + y · z
≡ G (x) ·G (z) +G (y) ·G (z)
≡ (G (x)⊕G (y)) ·G (z) (mod 2) .

But if the above holds for all possible z, then

G (x⊕ y) ≡ G (x)⊕G (y) (mod 2) . J

Theorem 13 and Lemma 14 have the following corollary.

I Corollary 15. Let G be any non-conservative, nonlinear gate. Then for all k ≥ 2, there
exist inputs x, y such that

G (x) ·G (y) 6≡ x · y (mod k) .

Also:

I Lemma 16. A linear transformation G(x) = Ax is orthogonal if and only if ATA is the
identity: that is, if A’s column vectors satisfy |vi| ≡ 1 (mod 2) for all i and vi · vj ≡ 0 (mod 2)
for all i 6= j.

Proof. This is just the standard characterization of orthogonal matrices; that we are working
over F2 is irrelevant. First, if G preserves inner products mod 2 then for all i 6= j,

1 ≡ ei · ei ≡ (Aei) · (Aei) ≡ |vi| (mod 2) ,
0 ≡ ei · ej ≡ (Aei) · (Aej) ≡ vi · vj (mod 2) .

Second, if G satisfies the conditions then

Ax ·Ay ≡ (Ax)TAy ≡ xT (ATA)y ≡ xT y ≡ x · y (mod 2) . J

6.3 Why Mod 2 and Mod 4 Are Special
Recall that ∧ denotes bitwise AND. We first need an “inclusion/exclusion formula” for the
Hamming weight of a bitwise sum of strings.

I Lemma 17. For all v1, . . . , vt ∈ {0, 1}n, we have

|v1 ⊕ · · · ⊕ vt| =
∑
∅⊂S⊆[t]

(−2)|S|−1

∣∣∣∣∣∧
i∈S

vi

∣∣∣∣∣ .
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Proof. It suffices to prove the lemma for n = 1, since in the general case we are just summing
over all i ∈ [n]. Thus, assume without loss of generality that v1 = · · · = vt = 1. Our
problem then reduces to proving the following identity:

t∑
i=1

(−2)i−1
(
t

i

)
=
{

0 if t is even
1 if t is odd,

which follows straightforwardly from the binomial theorem. J

I Lemma 18. No nontrivial affine gate G is conservative.

Proof. Let G (x) = Ax ⊕ b; then |G (0n)| = |0n| = 0 implies b = 0n. Likewise, |G (ei)| =
|ei| = 1 for all i implies that A is a permutation matrix. But then G is trivial. J

I Theorem 19. If G is a nontrivial linear gate that preserves Hamming weight mod k, then
either k = 2 or k = 4.

Proof. For all x, y, we have

|x|+ |y| − 2 (x · y) ≡ |x⊕ y|
≡ |G (x⊕ y)|
≡ |G (x)⊕G (y)|
≡ |G (x)|+ |G (y)| − 2 (G (x) ·G (y))
≡ |x|+ |y| − 2 (G (x) ·G (y)) (mod k) ,

where the first and fourth lines used Lemma 17, the second and fifth lines used that G is
mod-k-preserving, and the third line used linearity. Hence

2 (x · y) ≡ 2 (G (x) ·G (y)) (mod k) . (2)

If k is odd, then equation (2) implies

x · y ≡ G (x) ·G (y) (mod k) .

But since G is nontrivial and linear, Lemma 18 says that G is non-conservative. So by
Theorem 13, the above equation cannot be satisfied for any odd k ≥ 3. Likewise, if k is
even, then (2) implies

x · y ≡ G (x) ·G (y)
(

mod k2

)
.

Again by Theorem 13, the above can be satisfied only if k = 2 or k = 4. J

I Theorem 20. Let {oi}ni=1 be an orthonormal basis over F2. An affine transformation
F (x) = Ax⊕ b is mod-4-preserving if and only if |b| ≡ 0 (mod 4), and the vectors vi := Aoi
satisfy |vi|+ 2 (vi · b) ≡ |oi| (mod 4) for all i and vi · vj ≡ 0 (mod 2) for all i 6= j.

Proof. First, if F is mod-4-preserving, then

0 ≡ |F (0n)| ≡ |A0n ⊕ b| ≡ |b| (mod 4) ,

and hence

|oi| ≡ |F (oi)| ≡ |Aoi ⊕ b| ≡ |vi ⊕ b| ≡ |vi|+ |b| − 2 (vi · b) ≡ |vi|+ 2 (vi · b) (mod 4)
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for all i, and hence

|oi + oj | ≡ |F (oi ⊕ oj)|
≡ |vi ⊕ vj ⊕ b|
≡ |vi|+ |vj |+ |b| − 2 (vi · vj)− 2 (vi · b)− 2 (vj · b) + 4 |vi ∧ vj ∧ b|
≡ |vi|+ |vj |+ 2 (vi · vj) + 2 (vi · b) + 2 (vj · b) (mod 4)
≡ |oi|+ |oj |+ 2 (vi · vj) (mod 4)

for all i 6= j, from which we conclude that vi · vj ≡ 0 (mod 2).
Second, if F satisfies the conditions, then for any x =

∑
i∈S oi, we have

|F (x)| =

∣∣∣∣∣b⊕∑
i∈S

vi

∣∣∣∣∣
= |b|+

∑
i∈S
|vi| − 2

∑
i∈S

(b · vi)− 2
∑

i∈S < j∈S
(vi · vj) + 4(· · · )

≡
∑
i∈S
|vi| − 2 (b · vi)

≡
∑
i∈S
|oi| (mod 4) ,

where the second line follows from Lemma 17. Furthermore, we have that

|x| =

∣∣∣∣∣∑
i∈S

oi

∣∣∣∣∣ =
∑
i∈S
|oi| − 2

∑
i∈S<j∈S

(oi · oj) + 4(. . .) ≡
∑
i∈S
|oi| (mod 4) ,

where the last equality follows from the fact that {oi}ni=1 is an orthonormal basis. Therefore,
we conclude that |F (x)| ≡ |x| (mod 4). J

We note two corollaries of Theorem 20 for later use.

I Corollary 21. Any linear transformation A ∈ Fn×n2 that preserves Hamming weight mod 4
is also orthogonal.

I Corollary 22. An orthogonal transformation A ∈ Fn×n2 preserves Hamming weight mod 4
if and only if all of its columns have Hamming weight 1 mod 4.

7 Reversible Circuit Constructions

In this section, we show that all the classes of reversible transformations listed in Theorem 3,
are indeed generated by the gates that we claimed, by giving explicit synthesis procedures.
In order to justify Theorem 8, we also verify that in each case, only O(1) ancilla bits are
needed, even though this constraint makes some of the constructions more complicated than
otherwise.

Many of our constructions – those for Toffoli and CNOT, for example – have appeared
in various forms in the reversible computing literature, and are included here only for
completeness. Others – those for Ck and F4, for example – are new as far as we know, but
not hard.
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x1 N • N • • N •

x2 • N • • N • N

x3 • • • •
a = 1 • •

Figure 4 Circuit for the transposition σ011,101 after simplification.

7.1 Non-Affine Circuits
We start with the non-affine classes: 〈Toffoli〉, 〈Fredkin〉, 〈Fredkin,Ck〉, and 〈Fredkin,NOT〉.

I Theorem 23 (variants in [29, 26]). Toffoli generates all reversible transformations on n

bits, using only 2 ancilla bits.14

Proof. Any reversible transformation F : {0, 1}n → {0, 1}n is a permutation of n-bit strings,
and any permutation can be written as a product of transpositions. So it suffices to show
how to use Toffoli gates to implement an arbitrary transposition σy,z: that is, a mapping
that sends y = y1 . . . yn to z = z1 . . . zn and z to y, and all other n-bit strings to themselves.

Given any n-bit string w, let us define w-CNOT to be the (n+ 1)-bit gate that flips its
last bit if its first n bits are equal to w, and that does nothing otherwise. (Thus, the Toffoli
gate is 11-CNOT, while CNOT itself is 1-CNOT.) Given y-CNOT and z-CNOT gates, we
can implement the transposition σy,z as follows on input x:
1. Initialize an ancilla bit, a = 1.
2. Apply y-CNOT (x, a).
3. Apply z-CNOT (x, a).
4. Apply NOT gates to all xi’s such that yi 6= zi.
5. For each i such that yi 6= zi, apply CNOT (a, xi).
6. Apply z-CNOT (x, a).
7. Apply y-CNOT (x, a).

Thus, all that remains is to implement w-CNOT using Toffoli. Observe that we can
simulate any w-CNOT using 1n-CNOT by negating certain input bits (namely, those for
which wi = 0) before and after we apply the 1n-CNOT. An example of the transposition
σ011,101 is given in Figure 4.

So it suffices to implement 1n-CNOT, with control bits x1 . . . xn and target bit y. The
base case is n = 2, which we implement directly using Toffoli. For n ≥ 3, we do the following.

Let a be an ancilla.
Apply 1dn/2e-CNOT

(
x1 . . . xdn/2e, a

)
.

Apply 1bn/2c+1-CNOT
(
xdn/2e+1 . . . xn, a, y

)
.

Apply 1dn/2e-CNOT
(
x1 . . . xdn/2e, a

)
.

Apply 1bn/2c+1-CNOT
(
xdn/2e+1 . . . xn, a, y

)
.

The crucial point is that this construction works whether the ancilla is initially 0 or 1.
In other words, we can use any bit which is not one of the inputs, instead of a new ancilla.
For instance, we can have one bit dedicated for use in 1n-CNOT gates, which we use in the

14Notice that we need at least 2 so that we can generate CNOT and NOT using Toffoli.
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recursive applications of 1dn/2e-CNOT and 1bn/2c+1-CNOT, and the recursive applications
within them, and so on.15

Carefully inspecting the above proof shows that O
(
n22n

)
gates and 2 ancilla bits suffice

to generate any transformation. J

The particular construction above was inspired by a result of Ben-Or and Cleve [7], in
which they compute algebraic formulas in a straight-line computation model using a constant
number of registers. We note that Toffoli [29] proved a version of Theorem 23, but with
O (n) ancilla bits rather than O (1). More recently, Shende et al. [26] gave a slightly more
complicated construction that uses only 1 ancilla bit (assuming that we have CNOT and
NOT gates in addition to Toffoli gates), and that also gives explicit bounds on the number
of Toffoli gates required based on the number of fixed points of the permutation. Recall
that at least 1 ancilla bit is needed by Proposition 9.

Next, let CCSWAP, or Controlled-Controlled-SWAP, be the 4-bit gate that swaps its last
two bits if its first two bits are both 1, and otherwise does nothing.

I Proposition 24. Fredkin generates CCSWAP.

Proof. Let a be an ancilla bit initialized to 0. We implement CCSWAP (x, y, z, w) by
applying Fredkin (x, y, a), then Fredkin (a, z, w), then again Fredkin (x, y, a). J

We can now prove an analogue of Theorem 23 for conservative transformations.

I Theorem 25. Fredkin generates all conservative transformations on n bits, using only 5
ancilla bits.

Proof. In this proof, we will use the dual-rail representation, in which 0 is encoded as 01
and 1 is encoded as 10. We will also use Proposition 24, that Fredkin generates CCSWAP.

As in Theorem 23, we can decompose any reversible transformation F : {0, 1}n → {0, 1}n

as a product of transpositions σy,z. In this case, each σy,z transposes two n-bit strings
y = y1 . . . yn and z = z1 . . . zn of the same Hamming weight.

Given any n-bit string w, let us define w-CSWAP to be the (n+ 2)-bit gate that swaps
its last two bits if its first n bits are equal to w, and that does nothing otherwise. (Thus,
Fredkin is 1-CSWAP, while CCSWAP is 11-CSWAP.) Then given y-CSWAP and z-CSWAP
gates, where |y| = |z|, as well as CCSWAP gates, we can implement the transposition σy,z
on input x as follows:
1. Initialize two ancilla bits (comprising one dual-rail register) to aa = 01.
2. Apply y-CSWAP (x1 . . . xn, a, a).
3. Apply z-CSWAP (x1 . . . xn, a, a).
4. Pair off the i’s such that yi = 1 and zi = 0, with the equally many j’s such that zj = 1

and yj = 0. For each such (i, j) pair, apply Fredkin (a, xi, xj).
5. Apply z-CSWAP (x1 . . . xn, a, a).
6. Apply y-CSWAP (x1 . . . xn, a, a).

15The number of Toffoli gates T (n) needed to implement a 1n-CNOT (which dominates the cost of a
transposition) by this recursive scheme, is given by the recurrence

T (n) = 2T (1 + bn/2c) + 2T (dn/2e)

which we solve to obtain T (n) = O
(
n2
)
.
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NOT • NOT
×
×

=
•

× ×
× ×

Figure 5 Removing NOT gates from the Fredkin circuit.

The logic here is exactly the same as in the construction of transpositions in Theorem 23;
the only difference is that now we need to conserve Hamming weight.

All that remains is to implement w-CSWAP using CCSWAP. First let us show how
to implement 1n-CSWAP using CCSWAP. Once again, we do so using a recursive con-
struction. For the base case, n = 2, we just use CCSWAP. For n ≥ 3, we implement
1n-CSWAP (x1, . . . , xn, y, z) as follows:

Initialize two ancilla bits (comprising one dual-rail register) to aa = 01.
Apply 1dn/2e-CSWAP

(
x1 . . . xdn/2e, a, a

)
.

Apply 1bn/2c+1-CSWAP
(
xdn/2e+1 . . . xn, a, y, z

)
.

Apply 1dn/2e-CSWAP
(
x1 . . . xdn/2e, a, a

)
.

Apply 1bn/2c+1-CSWAP
(
xdn/2e+1 . . . xn, a, y, z

)
.

The logic is the same as in the construction of 1n-CNOT in Theorem 23 except we now
use 2 ancilla bits for the dual-rail representation.

Finally, we need to implement w-CSWAP (x1 . . . xn, y, z), for arbitrary w, using 1n-
CSWAP. We do so by first constructing w-CSWAP from NOT gates and 1n-CSWAP.
Observe that we only use the NOT gate on the control bits of the Fredkin gates used during
the construction so the equivalence given in Figure 5 holds (i.e., we can remove the NOT
gates).

Hence, we can build a w-CSWAP out of CCSWAPs using only 5 ancilla bits: 1 for
CCSWAP, 2 for the 1n-CSWAP, and 2 for a transposition. J

We note that, before the above construction was found by the authors, unpublished and
independent work by Siyao Xu and Qian Yu first showed that O(1) ancillas were sufficient
and has since been improved to exactly 1 ancilla [31].

In [11], the result that Fredkin generates all conservative transformations is stated without
proof, and credited to B. Silver. We do not know how many ancilla bits Silver’s construction
used.

Next, we prove an analogue of Theorem 23 for the mod-k-respecting transformations, for
all k ≥ 2. First, let CCk, or Controlled-Ck, be the (k + 1)-bit gate that applies Ck to the
final k bits if the first bit is 1, and does nothing if the first bit is 0.

I Proposition 26. Fredkin + Ck generates CCk, using 2 ancilla bits, for all k ≥ 2.

Proof. To implement CCk on input bits x, y1 . . . yk, we do the following:
1. Initialize ancilla bits a, b to 0, 1 respectively.
2. Use Fredkin gates and swaps to swap y1, y2 with a, b, conditioned on x = 0.16
3. Apply Ck to y1 . . . yk.
4. Repeat step 2. J

Then we have the following.

16 In more detail, use Fredkin gates to swap y1, y2 with a, b, conditioned on x = 1. Then swap y1, y2 with
a, b unconditionally.
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I Theorem 27. Fredkin + CCk generates all mod-k-preserving transformations, for k ≥ 1,
using only 5 ancilla bits.

Proof. The proof is exactly the same as that of Theorem 25, except for one detail. Namely,
let y and z be n-bit strings such that |y| ≡ |z| (mod k). Then in the construction of the
transposition σy,z from y-CSWAP and z-CSWAP gates, when we are applying step 5, it is
possible that |y| − |z| is some nonzero multiple of k, say qk. If so, then we can no longer
pair off each i such that yi = 1 and zi = 0 with a unique j such that zj = 1 and yj = 0:
after we have done that, there will remain a surplus of ‘1’ bits of size qk, either in y or in z,
as well as a matching surplus of ‘0’ bits of size qk in the other string. However, we can get
rid of both surpluses using q applications of a CCk gate (which we have by Proposition 26),
with c as the control bit. J

As a special case of Theorem 27, note that Fredkin + CC1 = Fredkin + CNOT generates
all mod-1-preserving transformations – or in other words, all transformations.

We just need one additional fact about the Ck gate.

I Proposition 28. Ck generates Fredkin, using k − 2 ancilla bits, for all k ≥ 3.

Proof. Let a1 . . . ak−2 be ancilla bits initially set to 1. Then to implement Fredkin on input
bits x, y, z, we apply:

Ck (x, y, a1 . . . ak−2) ,Ck (x, z, a1 . . . ak−2) ,Ck (x, y, a1 . . . ak−2) . J

Combining Theorem 27 with Proposition 28 now yields the following.

I Corollary 29. Ck generates all mod-k-preserving transformations for k ≥ 3, using only
k + 3 ancilla bits.

Finally, we handle the parity-flipping case.

I Proposition 30. Fredkin + NOTNOT (and hence, Fredkin + NOT) generates CC2.

Proof. This follows from Proposition 26, if we recall that C2 is equivalent to NOTNOT up
to an irrelevant bit-swap. J

I Theorem 31. Fredkin + NOT generates all parity-respecting transformations, using only
5 ancilla bits.

Proof. Let F be any parity-flipping transformation, and let F ′ be F followed by NOT on
one of the output bits. Then F ′ is parity-preserving. So by Theorem 27, we can implement
F ′ using Fredkin + CC2 (and we have CC2 by Proposition 30). We can then apply another
NOT gate to get F itself. J

One consequence of Theorem 31 is that every parity-flipping transformation can be
constructed from parity-preserving gates and exactly one NOT gate.

7.2 Affine Circuits
It is well-known that CNOT is a “universal affine gate”:

I Theorem 32. CNOT generates all affine transformations, with only 1 ancilla bit (or 0
for linear transformations).
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Proof. Let G (x) = Ax⊕ b be the affine transformation that we want to implement, for some
invertible matrix A ∈ Fn×n2 . Then given an input x = x1 . . . xn, we first use CNOT gates (at
most

(
n
2
)
of them) to map x to Ax, by reversing the sequence of row-operations that maps A

to the identity matrix in Gaussian elimination. Finally, if b = b1 . . . bn is nonzero, then for
each i such that bi = 1, we apply a CNOT from an ancilla bit that is initialized to 1. J

A simple modification of Theorem 32 handles the parity-preserving case.

I Theorem 33. CNOTNOT generates all parity-preserving affine transformations with only
1 ancilla bit (or 0 for linear transformations).

Proof. Let G (x) = Ax⊕ b be a parity-preserving affine transformation. We first construct
the linear part of G using Gaussian elimination. Notice that for G to be parity-preserving, the
columns vi of A must satisfy |vi| ≡ 1 (mod 2) for all i. For this reason, the row-elimination
steps come in pairs, so we can implement them using CNOTNOT. Notice further that since
G is parity-preserving, we must have |b| ≡ 0 (mod 2). So we can map Ax to Ax⊕ b, by using
CNOTNOT gates plus one ancilla bit set to 1 to simulate NOTNOT gates. J

Likewise (though, strictly speaking, we will not need this for the proof of Theorem 3):

I Theorem 34. CNOTNOT + NOT generates all parity-respecting affine transformations
using no ancilla bits.

Proof. Use Theorem 33 to map x to Ax, and then use NOT gates to map Ax to Ax⊕ b. J

We now move on to the more complicated cases of 〈F4〉, 〈T6〉, and 〈T4〉.

I Theorem 35. F4 generates all mod-4-preserving affine transformations using no ancilla
bits.

Proof. Let F (x) = Ax⊕ b be an n-bit affine transformation, n ≥ 2, that preserves Hamming
weight mod 4. Using F4 gates, we will show how to map F (x) = y1 . . . yn to x = x1 . . . xn.
Reversing the construction then yields the desired map from x to F (x).

At any point in time, each yj is some affine function of the xi’s. We say that xi “occurs
in” yj , if yj depends on xi. At a high level, our procedure will consist of the following steps,
repeated up to n− 3 times:
1. Find an xi that does not occur in every yj .
2. Manipulate the yj ’s so that xi occurs in exactly one yj .
3. Argue that no other xi′ can then occur in that yj . Therefore, we have recursively reduced

our problem to one involving a reversible, mod-4-preserving, affine function on n − 1
variables.

It is not hard to see that the only mod-4-preserving affine functions on 3 or fewer variables,
are permutations of the bits. So if we can show that the three steps above can always be
carried out, then we are done.

First, since A is invertible, it is not the all-1’s matrix, which means that there must be
an xi that does not occur in every yj .

Second, if there are at least three occurrences of xi, then apply F4 to three positions in
which xi occurs, plus one position in which xi does not occur. The result of this is to decrease
the number of occurrences of xi by 2. Repeat until there are at most two occurrences of xi.
Since F4 is mod-4-preserving and affine, the resulting transformation F ′ (x) = A′x+ b′ must
still be mod-4-preserving and affine, so it must still satisfy the conditions of Lemma 20. In
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particular, no column vector of A′ can have even Hamming weight. Since two occurrences
of xi would necessitate such a column vector, we know that xi must occur only once.

Third, if xi occurs only once in F ′ (x), then the corresponding column vector vi has
exactly one nonzero element. Since |vi| = 1, we know by Lemma 20 that vi · b ≡ 0 (mod 2),
which means that b has a 0 in the position where vi has a 1. Now consider the row of
A′ that includes the nonzero entry of vi. If any other column vi′ is also nonzero in that
row, then vi · vi′ ≡ 1 (mod 2), which once again contradicts the conditions of Lemma 20.
Thus, no other xi′ occurs in the same yj that xi occurs in. Indeed no constant occurs there
either, since otherwise F ′ would no longer be mod-4-preserving. So we have reduced to the
(n− 1)× (n− 1) case. J

The same argument, with slight modifications, handles 〈T4〉 and 〈T6〉.

I Theorem 36. T4 generates all orthogonal transformations, using no ancilla bits.

Proof. The construction is identical to that of Theorem 35, except with T4 instead of F4.
When reducing the number of occurrences of xi to at most 2, Lemma 16 assures us that
|vi| ≡ 1 (mod 2). J

I Theorem 37. T6 generates all mod-4-preserving linear transformations, using no ancilla
bits.

Proof. The construction is identical to that of Theorem 35, except for the following change.
Rather than using F4 to reduce the number of occurrences of some xi to at most 2, we now
use T6 to reduce the number of occurrences of xi to at most 4. (If there are 5 or more
occurrences, then T6 can always decrease the number by 4.) We then appeal to Corollary 22,
which says that |vi| ≡ 1 (mod 4) for each i. This implies that no xi can occur 2, 3, or 4
times in the output vector. But that can only mean that xi occurs once. J

By Lemma 14 and Corollary 21, an equivalent way to state Theorem 37 is that T6
generates all affine transformations that are both mod-4-preserving and orthogonal.

All that remains is some “cleanup work” (which, again, is not even needed for the proof
of Theorem 3).

I Theorem 38. T6 + NOT generates all affine transformations that are mod-4-preserving
(and therefore orthogonal) in their linear part.

T6 + NOTNOT generates all parity-preserving affine transformations that are mod-4-
preserving (and therefore orthogonal) in their linear part.

F4 + NOT (or equivalently, T4 + NOT) generates all isometries.
F4 + NOTNOT (or equivalently, T4 + NOTNOT) generates all parity-preserving isome-

tries.
NOT generates all degenerate transformations.
NOTNOT generates all parity-preserving degenerate transformations.
In none of these cases are any ancilla bits needed.

Proof. As in Theorem 34, we simply apply the relevant construction for the linear part (e.g.,
Theorem 36 or 37), then handle the affine part using NOT or NOTNOT gates. J
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8 Open Problems

As discussed in Section 1, the central challenge we leave is to give a complete classification of
all quantum gate sets acting on qubits, in terms of which unitary transformations they can
generate or approximate. Here, just like in this paper, one should assume that qubit-swaps
are free, and that arbitrary ancillas are allowed as long as they are returned to their initial
states.

A possible first step in the direction we want, which would involve Lie algebras, would
be to classify all sets of 1- and 2-qubit gates. A second step would be to classify qubit
Hamiltonians (i.e., the infinitesimal-time versions of unitary gates), in terms of which n-qubit
Hamiltonians they can be used to generate. Here the recent work of Cubitt and Montanaro
[10], which classifies qubit Hamiltonians in terms of the complexity of approximating ground
state energies, might be relevant. Yet a third possibility would be to classify quantum
gates under the assumption that intermediate measurements are allowed. Of course, these
simplifications can also be combined.

On the classical side, we have left completely open the problem of classifying reversible
gate sets over non-binary alphabets. In the non-reversible setting, it was discovered in the
1950s (see [20]) that Post’s lattice becomes dramatically different and more complicated
when we consider gates over a 3-element set rather than Boolean gates: for example, there
is now an uncountable infinity of clones, rather than “merely” a countable infinity. Does
anything similar happen in the reversible case? We know from Gu [14] that for alphabets
of size greater than three, there exists a class that is not finitely generated. Recall that for
binary alphabets, one gate always suffices to generate a particular class.

Even for reversible gates over (say) {0, 1, 2}n, we cannot currently give an algorithm
to decide whether a given gate G generates another gate H any better than the triple-
exponential-time algorithm that comes from clone theory, nor can we give reasonable upper
bounds on the number of gates or ancillas needed in the generating circuit, nor can we answer
basic questions like whether every class is finitely generated.

Finally, can one reduce the number of gates in each of our circuit constructions to the
limits imposed by Shannon-style counting arguments? What are the tradeoffs, if any,
between the number of gates and the number of ancilla bits?
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