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Abstract
We construct toric codes on various high-dimensional manifolds. Assuming a conjecture in geo-
metry we find families of quantum CSS stabilizer codes on N qubits with logarithmic weight
stabilizers and distance N1−ε for any ε > 0. The conjecture is that there is a constant C > 0
such that for any n-dimensional torus Tn = Rn/Λ, where Λ is a lattice, the least volume unori-
ented n/2-dimensional cycle (using the Euclidean metric) representing nontrivial homology has
volume at least Cn times the volume of the least volume n/2-dimensional hyperplane represent-
ing nontrivial homology; in fact, it would suffice to have this result for Λ an integral lattice with
the cycle restricted to faces of a cubulation by unit hypercubes. The main technical result is
an estimate of Rankin invariants[24] for certain random lattices, showing that in a certain sense
they are optimal. Additionally, we construct codes with square-root distance, logarithmic weight
stabilizers, and inverse polylogarithmic soundness factor (considered as quantum locally testable
codes[1]). We also provide an short, alternative proof that the shortest vector in the exterior
power of a lattice may be non-split[8].
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1 Introduction

Quantum CSS stabilizer codes[6] can be understood in terms of homology[18, 13, 4], and
different manifolds provide a rich source of different codes. The two-dimensional toric
code[18, 13] and four-dimensional toric code[9] are commonly considered examples; they
are code families based on families of cellulations of a two and four dimensional tori. Other
manifolds[14] provide other interesting properties, such as greater distance, discussed below.
In this paper, we consider families of codes based on high dimensional manifolds.

We begin by considering some parameters that quantify a CSS code. The elementary
degrees of freedom of a CSS codes are qubits (or, more generally, qudits, for some d ≥ 2).
Let there be N such qudits so that the Hilbert space has dimension dN . CSS codes can be
parametrized by several parameters, which we write as [[N,K,D,W ]]. Here N is the number
of qudits. K is the number of encoded qudits, so that the code has a code space which is
a subspace of dimension dK . D is the “distance” of the code, defined below, while W is
the “weight” of the stabilizers, defined also below. Generally speaking, larger K and D is
desirable, while smallerW is also desirable (this discussion of desirability of certain values of
the parameters ignores other questions like the ability to efficiently decode or encode states,
which is a completely separate discussion that we do not consider in this paper).

The best families of quantum codes obtained thus far have significantly worse scaling
than the corresponding scaling for classical linear codes. Families of classical codes exist
with K = Θ(N), D = Θ(N),W = O(1) (so-called low density parity check codes provide
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25:2 Quantum Codes from High-Dimensional Manifolds

such an example[15, 20]). If we setW = O(1), then the largest known distance for a quantum
code family is Θ(

√
N log(N))as in Ref. [14], while if we want D = Θ(N), then the lowest

known weight isW = Θ(
√
N) as in Ref. [5]. These parameters refer to stabilizer codes; if one

allows subsystem codes[23], then it is possible to achieve D = Θ(N1−ε),W = O(1) for ε =
O(1/

√
log(N) as in Ref. [3], but now the parameter W does not refer to the weight of a set

of commuting stabilizers but rather the to weight of a set of generators of the “gauge group”
and these generators need not commute with each other. If one requires that the stabilizer
group be generated by local commuting operators, then currently no advantage is known
for a subsystem code. Another notable stabilizer code family achieves K = Θ(N), D =
Θ(
√
N),W = O(1) and has efficient an efficient local decoding algorithm[26].
In this paper, we construct code families that, assuming a conjecture in geometry, have

almost linear distance and logarithmic weight generators. We review various concepts before
giving an overview of the paper.

1.1 Review of CSS Codes and Relation to Homology
The code subspace is the subspace of the dN -dimensional Hilbert space which is in the +1
eigenspace of several “stabilizers”. These stabilizers are of two types, called “X-type” and
“Z-type”. The Z operator on the d-dimensional Hilbert space of a single qudit is the operator

Z =


1

exp( 2πi
d )

exp( 4πi
d )

. . .

 , (1)

while the X operator is the operator

X =


0 1

0 1
0 1

. . .

1 0 . . .

 . (2)

We write Zi or Xi to indicate the operator Z or X acting on qudit i, tensored with the
identity on all other qudits. Then, a Z-type stabilizer is the tensor product of Z operators
on some qubits, possibly raised to integer powers. Such a Z-type stabilizer might be written,
for example, Z1Z

2
3 to indicate that it is the tensor product of Z on qubit 1 with the square

of Z on qubit 3. These exponents all can be taken in the range 1, 2, ..., d− 1; if an operator
on a given qubit is raised to power 0, we simply do not write it when writing the Z stabilzer.
The X-type stabilizers are similar, with Z replaced by X.

We encode the Z-type stabilizers in a matrix that we denote ∂2. This matrix has N
rows and has one column per Z-type stabilizer. The entries of the matrix are over the field
Fd. The entry in the i-th row and j-th column indicates which power of Zi appears in the
j-th stabilizer; thus, for example, for the stabilizer Z1Z

2
3 , the first row in the corresponding

column would have a 1 and the third row would have a 2 and all other rows would be zero.
We encode the X-type stabilizers also in a matrix, denoted by ∂1. This matrix hasN columns
and one row per X-type stabilizer, again with the entries over the field Fd. The entry in the
i-th row and j-th column indicates which power of Xj appears in the i-th stabilizer

A final requirement on CSS codes is that the stabilizers commute with each other. Any
pair of Z-type stabilizers trivially commute, as do any pair of X-type stabilizers. The re-
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quirement that the Z-type stabilizer commute with the X-type stabilizers can be simply
expressed in terms of ∂2, ∂1 as

∂1∂2 = 0. (3)

This requirement is equivalent to saying that there is a chain complex

C2
∂2→ C1

∂1→ C0,

where C2, C1, C0 are vector spaces over Fd, with basis elements in one-to-one correspondence
with Z-type stabilizers, qudits, and X-type stabilizers, respectively. We have dim(C1) = N .

The number of encoded qudits K is given by the first Betti number, which is equal to
N −dim(C2)−dim(C0) assuming that all stabilizers are independent of each other (i.e., that
the columns of ∂2 are linearly independent, as are the rows of ∂1).

The distance D is defined as follows. Let us say that an operator O is a Z-type logical
operator if it is a tensor product of Z operators on qudits which commutes with all X-
type stabilizers and which is not itself a product of Z-type stabilizers. In the language of
homology, such an operator is a representative of a nontrivial first homology class; write

O =
∏
i

Zai
i ,

where the product ranges over all qudits and ai are in Fd. Define an N -component vector
v with entries ai, so that the requirement that O commutes with all X-type stabilizers is
that ∂1v = 0, while the requirement that O not be a product of Z-type stabilizers is that
v is not in the image of ∂2. An X-type logical operator is defined similarly, with Z and
X integerchanged everywhere in the definition. The weight of a Z-type (or X-type) logical
operator O is defined to be the number of qudits i such that Zi (or Xi)appears in O raised
to a nonvanishing power mod d; we say that that Zi or Xi is in the support of the logical
operator. We define DZ to be the minimum weight of a Z-type logical operator and DX to
be the minimum weight of an X-type logical operator and define the distance D by

D = min(DX , DZ). (4)

We define the weight W of a code to be the least integer W such that every row and
every column of ∂2 has at mostW nonvanishing entries and also every row and every column
of ∂1 has at most W nonvanishing entries. Note that this means that not only does every
stabilizer act on at most W different qudits, also every qudit is acted on by at most W
different Z-type stabilizers and W different X-type stabilizers.

We define the weight of an operator which is a product of Z and X operators to be the
number of qudits on which the operator acts nontrivially; for example, the operator X1X3
has weight 2. Thus, every stabilizer has weight at most W .

A vector v in a vector space Ck is called a k-chain (or simply, a “chain”). If ∂kv = 0,
then v is called a k-cycle. The weight of a vector is defined to be the number of nonzero
entries in the vector.

1.2 CSS Codes from Manifolds and Systolic Freedom
Conversely, just as one can define a chain complex from a CSS code, one can use a chain
complex to define a CSS code. Given any chain complex over some field Fd, one can define a
qudit CSS code: choose any vector space in the chain complex to correspond to the qudits,
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25:4 Quantum Codes from High-Dimensional Manifolds

and then the vector spaces of one higher and one lower dimension correspond to the Z-
type and X-type stabilizers. For example, given a triangulation (or cubulation or other
discretization) of a four dimensional manifold one can define a chain complex

C4
∂4→ C3

∂3→ C2
∂2→ C1

∂1→ C0,

where the basis elements of Ck correspond to k-cells. Then, one can choose any integer q
and let the qudits correspond to the q-cells and the Z-type stabilizers correspond to (q+ 1)-
cells and the X-type stabilizers correspond to (q − 1)-cells. The case q = 2 is the familiar
four-dimensional toric code of Ref. [9], while the cases q = 0, 4 are classical repetition codes
(Ising models) in the Z or X basis, respectively.

Defining CSS codes from manifolds has several nice advantages. For one, often the
distance of the code can be translated into geometric properties of the manifold and (up
to some technical details that we discuss below) it can be geometrically interpreted as the
least possible volume of a q-dimensional cycle in a nontrivial homology class. Similarly, if
the triangulation has a bounded local geometry, then this gives a bound on W .

Naively, it might seem that such constructions will not be able to obtain a better-than-
square-root distance, i.e. D = Ω(

√
N). We now give some intution for this naive belief, and

give a more detailed discussion of the relation between volume and number of qudits in one
particular example, as it will be useful later. Consider an n-dimensional torus constructed
from a hypercube of length ` on each side for some integer ` by gluing the opposite faces
together. Introduce coordinates (x1, . . . , xn). Discretize the torus by hypercubes of unit
length in the obvious way, so that the 0-cells are at integer values of the coordinates. In this
case, the volume of the torus equals the number of hypercubes in the discretization, which
equals `n. The number of qudits is given by

N = `n
(
n

q

)
,

while

DZ = `q, DX = `n−q.

To see that DZ ≤ `q, one can pick any q-dimensional plane where q of the coordinates
assume arbitrary values and the other coordinates are held fixed at integer values; then,
the product of Z over the q-cells in this plane give a logical operator. We omit the proof
that this upper bound for D is tight in this case. The value of DX is given by picking any
(n− q)-dimensional plane on the dual lattice and then taking the product of X over the the
q-cells that intersects this plane also gives a logical operator.

Choosing the optimal value, q = n/2 still leads only to D = Θ(
√
N). Varying the geo-

metry of the torus by changing the aspect ratio (i.e., keeping the sides of the torus orthogonal
to each other but changing the relative lengths) does not lead to any improvement.

However, this naive belief is false. “Systolic freedom” is the term for a concept due to
Gromov[2], that one may have manifolds for which the product of the q-systole (the least
volume cycle representing a nontrivial element of q-th homology) times the (n − q)-systole
may be arbitrarily larger than the volume of the manifold. This phenomenon was originally
observed for integer homology (corresponding to qudit quantum codes with large d), while
only later in Ref. [14] was it constructed for Z2 homology.

1.3 Overview of Paper
In the original construction of systolic freedom[2], the topology of the manifold was held
fixed and the metric was varied to obtain a diverging ratio between the product of the q-
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systole and the (n− q)-systole to the volume of the manifold (for some given pairs q, n− q),
while in the Z2 case[14], the topology of the manifold was varied to obtain a diverging ratio.
In this paper, we consider instead a family of manifolds with different dimension. Most of
the paper is devoted to considering tori Rn/Λ for certain random lattices Λ. In section 2 we
make various definitions of the random lattices and define Rankin invariants. In section 3 we
give an overview of the construction and present a geometric conjecture 1 and state theorem
5 that, assuming the conjecture, there exist quantum CSS codes with logarithmic weight
and almost linear distance. In section 4 we prove lower bounds on the Rankin invariant of
certain random lattices, which is the main step in proving theorem 5. In section 5 we discuss
some obstacles to proving even a weaker form of conjecture 1 (involving cycles with integer
coefficients) and we consider shortest vectors in the exterior product of a lattice. Finally,
in section 6 we give some alternative constructions which have only square-root distance
but which have inverse polylogarithmic soundness parameters as quantum locally testable
codes[1].

To give some motivation to our lattice construction, consider the two-dimensional toric
code. On a square lattice with length ` on each side, there are 2`2 qubits and the distance `.
Suppose we ignore the details of the cellulation and take an arbitrary torus R2/Λ, pretending
that the number of qubits is equal to the area (`2) and the distance is equal to the shortest
vector in the lattice Λ. Then, a slightly better geometry than the square lattice would be
to take the hexagonal lattice, as the ratio of the square of the length of the shortest vector
to the area of the torus is equal to 2/

√
3 rather than 1. This is only a slight constant

improvement over the square lattice. However, in higher dimensions, the shortest vector in
lattice Λ can be roughly

√
n longer than the 1/n power of the volume of the torus Rn/Λ.

Further, if we consider least volume cycles representing nontrivial homology for q > 1, then
larger improvements are possible (at least for cycles which are hyperplanes). This motivates
our construction and the consideration of so-called “Rankin invariants”[24].

In this paper, we will consider codes based on cellulations of such tori (in higher dimen-
sions) where the sides of the torus are not orthogonal. These tori will be Rn/L for some
lattice L, where the lattice does not have a basis of orthogonal vectors. However, L will be
an integral lattice, so that it is still possible to cellulate Rn/L by unit hypercubes. This is
done by taking the obvious cellulation of Rn by unit hypercubes (i.e., every unit hypercube
whose vertices are at integer points is a cell in the cellulation) and then identifying cells that
differ by translation by a lattice vector. Fig. 1 gives a simple example in the case n = 2.

2 Random Lattices and Definitions

Consider a so-called LDA lattice[7, 10] as follows. We pick a prime p. We will construct a
lattice which is a subset of Zn for some even n. We first construct a linear code over field
Fnp . We define this code by a “code generator matrix” G which is an n-by-k matrix such that
the column vectors are a basis for the codewords. (We explicitly call it a “code generator
matrix” rather than just a “generator matrix”, as we will also consider lattice generator
matrices later.) Usually in coding theory, it is instead conventional to let the rows of a code
generator matrix be the basis for a code, but to maintain consistency with notation we use
later, we instead use the columns as the basis. We choose the entries of G independently
and uniformly from Fp.

We will be interested in taking n large at fixed ratio k/n < 1. With high probability
(i.e., with probability tending to 1 as n→∞ with k/n fixed), G is non-degenerate (see next
paragraph). Assuming that G is indeed non-degenerate, one can find a permutation of the
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25:6 Quantum Codes from High-Dimensional Manifolds

A)

B)

Figure 1 Leftmost part of A) shows part of a cellulation of R2 by unit squares, as well as showing
a lattice L with basis vectors (3, 0) and (0, 3). Solid circles represent points of L. The shaded region
contains a maximal set of points in Z2 which do not differ by translation by L. Middle part of A)
shows 0-cells of the shaded region, as well as 1- and 2-cells attached to them. Rightmost part of A)
shows how the 1-cells in the middle part are attached: the dashed lines indicate that the top of a
given 1-cell on the top of the figure is attached to a 0-cell at the bottom. Similarly for attaching
cells on the right to those on the left. Figure B) is similar, but now L has basis vectors (3, 0) and
(2, 2). Now the dashed lines indicate that a 1-cell on the top of the figure is attached to a 0-cell on
the bottom, but that 0-cell is translated horizontally (horizontal dashed lines are not shown in B;
they are the same as in A). For both A,B, the code has distance 3, but B has smaller volume.

rows such that G is in the form

G =
(
A

B

)
where A,B are k-by-k and (n− k)-by-k matrices with A non-degenerate. Then, since A is
non-degenerate there exists a sequence of elementary column operations that brings A to
the identity matrix, where for a matrix over Fnp an elementary column operation is one of:
adding one column to another, multiplying a column by any nonzero element of the field, or
interchanging two columns. These column operations bring G to the form

G =
(
I

C

)
,

where I is the k-by-k identity matrix and C is some (n− k)-by-k matrix. Since the entries
of C are obtained by applying these column operations to the entries of B, the entries
of C are chosen independently of each other and uniformly from Fp, i.e., applying any
elementary column operation to an ensemble of matrices with entries chosen uniformly and
independently leaves this ensemble invariant. This is the form of G that we work with in
the rest of this section.

I Definition 1. Let the lattice L0 be the set of points x1, ..., xn in Zn such that the vector
(x1 mod p, ..., xn mod p) is in the linear code defined by G.

We now show that with high probability, G is non-degenerate. With probability 1 −
(1/p)n, the first column of G has a nonzero entry. By elementary column operations, adding
a multiple of the first column to other columns, we can set all other columns equal to zero
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in the first row for which the first column has a nonzero entry. Then, with probability
1− (1/p)n−1, the second column has a nonzero entry in some other row. Add a multiple of
the second column to the third, fourth,... column to set them equal to zero in the first row
for which the second column has a nonzero entry. Continuing in this fashion, the probability
that G is non-degenerate is (1− (1/p)n)(1− (1/p)n−1) . . . (1− (1/p)n−k+1) which indeed is
1− o(1).

The lattice L0 is the set of integer linear combinations of the columns of G (interpreted
as vectors of integers, rather than as vectors of elements of Fp) and of the n vectors with a
p in one coordinate and zeroes elsewhere. Then, the lattice L0 is the set of integer linear
combinations of the columns of the matrix(

I pI 0
C 0 pI

)
,

where the row blocks have sizes k and n − k respectively, while the column blocks have
sizes k, k, n − k, and respectively, and where I is the identity matrix of appropriate size.

However, any integer linear combination of column vectors of
(
pI

0

)
is also an integer linear

combination of column vectors of(
I 0
C pI

)
.

To see this, consider any vector of integers ~y = (y1, ..., yk). Then,(
pI

0

)
~y =

(
I

C

)
p~y −

(
0
pI

)
C~y. (5)

Thus, L0 is the set of integer linear combinations of columns of the matrix

B0 =
(
I 0
C pI

)
.

A matrix B such that the lattice is the set of integer combinations of columns of B is
called a generating matrix for the lattice. Two different generating matrices B1, B2 define
the same lattice if and only if B1 = B2T where T is an integer matrix such that T−1 also
is an integer matrix. In this case, the matrix B1 can be turned into the matrix B2 by a
sequence of elementary column operations where an elementary column operations is one of:
adding one column to another, changing the signs of all entries in a column, or interchanging
two columns.

Given a lattice L with generating matrix B which is an n-by-k matrix, such that B has
rank k, we define the volume of the lattice to equal vol(L) = det(B†B)1/2. If k = n, then
vol(L) = |det(B)|.

I Definition 2. Given any linearly independent set of vectors x1, ..., xk in Zn (or more gen-
erally in Rn) we define their volume vol(x1, ..., xk) to be the volume of the lattice generated
by the n-by-k matrix with columns x1, ..., xk.

This matrix B0 is lower triangular and so det(B0) is easily computed:

vol(L0) = |det(B0)| = pn−k. (6)

I Definition 3. An “integral lattice” is defined to be a lattice whose generating matrix has
integer entries. A “primitive lattice” is defined to be an integral lattice such that there is no
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other integral lattice of the same rank properly containing it, where the rank of a lattice is
defined to be the dimension of the subspace spanned by points in the lattice. Equivalently,
a primitive lattice is an integral lattice such that there is no integral lattice which spans the
same subspace and properly contains it.

Example: in two dimensions, the lattice generated by the vector (2, 1) is primitive, while
that generated by (4, 2) is not.

Unless specified, all lattices will be in n dimensions. We use | . . . | to denote the `2 norm
of a vector.

Finally, we define the Rankin invariant.

I Definition 4. The Rankin invariant γn,m(L) for a lattice L with rank n is defined to be

γn,m(L) = min v1,...,vm∈L

vol(v1,...,vm)6=0

(vol(v1, ..., vm)
vol(L)m/n

)2
. (7)

The square in the above definition is included for historical reasons. The factor m/n in
the exponent of vol(L) is such that the invariant is unchanged under rescaling the lattice L
by any constant factor. In the case m = 1, the Rankin invariants γn,1(L) is related to the
length of the shortest vector: γn,1(L) = minx∈L,x 6=0

|x|2
vol(L)2/n . Clearly, γn,n(L) = 1 for all L.

The Rankin invariant γn,1(L) is related to the length of the shortest vector in the lattice.
To understand the higher Rankin invariants, consider a set of vectors v1, ..., vm ∈ L with
vol(v1, ..., vm) 6= 0. Consider the torus Rn/L. The m-dimensional hyperplane spanned by
v1, ..., vm represents a nontrivial integer homology class and has an m-dimensional volume
(using the Euclidean metric) equal to vol(v1, ..., vm).

One can also understand the higher Rankin invariants in another way. A choice of vectors
v1, ..., vm ∈ L with vol(v1, ..., vm) 6= 0 corresponds to a basis for a rank-m sublattice of L.
Thus, the Rankin invariants are a lower bound on the volume of rank-m sublattices. This
interpretation will be used later, in section 4.

3 Overview of Construction: Conjectures and Main Result on
Distance

We will consider a family of CSS codes obtained by choosing a fixed p > 1 and taking LDA
lattices with k = n/2 from the random ensemble above, for all (even) values of n. With
high probability, this lattice has rank n. Given the integral lattice L0, we take a cellulation
of the torus Rn/L0 by hypercubes of length 1 on each side. Then, we consider a qubit toric
code on this cellulation with degrees of freedom on q-cells for q = n/2. Then, the number
of q-cells is equal to

N =
(
n

n/2

)
pn/2. (8)

The distance of the code is equal to the weight of the least weight logical X or Z operator.
The vector corresponding to such an operator represents nontrivial homology or cohomology
with Z2 coefficients. We conjecture that:

I Conjecture 1. There exists a constant C > 0, such that for any n-dimensional integral
lattice L, for the toric code obtained by the cellulation using integer hypercubes and degrees
of freedom on q-cells for q = n/2, the distance is lower bounded by

Cnmin v1,...,vq∈L

vol(v1,...,vq)6=0
vol(v1, ..., vq) = Cnvol(L)q/nγn,q(L)1/2

.
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Let us motivate this conjecture. The least volume hyperplane representing nontrivial
homology has volume equal to the Rankin invariant. This hyperplane need not lie on the
q-cells that we have chosen. We can deform the hyperplane to get a cycle that lies on the q-
cells using the Federer-Fleming deformation theorem[11]: this theorem is based on deforming
the cycle to lie on the (n− 1)-skeleton (i.e., the (n− 1)-dimensional faces of the hypercubes
of unit size), then on the (n− 2)-skeleton, and so on, iteratively, until the cycle lies on the
q-skeleton. The deformation to move cycle from the m-skeleton to the (m − 1)-skeleton is
done by choosing a point randomly in an m-dimensional hypercube and then projecting the
cycle outwards from that point to the boundary. This deformation may increase the volume,
but that is fine: what we are considered with is lower bounding the volume.

However, it is not clear that the optimal operator is obtained by such a deformation
procedure starting from a hyperplane. There may be, for example, unoriented chains which
are not hyperplanes but which represent nontrivial homology and have much smaller volume
than the least volume hyperplane. The conjecture is that such cycles can have at most
exponentially smaller (i.e., smaller by a factor Cn) volume.

Conjecture 1 considers the distance of the code, which is equal to the least volume of
a Z2 cycle representing nontrivial homology. The cycles are in the chain complex obtained
from the cellulation using hypercubes. One may be tempted to make a (possibly stronger)
conjecture that a similar inequality holds for more general chains, such as smooth chains.
This conjecture has a purely geometrical statement:

I Conjecture 2. There exists a constant C > 0, such that for any n-dimensional lattice L,
the n/2-systole with Z2 coefficients of the torus Rn/L is lower bounded by

Cnmin v1,...,vq∈L

vol(v1,...,vq)6=0
vol(v1, ..., vq) = Cnvol(L)q/nγn,q(L)1/2 .

Conjecture 1 would follow from conjecture 2 since the systole is defined by taking the infimum
over smooth cycles, while in conjecture 1 we restrict to cycles which lie on the cellulation by
unit hypercubes. In this regard, we remark that the possible increase in volume from the
Federer-Fleming deformation theorem may be superexponentially large: the upper bound is
at most 2nn/2( n

n/2
)
(see Ref. [12]).

In this paper, we prove that:

I Theorem 5. Assume that conjecture 1 holds. Then, for any ε > 0, there exists a family
of quantum CSS codes on N qubits with distance D = Ω(N1−ε) and weight w = O(log(N))
and with Θ(Nδ) encoded qubits, where δ > 0 (δ depends on ε).

This theorem will follow from a corollary of theorem 23, which implies that for any con-
stant c < 1/

√
2πe, with high probability we have min v1,...,vq∈L

vol(v1,...,vq) 6=0
vol(v1, ..., vq) ≥ (cp)n/2.

Hence, with high probability, D ≥ (cC2p)n/2. Since N =
(
n
n/2
)
pn/2 ≤ (4p)n/2, with high

probability we have

D ≥ (cC2p)log4p(N) = N
log(cC2p)

log(4p) .

Fixing c to be any constant slightly smaller than 1/
√

2πe, we find that for any ε > 0 that
for all sufficiently large p we have

1− ε ≤ log(cC2p)
log(4p)

so that D ≥ N1−ε.
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We have w = O(d) = O(log(N)).
The number of encoded qubits is equal to

(
n
k

)
= 2(1−o(1))n = 22(1−(o(1)) log4p(N) =

N2(1−o(1))/ log(4p) ≡ Nδ.
The main work will be theorem 23, to lower bound the Rankin invariant for this class of

lattices. The reader may wonder why we introduce this class of lattices, instead of re-using
previous results which show that there exist random lattices with a large Rankin invariant,
γn,n/2(L) ≥ ( k12 )n/4. See theorem 3 in Ref. [16]. The reason is that the random lattices
constructed there need not be integral lattices and so we do not have such an obvious cell
decomposition to place on the lattices. We comment later on the relationship between the
Rankin invariant for our lattice (which depends on n, p) and the invariant in Ref. [16]; this
requires considering how large n needs to be compared to p in our construction.

Note that we choose p large so that the exponentially growing factor, ≈ 2n, arising from
the factor

(
n
n/2
)
in the number of cells will be polynomially smaller than the volume pn/2.

We have 2n = (pn)1/ log2(p).
We remark that similar code constructions can be made by choosing degrees of freedom

on q-cells for q 6= n/2, taking n large at a fixed ratio q/n. In this case, a natural generalization
of conjecture 1 is to assume that there is a constant C such that dZ ≥ Cnvol(L)q/nγn,q(L)1/2

and dX ≥ Cnvol(L)(n−q)/nγn,n−q(L)1/2. Assuming this conjecture, our construction would
give a code with dXdZ polynomially larger than N .

4 Rankin Invariants

In this section, we will prove lower bounds on the Rankin invariants[24] γn,m(L0) of L0.
The proof uses the probabilistic method; in particular, we use the first moment method. To
motivate the proof, let us first sketch a proof method for γn,1(L0); then, we give a sketch a
possible extension of the proof method to γn,m(L0) and explain some difficulties with this
extension; finally, we outline the approach we use which is a modification of that. First,
suppose we just want to lower bound γn,1(L0); i.e., we wish to lower bound the shortest
vector in the lattice. This can be done by a first moment method: estimate the number of
integer vectors with length less than some given length `; then, compute the probability that
any given integer vector is in the lattice (this probability is p−(n−k) for a randomly chosen
code assuming G is non-degenerate); so, for sufficiently small `, the average number of integer
vectors with length less than ` in the lattice is small so it is unlikely that any integer vectors
with length less than ` will be in the lattice. One might attempt to do something similar
for the Rankin invariants: estimate the number of rank m integral lattices in n dimensions
with volume at most V and then compute the probability that an integral lattice is in a
randomly chosen linear code, i.e., that this integral lattice is a sublattice of L0. Call this
rank-m lattice K and call its generating matrix MK . In fact, Ref. [25] provides asymptotic
estimates (large V ) for the number of such lattices K, so it might seem that one could
directly use the results there in a first moment method. Indeed, this approach might work,
but since the results of Ref. [25] hold in the asymptotic limit (large V ), some additional
estimates would be needed (we do use many results in Ref. [25]). However, the results we
need are in some ways simpler than that of Ref. [25] because we do not care about an exact
estimate of the number of such lattices, only an upper bound. Further, rather than applying
the first moment method by estimating the number of lattices K with some given volume
and estimating the probability that such a lattice is in the code and then showing that the
product is small for small V , we will apply the first moment method to each column of the
generating matrix MK separately (with MK written in Hermite normal form). That is, we
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first estimate (this step is exactly analogous to the discussion at the start of this paragraph
regarding how to lower bound γn,1(L0)) the probability that there is a choice for the first
column which has small length and which is in the code. Then, we estimate the probability
that there is a choice for the second column which is also in the code such that the ratio
of the volume of the lattice generated by the first two columns of MK to the volume of the
lattice generated by the first column of MK is small. To do this calculation, we need the
concept of “factor lattice” [25], reviewed below. We continue in this fashion over the other
columns, showing that the ratio of the volume of the lattice generated by the first a rows of
MK to the volume of the lattice generated by the first a− 1 rows of a is likely to be large,
for each a = 2, 3, . . ..

4.1 Counting Points
Let Vd(r) denote the volume of a ball of radius r in d dimensions:

Vd(r) = πd/2

Γ(d2 + 1)
rd. (9)

Given a rank-l lattice L which spans some space E, we define the Voronoi cell to be the
set of points y in E such that |y| ≤ |y − v| for all lattice points v 6= 0. The l-dimensional
volume of the Voronoi cell is equal to vol(L).

I Definition 6. Given a lattice L, let N(L, z, r) denote the number of points in lattice L
within distance r of some given point z.

I Lemma 7. Let L be a rank-l lattice in d dimensions which spans some space E. Suppose
the diameter of the Voronoi cell of L is bounded by some given D. Then, for any z, r,

N(L, z, r) ≤ 1
vol(L)Vl(r +D). (10)

Proof. For every point x ∈ L within distance r of z, let Tx be the set of points y ∈ E such
that y−x is in the interior of the Voronoi cell. The sets Tx are non-overlapping and each has
l-dimensional volume vol(L). So, the volume of ∪x,|x−z|≤rTx is equal to N(L, z, r)vol(L).
Every x is within distance r of z and so every point in ∪x,|x−z|≤rTx is within distance r+D

of z, so N(L, z, r)vol(L) ≤ Vk(r +D). J

We make some more definitions.

I Definition 8. Given a rank-l lattice L spanning a subspace E, the polar lattice LP is the
lattice of all vectors in E which have integral inner products with all vectors in L. The polar
lattice also has rank l and vol(LP )vol(L) = 1.

I Definition 9. Let Γn0 be the rank-n lattice in n dimensions consisting of all vectors for
which all coordinates are integral.

I Definition 10. Given a primitive lattice L spanning subspace E, the orthogonal lattice
L⊥ consists of all vectors in Γn0 with vanishing inner product with all vectors in L.

I Definition 11. Let L be a rank-l primitive sublattice of Γn0 and let E be the subspace
spanned by L. Let π project onto the orthogonal complement of E, which we write E⊥. Let
π(Γn0 ) ≡ Γn0/L. Then, Γn0/L is also a lattice, called the factor lattice. It has rank n− l

ITCS 2017



25:12 Quantum Codes from High-Dimensional Manifolds

We have[25]

vol(L)vol(Γn0/L) = 1. (11)

This equation follows from this lemma:

I Lemma 12.

Γn0/L = ((L)⊥)P . (12)

Proof. See Ref. [25]. J

I Lemma 13. Let L be a rank-l primitive sublattice of Γn0 . Let π and Γn0/L be as above.
Then, the diameter of the Voronoi cell of Γn0/L is bounded by

√
n− l.

Proof. Since L has rank l < n, there must be some vector w1 which has a 1 in one coordinate
and zeroes in all other coordinates (i.e., w1 is of the form (0, . . . , 0, 1, 0, . . . , 0)) which is not
in E. Then, since the span of E and w1 has dimension l+1, if k < n−1, there must be some
other vector w2 of the same form which is not in the span of E and l1. Proceeding in this
fashion, we construct vectors w1, ..., wn−l, all of which have zeroes in all but one coordinate
and a 1 in that coordinate. The vectors π(wi) span E⊥. So, every point y in E⊥ can be
written as a linear combination y = π(

∑
i aiwi). If the ai are integer, then y is a lattice

point in π(Γn0 ). Every linear combination
∑
i aiwi is within distance (1/2)

√
n− l of some

linear combination
∑
i biwi with integer bi (to see this, simply round all ai to the nearest

integer). Since the norm does not increase under projection, every π(
∑
i aiwi) is also within

distance (1/2)
√
n− l of some π(

∑
i biwi) for integer bi and hence every point in E is within

distance (1/2)
√
n− l of a lattice point. J

We remark that the lattice with basis vectors π(wi) may not include all points in π(Γn0 ); as
an example, consider l = 1 and n = 2 and let L be the lattice with basis vector (2, 1) and let
w1 = (0, 1). The vector π((1, 0)) is then not included in the lattice with basis vector π(w1).

I Lemma 14. Let L be a rank-l primitive sublattice of Γn0 . Let π and Γn0/L be as above.
The number of points in Γn0/L within distance r of the origin is bounded by

N(Γn0/L, 0, r) ≤ vol(L)Vl(r +
√
n− l). (13)

Proof. This follows from lemmas 7,13 and Eq. (11). J

4.2 Hermite Normal Form For Lattices
Consider a rank-m integral lattice K in n dimensions. If this lattice has basis vectors
v1, ..., vm, we write an n-by-m matrix MK whose columns are these basis vectors. We label
the rows of the matrix by integers 1, . . . , n and label the columns by integers 1, . . . ,m. Such
a matrix is called a lattice generator matrix for the lattice. Then, the set of points in the
integral lattice is the image under MK of Γm0 . By a sequence of column operations (adding
one column of MK to another column, which does not change the image, or changing the
sign of a column, which also does not change the image), we can bring always bring the
matrix MK to so-called “Hermite normal form”; further, there is a unique matrix MK in
Hermite normal form which generates K.

Our definition of Hermite normal form differs from that of other authors because we will
reverse the order of columns and reverse the order of rows compared to the usual order.
This is because we will be doing induction later and with the reversed order of columns, the
notation will be much more natural later. See Eq. (17) for an example of Hermite normal
form below.
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I Definition 15. A matrix MK is said to be in Hermite normal form if for every column j
there is a row ij with 1 ≤ i1 < i2 < . . . < im ≤ n such that the entries of MK obey:

i > ij → (MK)i,j = 0 (14)

and

(MK)ij ,j > 0, (15)

and

l > j → 0 ≤ (MK)ij ,l < (MK)ij ,j . (16)

We say that “the first a columns of MK are in Hermite normal form” if the submatrix of
MK consisting of the first a columns is in Hermite normal form. In this case, for every column
j with j ≤ a there is a row ij with 1 ≤ i1 < i2 < . . . < ia ≤ n such that Eqs. (14,15,16) hold
when restricted to the case that j ≤ a and l ≤ a.

We introduce some notation. This notation defines various vector spaces and vectors
in terms of the matrix MK ; we do not explicitly write MK in the definition, but rather
the particular choice of MK should be clear in context. The last nonzero entry in the j-th
column occurs in the ij-th row. Define a sequence of lattices K1,K2, ...,Km, where Kj has
rank j and Kj is defined to be the lattice generated by the submatrix of MK containing the
first j rows and the first ij columns. Note that Km = K. Note also that if Ka is primitive
then Kb is primitive for all b < a.

We let ~vj be the vector given by the first ij rows of the j-th column.
This notation can be clarified with an example of n = 5,m = 3, with i1 = 2, i2 = 4, i3 = 5,

where we write

MK =


(~v1)1 (~v2)1 (~v3)1
(~v1)2 (~v2)2 (~v3)2

0 (~v2)3 (~v3)3
0 (~v2)4 (~v3)4
0 0 (~v3)5

 , (17)

with (~vj)i denoting the i-th entry of vector ~vj . For this matrix to be in Hermite normal
form, we have 0 ≤ (~v2)2, (~v3)2 < (~v1)2 and 0 ≤ (~v3)4 < (~v2)4.

The lattice Kj is a sublattice of Γij0 . We let MKj be the submatrix of MK consisting of
the first j rows and the first ij columns so that MKj

generates Kj . We also define a lattice
K̃j which is a sublattice of Γij+1

0 . The lattice K̃j will be the sublattice generated by the
submatrix of MK consisting of the first j rows and the first ij+1 columns. We let MK̃j

be
the submatrix of MK consisting of the first j rows and the first ij+1 columns. Hence, the
last ij+1 − ij entries of every vector in K̃j are equal to 0.

Let πj project onto the orthogonal complement of the span of K̃j .

I Lemma 16. Let K be a rank-m lattice in n dimensions with generating matrix MK in
Hermite normal form. Then, there exist an n-by-m integer matrix MKP which is a lattice
generating matrix in Hermite normal form (with the same ij as MK) for a primitive lattice,
and an m-by-m integer matrix F which is upper triangular with positive diagonal entries
such that we have

MK = MKPF. (18)

Further, F,MKP are unique.
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Proof. Let KP be a primitive lattice spanning the same space as K and containing the
lattice K. (Note that such a primitive KP must exist and is unique: it is the lattice
consisting of all integer points which are in the space spanned by K). Let KP be generated
byMKP withMKP in Hermite normal form; note that since KP is unique, MKP is uniquely
determined by K. Then, since K is contained in KP , every column of MK is an integer
linear combination of columns of MKP . So, MK = MKPF for some integer matrix F .

MK ,MKP must have the same ij or their columns would not span the same space.
Since MK ,MKP have the same ij , it follows that F is upper triangular with positive di-

agonal entries: restrictMK ,MKP to the rows i1, i2, . . . , im, giving upper triangular matrices
of size m-by-m. Call these matrices A,B respectively. Then A = BF , so F = B−1A. Since
B is upper triangular, so is B−1 and so is F . J

4.3 Counting Column Choices
I Definition 17. A lattice L is consistent with a code generator matrix G if every point
(x1, ..., xn) in the lattice has the property that (x1 mod p, . . . , xn mod p) is in the code
defined by G. A lattice generator matrix ML is consistent with a code generator matrix G
if the lattice generated by ML is consistent with G.

We will use a to label a column choice, 1 ≤ a ≤ m. We will construct lattices Ka in
terms of Ka−1 and ~va.

I Lemma 18. Let MK be in Hermite normal form. Then,

vol(Ka) = vol(Ka−1)|πa−1(~va)|. (19)

Proof. Immediate from the definition of volume. J

Assume Ka−1 is primitve. Then, the next lemma gives a one-to-one correspondence
between vectors ~va obeying one of the conditions needed for Hermite normal form (the
condition Eq. (16)) and vectors in a certain factor lattice. In lemma 20 we consider the case
that Ka−1 is not primitive. Note that there is an additional condition on va, namely that
its first entry be positive, in order for the matrix MKa

to be in Hermite normal form.

I Lemma 19. Let the first a − 1 columns of MK be given and assume that the first a − 1
columns of MK are in Hermite normal form and assume that Ka−1 is a primitive sublattice
of Γn0 . Then, there is a one-to-one correspondence between vectors ~va such that

j < a → 0 ≤ (MK)ij ,a < (MK)ij ,j (20)

and points ~x of the lattice Γia0 /K̃a−1, such that if ~x corresponds to ~va then πa−1(~va) = ~x.

Proof. We will show that for every ~x ∈ Γia0 /K̃a−1, there exists a unique ~va obeying Eq. (20)
such that πa−1(~va) = ~x. This gives a map F from Γia0 /K̃a−1 to vectors obeying Eq. (20).
This map is one-to-one since distinct vectors ~x1 6= ~x2 cannot both be the image of the same
vector ~va under the map πa−1. This map F is onto since any vector ~va obeying Eq. (20) is
the image of πa−1(~va) under this map.

First we show existence of somer vector ~va. Every vector ~x in Γia0 /K̃a−1 is given by
~x = πa−1(~y) for some ~y ∈ Γia0 . For any such vector ~y, we can add lattice vectors in K̃a−1
so that Eq. (20) (i.e., set ~va equal to ~y plus some sum of lattice vectors; this can be done
iteratively, so that it holds first for j = a − 1, then j = a − 2, and so on). Adding these
lattice vectors does not change the image of the result under πa−1.



M.B. Hastings 25:15

Now uniqueness. Suppose that πa−1(~y) = πa−1(~z) for ~y, ~z being two possible choices of
~va such that Eq. (20) is obeyed. Then, πa−1(~y−~z) = 0, so ~y−~z is in the span of K̃a−1. Since
Ka−1 is primitive so is K̃a−1 and so ~y − ~z is in K̃a−1. Let MK(i, j) denote the submatrix
of MK containing the first i rows and the first j columns, so that MK(ia, a− 1) is a lattice
generating matrix for K̃a−1. So, ~y − ~z = MK(ia, a − 1)~u, where ~u ∈ Γa−1

0 . Then, Eq. (20)
requires that ~u = 0. This follows inductively: if the last entry of ~u is nonzero, then it is
not possible for both ~y and ~z to obey Eq. (20) for j = a− 1; to see this, note that then the
(a − 1)-th entries of ~y, ~z must differ by a positive integer multiple of (MK)ij ,j and so they
cannot both fall in the range 0, 1, . . . , (MK)ij ,j − 1. So, ~y − ~z differs by an elements of the
lattice generated by MK(ia, a− 2) and so ~y− ~z = MK(ia, a− 2)~u′ for ~u′ ∈ Γa−2

0 . Again, the
last entry of ~u′ must equal zero so that Eq. (20) will be obeyed for j = a− 2. We continue
inductively for j = a− 3, . . .. J

The next lemma is similar to the previous except that we no longer assume that Ka−1
is primitive.

I Lemma 20. Let the first a − 1 columns of MK be given and assume that the first a − 1
columns of MK are in Hermite normal form.

Let MK(i, j) denote the submatrix of MK containing the first i rows and the first j
columns, so that MK̃a−1

= MK(ia, a − 1) is a lattice generating matrix for K̃a−1. Use
lemma 16 to write

MK̃a−1
= MK̃P

a−1
F.

Then, the possible choices of ~va such that

j < a → 0 ≤ (MK)ij ,a < (MK)ij ,j (21)

are in one-to-one correspondence with choices of tuples (~x, f1, . . . , fa−1), where ~x is a point
in Γia0 /K̃

P
a−1 and f1, . . . , fa−1 are integers obeying 0 ≤ fi < Fi,i, such that if (~x, f1, . . . , fa−1)

corresponds to ~va then πa−1(~va) = ~x. Thus, there are det(F ) distinct vectors ~va correspond-
ing to ~x.

Proof. We will show that for every ~x ∈ Γia0 /K̃a−1, there exist det(F ) distinct vectors
~va obeying Eq. (21) such that πa−1(~va) = ~x. These det(F ) vectors will be labelled by
f1, . . . , fa−1.

First we show existence. Every vector ~x in Γia0 /K̃a−1 is given by ~x = πa−1(~y) for some
~y ∈ Γia0 . For any such vector ~y, we can add lattice vectors in K̃a−1 so that Eq. (21) will
hold (this can be done iteratively, so that it holds first for j = a− 1, then j = a− 2, and so
on). Adding these lattice vectors does not change the image of the result under πa−1.

Now, for each ~x, let ~z be some fixed vector such that Eq. (21) holds for ~va = ~z and
such that ~x = πa−1(~z). Suppose that πa−1(~y) = πa−1(~z) for ~y some other possible choice
of ~va such that Eq. (21) is obeyed. We count the number of possible choices of ~y. Then,
πa−1(~y− ~z) = 0, so ~y− ~z is in the span of K̃a−1. Since K̃P

a−1 is primitive, ~y− ~z = MK̃P
a−1

~u,
where ~u ∈ Γa−1

0 . There are Fa−1,a−1 possible choices for the (a − 1)-th entry of ~u. To see
this, note that ~y and ~z both obey Eq. (21) for j = a− 1. For j = a− 1, this equation gives
a constraint that the (a − 1)-th entry of ~y must fall in the range 0, . . . , (MK)ia−1,a−1 − 1.
The (a− 1)-th entry of ~y is determined by the (a− 1)-th entry of ~u and shifting that entry
of ~u by one shifts the (a − 1)-th entry of ~y by (MK̃P

a−1
)ia−1,a−1. We have (MK)ia−1,a−1 =

(MK̃P
a−1

)ia−1,a−1Fa−1,a−1 so that there are Fa−1,a−1 possible choices. Then, given this choice
of the (a− 1)-th entry of ~u, there are Fa−2,a−2 possible choices for the (a− 2)-th entry of ~u,
and so on. J
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I Lemma 21. Let MK be a matrix in Hermite normal form which is a lattice generating
matrix for a rank-m integral lattice K in n dimensions. Let Ka−1 be given and let r be a
real number. Let C(r,Ka−1) denote the number of choices of Ka such that

vol(Ka) ≤ rKa−1. (22)

Then,

C(r,Ka−1) ≤ vol(Ka−1)Via−a+1(r +
√
ia − a+ 1). (23)

If r < 1 then C(r,Ka−1) = 0.

Proof. Let ~va be as defined above. By lemma 18

vol(Ka) = vol(Ka−1)|πa−1(~va)|. (24)

so |πa−1(va)| ≤ r. By Eq. (15), the first entry of ~va is ≥ 1, and since all vectors in Ka−1
vanish in the first entry, we have |πa−1(~va)| ≥ 1, so indeed C(r,Kk−1) = 0 for r < 1.

By lemma 20, the vector ~va is in one-to-one correspondence with a tuple (~x, f1, . . . , fa−1)
where ~x is a vector in lattice Γia0 /K̃

P
a−1. By lemma 13, the lattice Γia0 /K̃

P
a−1 has the diameter

of its Voronoi cells bounded by
√
ia − a+ 1. So, for given Γia0 /K̃

P
a−1 and given r, the number

of possible choices of ~x such |πa−1(~va)| ≤ r is bounded by

N(Γia0 /K̃
P
a−1, 0, r) ≤

1
vol(Γia0 /K̃

P
a−1)

Via−a+1(r +
√
ia − a+ 1). (25)

So, by Eq. (11),

N(Γia0 /K̃
P
a−1, 0, r) ≤ vol(KP

a−1)Via−a+1(r +
√
ia − a+ 1). (26)

Factorize MK(ia, a− 1) = MK̃P
a−1

F , as in lemma 20.
The number of possible choices of f1, . . . , fa−1 is equal to det(F ) = vol(Ka−1)/vol(KP

a−1).
So, the total number of choices of Ka is bounded by

det(F )vol(KP
a−1)Via−a+1(r +

√
ia − a+ 1) = vol(Ka−1)Via−a+1(r +

√
ia − a+ 1), (27)

as claimed. J

4.4 First Moment Bound
I Lemma 22. Let G be an n-by-k code generator matrix for a code, chosen from the ensemble
defined previously (entries chosen independently and uniformly from Fp). Let MK be an n-
by-k lattice generator matrix. Let Ka−1 be given and assume the first a− 1 columns of MK

are in Hermite normal form. Let Pr(Ka−1, r) denote the probability that, conditioned on
Ka−1 being consistent with G, there exists a choice of va such that Ka is consistent with G
and such that the first a columns of MK are in Hermite normal form and such that

vol(Ka) ≤ rKa−1. (28)

Then, for r < 1, Pr(Ka−1, r) = 0, and for r < p,

Pr(Ka−1, r) ≤ p−(n−k)vol(Ka−1)Via−a+1(r +
√
ia − a+ 1). (29)
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Proof. By lemma 21, indeed there are no choices of va such that r < 1. If r < p, then
0 < (~va)1 < p so (~va)1 6= 0 mod p. So, the a-th column of MK is not in the span of the
first a − 1 columns of MK modulo p. So, even though we have conditioned on Ka−1 being
consistent with G, the probability that a given choice of ~va is consistent with G is bounded
by p−(n−k). (The probability is p−(n−k) if we condition on G being non-degenerate and
smaller if G may be degenerate.)

So, by lemma 21, the average number of choices of ~vk consistent with G is bounded by
p−(n−k)vol(Ka−1)Via−a+1(r +

√
ia − a+ 1). J

The next theorem estimates the probability that, for a randomly chosen code generator
matrix, there is a rank-m lattice K of small volume which is consistent with that matrix.
The bounds becomes effective for volume smaller than (cp)min(m,n−k) with c < 1/

√
2πe.

I Theorem 23. Let Plat(H, p, n,m) denote the probability that for a random code generator
matrix G for a code over Fnp there is a rank-m lattice K consistent with a code generator
matrix such that vol(K) ≤ H.

For any p, for any real number x >
√

2πe, for sufficiently large n−m,

Plat((cp)min(m,n−k), p, n,m) ≤ mcmxn−m+1. (30)

The required n−m is quadratic in p(x−
√

2πe)−1.

Proof. Note that if there is a lattice K of rank-m consistent with the code generator matrix,
then the lattices K1, . . . ,Km−1 constructed above have ranks 1, . . . ,m− 1 respectively and
are also consistent with the code generator matrix and have vol(Ka) ≤ vol(K). So, it suffices
to consider the case m ≤ n− k (if m > n− k, then consider the lattice Kn−k instead).

For MK in Hermite normal form, since i1 < i2 < . . . < im < n, we have ia ≤ n−m+ a

and so ia − a + 1 ≤ n−m + 1. We use the bound (the inequality on the second line holds
for all sufficiently large n−m)

Vn−m+1(r +
√
n−m+ 1) = π

n−m+1
2

Γ(n−m+1
2 )

(r +
√
n−m+ 1)n−m+1 (31)

≤
( 2πe
n−m+ 1

)n−m+1
2 (r +

√
n−m+ 1)n−m+1

=
( r

√
2πe√

n−m+ 1
+
√

2πe
)n−m+1

,

Let c be a real number, 0 < c < 1. We will make a choice of c below.
By lemma 22 and Eq. (31), given Ka−1, if vol(Ka−1) ≤ (cp)m, we have

Pr(Ka−1, r) ≤ cmpm−(n−k)
( r

√
2πe√

n−m+ 1
+
√

2πe
)n−m+1

(32)

≤ cm
( r

√
2πe√

n−m+ 1
+
√

2πe
)n−m+1

.

For r < p, this is bounded by cm
(

p
√

2πe√
n−m+1 +

√
2πe
)n−m+1

. For any p, for any real number
x >
√

2πe, for sufficiently large n−m, this is bounded by cmxn−m+1. (The required n−m
is quadratic in p(x−

√
2πe)−1).

Suppose that vol(K) ≤ (cp)m for some c < 1. Then, vol(Ka) ≤ (cp)m for all a and
for some a we have vol(Ka)/vol(Ka−1) < p. However, for vol(Ka) ≤ (cp)m, the above
calculation bounds the probability for given a that there is a choice of Ka such that
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vol(Ka)/vol(Ka−1) < p by cmxn−m+1 for all sufficiently large n −m. By a union bound,
the probability that for some a there is a choice of Ka such that vol(Ka)/vol(Ka−1) < p

is bounded by mcmxn−m+1 for all sufficiently large n − m. So, Plat((cp)m, p, n,m) ≤
mcmxn−m+1 for all sufficiently large n−m. J

This implies the following corollary for the Rankin invariant:

I Corollary 24. For any p, k, for all sufficiently large n at fixed ratio m/n, for any c <
1/
√

2πe, with high probability we have

γn,m(L0) ≥ (cp)2min(m,n−k)p−2m(n−k)/n. (33)

(Recall that with high probability G is non-degenerate so L0 is rank n.)
We remark that it might be possible to tighten the bounds of theorem 23 to bound Plat

even for some range of x smaller than
√

2πe, especially for small m. One possible way to
tighten the bounds is to use the fact that if there vol(K) < pm−z for some integer z > 0
then there must be at least z different a such that vol(Ka)/vol(Ka−1) < p; in the proof
above we only used that there was at least one such a.

We remark also that, up to the constant c, the value of the Rankin invariant at m =
k = n/2 is optimal for an integral lattice; i.e., the dependence on p is optimal. The reason
is that it implies that an n/2-dimensional sublattice of L0 has the same volume (again, up
to factors of cm) as L0 does.

It is also worth comparing the value of the Rankin invariant that we find to the Rankin
invariant for random lattices (from a different ensemble) in Ref. [16]. The Rankin constant
γn,m is defined to be the maximum of γn,m(L) over all lattices L. Those random lattices in
Ref. [16] were used to lower bound the Rankin constant γn,n/2 by γn,n/2 ≥ ( k12 )n/4. Since we
need to take n ∼ p2 for the bounds of theorem 23 to be effective, if we choose m = k = n/2
and p ∼

√
n we find that with high probability γn,n/2(L0) ≥ (const.× n)n/4. Thus, we find

the same leading behavior nn/4, with the Rankin invariants differing only by factors const.n.

5 Volume of Oriented Systole

In this section, we consider a weaker conjecture than 1. Throughout this section, we consider
the case of homology using integer coefficients, rather than Z2 coefficients. In this setting,
there is a general method, called “calibration” [17] for lower bounding weights. We will show
that this method gives an effective lower bound for homology classes which have a particular
form, which we call “split”, but we will show that it does not give a useful lower bound in
general. The reason for this is related to the existence of short vectors in the exterior q-th
power of L0.

Given an rank-n lattice L, we write its m-th exterior power as ∧mL. This exterior power
is a lattice of vectors in

(
n
m

)
dimensions; the vectors in this lattice are linear combinations

(with integer coefficients) of vectors v1∧v2∧ . . .∧vm, where vi ∈ L and the exterior product
is anti-symmetric under interchange: v1 ∧ v2 = −v2 ∧ v1.

I Definition 25. A vector v in ∧mL is called “split” if v = x1 ∧ . . .∧ xm for x1, . . . xm ∈ L.

The q-th homology classes of the torus Tn are in one-to-one correspondence with vectors
in ∧qZn. For the torus Rn/L0 that we consider, it will be more convenient to regard
the classes as being in one-to-one correspondence with vectors in ∧qL0. That is, the k-th
homology class represented by a hyperplane which is a span of k basis vectors will correspond
to the vector which is the exterior product of these k basis vectors.
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The lattice ∧mL inherits an inner product:

(x1 ∧ . . . ∧ xm) · (y1 ∧ . . . ∧ ym) = det(S),

where S has matrix elements Si,j = xi · yj . We write this norm |X|, where X ∈ ∧mL0.
Calibration allows one to lower bound the volume of a representative of a homology class in
∧qL0 using this inner product.

We first explain this lower bound in the split case. The arguments are not new.

I Lemma 26. Let vol(v1, . . . , vq) 6= 0. Then, the minimum volume of any closed chain
(either a sum of faces of q-faces of the unit hypercubes used in the cubulation or more
generally an arbitrary sum of simplices) representing homology class X = v1 ∧ . . . ∧ vq is
greater than or equal to |v1 ∧ . . . ∧ vq|.

Proof. Let us write v · d~x to denote a differential 1-form
∑
i(v)idxi, where i = 1, . . . , n are

orthogonal basis directions in Euclidean space and (v)i are components of i. Consider the
differerential q-form ω = (v1 · d~x) ∧ (v2 · d~x) ∧ . . . ∧ (vq · d~x). Let S denote the hyperplane
spanned by vectors v1, . . . , vq (the hyperplane is oriented, so the order of vectors matters).
We have

∫
S
ω = |X|2. Further, for any chain C in the same homology class as S, we have∫

C
ω =

∫
S
ω = |X|2, where the integral over C is given by writing C as a sum of q-faces of

the unit hypercubes and integrating ω over each face. (Indeed, one can also consider more
general C, such as sums of arbitrary simplices, and the same result holds). For a q-face
(or indeed any sum of q-dimensional simplices), the integral of ω over that face is bounded
by |X| times the volume of the face. Hence, the volume of C must be at least equal to
(
∫
C
ω)/|X| = |X|. J

Now we consider the nonsplit case. In contrast to the split case where we were able
to “calibrate” the hyperplane S (find a differential form assuming maximum value on that
hyperplane), we might not be able to calibrate nonsplit homology classes. However, we can
still obtain a lower bound.

I Lemma 27. Let X ∈ ∧qL, X 6= 0. Then, the minimum volume of any closed chain
representing homology class X is lower bounded by |X|.

Proof. Write X =
∑
aXa, where Xa are split vectors. For each Xa = va1 ∧ . . . ∧ vaq , define

a differential q-form ωa = (va1 · d~x) ∧ . . . ∧ (vaq · d~x). Let ω =
∑
a ωa.

Let Sa denote the hyperplane spanned by vectors va1 , . . . , vaq . Let S denote the union of
hyperplanes Sa. We have

∫
Sa
ωb = (Xa, Xb). Hence,

∫
S
ω = |X|2.

We now consider the maximum of the integral of C over a q-face or q-dimensional simplex
of unit volume. This is equal to

maxV split, |V |=1(V,X),

where we take the maximum over all split vectors V ∈ ∧qRn, with V not necessarily in ∧qL;
i.e., V = v1∧. . .∧vq for arbitrary v1, . . . vq, with v1, . . . , vq not necessarily in the lattice L (i.e.,
we are upper bounding the integral over a unit volume square in the hyperplane spanned
by v1, . . . vq). If we relax the requirement that V be split, we have maxV (V,X) = |X|. The
restriction to split V can only reduce the maximum, so the maximum over split V is at most
|X|. So, as in lemma 26, since the integral over ω over any chain representing the same
homology class as X must be equal to the

∫
S
ω = |X|, the volume of such a chain must be

at least |X|. J
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One may wonder whether the bound in lemma 27 can be significantly improved if we do
not relax the requirement that V be split. Of course, if X is split, then

maxV split, |V |=1(V,X) ≥ |X|/

√(
n

q

)
= |X|

and the maximum is achieved for V = X. However, for X not split, the maximum might be
smaller and so the lower bound on the volume would be correspondingly: we can lower bound
the volume of a closed chain representing homology class X by |X|2/maxV split, |V |=1(V,X).
Unfortunately, this at best only leads to a small improvement in the bound. We claim that

maxV split, |V |=1(V,X) ≥ |X|/

√(
n

q

)
, (34)

so that at best we would lower bound the volume by
√(

n
q

)
|X|, and since

√(
n
q

)
< 2n/2, this

leads to only a small improvement (recall that there are N = pn/2 qubits and we choose
p >> 1). To see Eq. 34, consider the orthogonal basis for ∧qRn of vectors x1 ∧ . . . ∧ xq
where x1, . . . , xq are chosen from the n different coordinate directions. These basis vectors
are all split. Since ∧qRn is

(
n
q

)
-dimensional, there must be some basis vector V such that

|(V,X)| ≥ |X|/
√(

n
q

)
. Using this vector V (or its negation if the inner product (V,X) is

negative) in the maximum gives Eq. (34).
The Rankin invariant is the minimal value of the norm |X| over nonzero split vectors.

Thus, the results on the Rankin invariant give a lower bound on the volume of representatives
of split homology classes. However, in Ref. [8], it was shown that for certain lattices L the
shortest nonzero vector in ∧mL may be shorter than the Rankin invariant. Interestingly,
the lattices we consider here provide another example where this occurs; in fact this occurs
for any lattice with sufficiently large Rankin invariant.

I Lemma 28. Let L be a rank-n lattice. Then, the shortest nonzero vector in ∧mL has
norm at most

√
γ(n

m)vol(L)m/n, where γ(n
m) denotes Hermite’s constant in dimension

(
n
m

)
.

Hence, if γn,m(L) ≥ γ(n
m), then the shortest vector is not split.

Proof. We have vol(∧mL) = vol(L)(
n−1
m−1) by Proposition 1.10.4 of Ref. [21]. The lattice

∧mL has rank r =
(
n
m

)
, and so the shortest nonzero vector in ∧mL has length at most√

γrvol(∧mL)1/r, where γr is Hermite’s constant. So, the shortest nonzero vector in ∧mL
has length at most
√
γrvol(L)(

n−1
m−1)/(n

m) = √γrvol(L)m/n. (35)

J

For all r, we have γr ≤ 1 + r/4, with an asymptotic behavior γr . 2r
πe [22]. So,

√
γ(n

m) ≤√
1 +

(
n
m

)
/4. So, lemma 28 has an interesting interpretation for the application to quantum

codes. If the bound in lemma 27 is saturated so that the least volume cycle representing a
homology class has volume |X|, then we find that the code has roughly square-root distance.
Thus, conjecture 1 implies that for some homology classes, the bound of lemma 27 is far from
saturated. The possible improvement of Eq. (34) leads to only a small improvement here
(though, it is possible that if the possible improvement of Eq. (34) holds for the homology
classes with smallest |X| and if the bound of lemma 28 is saturated then one might be able
to prove a slightly above square-root distance for integer homology).
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6 Quantum Locally Testable Codes from High-Dimensional
Constructions

In this section, we give a construction of quantum codes which are “locally testable” [1] using
high-dimensional constructions. The construction uses a different topology than above;
the similarity in the constructions is simply that in both cases we consider a family of
codes derived from manifolds of varying dimension, with the number of qubits in the code
depending exponentially on the dimension of the manifold.

Let us write wt(O) to indicate the weight of an operator O. Similarly, given a vector v
(in one of the vector spaces defining the chain complexes), we let wt(v) denote the number
of nonzero entries in v.

Given a CSS stabilizer code defined from a chain complex . . . Cq+1
∂q+1→ Cq

∂q→ Cq−1 . . .,
with the qudits associated with q-cells and the Z-type and X-type stabilizers associated with
(q + 1)-cells and (q − 1)-cells, respectively, we define soundness parameters εX(w), εZ(w) as
follows:

I Definition 29. Define

εZ(w) = minv∈Cq,wt(v)=w,∂qv 6=0

(
maxu∈Cq,∂qu=0

wt(∂v)
wt(v + u)

)
. (36)

Define εX(w) similarly, with ∂q replaced with ∂Tq+1, where the superscript T denotes trans-
pose.

Equivalently, consider the minimum over all Z-type operators O, such that O has weight w
and such that O does not commute with at least one stabilizer, of the following quantity:
take the maximum, over all Z-type operators P which commute with all stabilizers, of the
ratio of the number of stabilizers which do not commute with O to the weight of O + P .
This minimum is εZ .

The codes of Ref. [26] have distance Θ(
√
N), stabilizer weight O(1) and have εX,Z(w)

bounded away from zero for w .
√
N , as shown in Ref. [19]. It is unclear whether or not

families of codes exist which have distance which is Ω(
√
N) and stabilizer weight O(1) and

which have εX,Z(w) bounded away from zero for all w.
Here we give a simple construction of a family of qubit codes with 2 encoded qubits and

with distance Θ(
√
N), εX,Z(w) only polylogarithmically small for all w, and with logarithmic

weight stabilizers. We warm up with a construction of a qubit code family with no encoded
qubits (and hence the notion of distance is meaningless for this code) but with εX,Z(w)
bounded away from zero for all w and with logarithmic weight stabilizers; we call this
the “simplex code”. We then give the full construction, which is based on a product of
hyperspheres.

6.1 Simplex Code
Of course, with no encoded qubits, there are some fairly trivial constructions of code with
εX,Z strictly bounded away from zero. For example, one can take a code with N qubits and
stabilizers Z1, Z2, . . . , ZN . Thus, every product of Z operators commutes with all stabilizers
(and so εZ(w) is a minimum over an empty set), while clearly εX(w) = 1 for all w. However,
the simplex code construction that we give obeys Poincare duality and has an entangled
ground state.

The code we consider is obtained by taking a toric code on a n-dimensional sphere, with
the degrees of freedom on q-cells for q = n/2. The exact value of q is not very important;
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the important thing is that q/n is neither close to 0 nor close to 1 so that the number of
q-cells will be exponential in n. However, the case q = n/2 is the self-dual case so this makes
the proofs slightly simpler as we need to consider only one type of stabilizer.

The cellulation of the n-sphere that we use is to take the boundary of a n+1-dimensional
simplex. We label the 0-cells by integers 1, . . . , n+2. For 0 ≤ r ≤ n, there are

(
n+2
r+1
)
distinct

r-cells, labelled by subsets of Λ ≡ {1, . . . , n+ 2} with r + 1 elements. We use qubits so the
vector spaces are all over F2.

For 1 ≤ r ≤ n, the boundary operator ∂r acting on an r-cell labelled by some (r + 1)-
element set S ⊂ Λ gives the sum of r + 1 different (r − 1)-cells, labelled by the distinct
r-element subsets of S. For example, for n ≥ 2, ∂2{1, 2, 3} = {1, 2}+ {1, 3}+ {2, 3}. We set
∂0 = 0. One may verify that ∂r−1∂r = 0 for all r.

For q = n/2, there are N =
(
n+2
n/2+1

)
qubits, so N is exponentially large in n. Remark:

in previous sections, the number of qubits we also had an exponential factor pn−k which,
for large p, was the dominant exponential scaling; in this subsection, we do not have such a
factor.

Each qubit is acted on by q+ 1 stabilizers (as each q-cell has q+ 1 cells in its boundary)
and each stabilizer acts on q + 2 different qubits (as each (q + 1)-cell has q + 2 cells in its
boundary and each (q−1)-cell has q+2 cells in its coboundary). Hence, the weight is indeed
logarithmic in N , w = (1/2 + o(1)) · log2(N).

Finally, we show soundness. First, let us introduce notation.

I Definition 30. Given an r-cell σ labelled by some set S and a set T ⊂ Λ, we define r ∪ T
to equal 0 if S ∩ T 6= ∅ and otherwise r ∪ T is the r + |T |-cell labelled by S ∪ T .

Given a vector v ∈ Cr, we define v ∪ T by linearity. v ∪ T ∈ Cr+|T | and the coefficient
of v ∪ S corresponding to an r + |T |-cell labelled by a set U is equal to the coefficient of v
corresponding to the r-cell labelled by U \ T if T ⊂ U and is equal to 0 is T 6⊂ U .

I Lemma 31. For the simplex code, for all w, εX(w) = εZ(w) ≥ 1.

Proof. Consider any v ∈ Cq with ∂qv 6= 0. Set w = (∂qv) ∪ {1}. Then, one may verify that
∂qx = ∂qv (and hence, setting w = x− v, ∂qw = 0) and that wt(x) ≤ wt(∂qv). J

The proof of soundness above has a very simple geometric interpretation. We take the
boundary ∂qv and shrink it to a point (arbitrarily choosing the vertex {1} as the point that
we shrink it to).

6.2 Hypersphere Product Code
The above construction had constant soundness, but had no encoded qubits. We now give a
different construction with 2 encoded qubits and distance

√
N and inverse polylogarithmic

soundness. We now consider the toric code on a product of spheres, Sn × Sn.
We pick an integer p ≥ 1 (p need not be prime); p will be chosen to equal log(N)

below in order to achieve square-root distance. We choose a cellulation of Sn as follows:
consider an (n + 1)-dimensional hypercube of side length p on each side (we call this the
“large” hyercube). Cellulate that large hypercube using hypercubes of side length 1 on each
side; we call these the “small” hypercubes) (so that there are pn+1 small hypercubes in the
cellulation). Then, take the boundary of the hypercube to get a cellulation of Sn.

A small (n+ 1)-dimensional hypercube has
(
n+1
r

)
2n+1−r different r-cells in its boundary

(each r-cell is a product of 1-cells in r out of the n + 1 directions and then for each of the
remaining directions there are 2 possible choices of 0-cells). The number of r-cells in the
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cellulation of the large hypercube is
(
n+1
r

)
(p + 1)n+1−rpr. To see this, assign coordinates

[0, p] for each side of the large hypercube. Then, each r-cell is a product of 1-cells in r out
of the n+ 1 directions with 0-cells in the remaining directions. The midpoints of the 1-cells
are at half-integer coordinate in the interval [0, p] and so there are p possible choices for
each cell. There are p + 1 possible choices for the coordinates of each 0-cell as these cells
are at integer coordinates in the interval [0, p]. To determine the number of r-cells in the
boundary of the large hypercube, restrict to the case that in at least one of the directions,
the coordinate must be 0 or p. This gives the number equal to(

n+ 1
r

)
(p+ 1)n+1−rpr

(
1− (p+ 1− 2

p+ 1 )n+1−r
)
,

where the ratio in parenthesis p+1−2
p+1 is the probability that for a random integer coordinate

in the range [0, p], the coordinate is not on the boundary 0 or p. Thus, there are at most
2(1−o(1))·npn cells (if n >> p) and at least 21−o(1))·npn−1 cells (if n << p).

We take the product of this cellulation with itself to get a cellulation of Sn × Sn. The
degrees of freedom will be on the q-cells for q = n, so that N is again exponential in n. We
have log2(N) = 2(1 + log2(p) + o(1)) · n for n >> p and log2(N) = 2(1 + log2(p) + o(1)) ·
n− 2 log2(p) for n << p. We will take p = 1/ log(N), n = Θ(log(N)/ log(log(N))).

Each qubit is acted on by 2n stabilizers and each stabilizer acts on 2(n + 1) qubits.
Hence, the weight is logarithmic in N , w = Θ(log(N)/ log(log(N))).

The number of encoded qubits is equal to 2, as can be computed from the homology of
Sn × Sn (by the Künneth formula, Hi(Sn × Sn;Z2) = 2 for i = n, Hi(Sn × Sn;Z2) = 1 for
i = 0, 2n, and Hn(Sn × Sn;Z2) = 0 otherwise).

I Lemma 32. For the hypersphere product code,

dX(w) = dZ(w) = (p+ 1)n+1
(

1− (p+ 1− 2
p+ 1 )n+1

)
= Θ(N

p
p+2 ). (37)

For p = Ω(log(N)),

dX(w) = dZ(w) = Θ(
√
N)). (38)

Proof. Let a be a 0-cell in the second Sn in the product Sn×Sn. Let Z(a, 2) be the logical
Z operator which is the product Zi over all i which are the product of an n-cell in the first
Sn with 0-cell a. Then, any logical X operator which anticommites with Z(a, 2) must have
some support on some cell i which is a product of an n-cell in the first Sn with 0-cell a.
However, since Z(a, 2) and Z(b, 2) are homologous for any two choices of 0-cells a, b in the
second Sn (Z(a, 2), Z(b, 2) differ by a product of stabilizers), that logical X operator must
have some support on some cell i which is a product of an n-cell in the first Sn with 0-cell
a for all 0-cells a in the second Sn. Hence, that logical X operator must have a number of
cells in its support equal to the number of 0-cells in the second Sn. This number is equal
to (p+ 1)n+1

(
1− (p+1−2

p+1 )n+1
)
.

This number is also an upper bound to dX(w), since the product of X over all cells which
are a product of a fixed n-cell in the first Sn with an arbitrary 0-cells in the second Sn is a
logical operator.

We can similarly lower bound the number of cells in the support of any logical X operator
which anticommutes with the operator Z(a, 1), defined to be the logical Z operator which
is the product Zi over all i which are the product of an n-cell in the second Sn with 0-cell
a in the first Sn. J
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We now show soundness. Again, the geometric interpretation is to shrink the boundary
to a point.

I Lemma 33. For the hypersphere product code, εX(w) = εZ(w) ≥ Ω(1/ log(N)2).

Proof. Consider any v ∈ Cq with ∂qv 6= 0.
We place coordinates [0, p]n+1 on the first large hypercube. Call the face where the first

coordinate is equal to p the “top face”. Call the face where the first coordinate is equal to
0 the “bottom face”. Let v0 = v. We will construct a sequence v1, v2, . . . , vf ∈ Cq for some
integer f where we bound wt(vi+1 − vi) with the final vector vf = 0. In this way, we will
bound wt(v0). We construct the sequence so that the boundaries ∂qvi are first removed from
the top face of the first hypercube, then moved from the top face to the bottom face of the
first hypercube, and finally moved to a point on the bottom face of the first hypercube.

Throughout this proof, when we refer to coordinates, we refer to the first hypercube in
the product. We regard an r-cell as being a product of 0-cells and 1-cells. That is, each cell
in the product of hypercubes is product of cells in each hypercube. Then, each r-cell in a
hypercube is a product of r 1-cells and n + 1 − r 0-cells. The n + 1 different terms in the
product correspond to different coordinates. When we say that a cell “is a 0-cell” in a given
coordinate, we mean that the cell is a product of a 0-cell in that coordinate with some cells
in other coordinates.

We first explain the middle step, moving from top face to bottom face. Suppose that
some vi has ∂qvi vanishing on the top face. Indeed, suppose that ∂qvi vanishes if the first
coordinate is greater than x, for some integer x. Then, let πx(∂qvi) be the projection of
∂qvi onto cells with first coordinate equal to x. This projection consists only of cells which
are 0-cells in the first coordinate. Let vi+1 − vi be defined by taking πx(∂qi) and replacing
every 0-cell in the first coordinate at position x with a 1-cell at position x − 1/2. Then,
πx(∂qvi+1) = 0. Iterating this procedure, decreasing x from p, to p− 1, to p− 2, and so on,
we can construct a sequence vi, vi+1, . . . so that the final vector in the second has boundary
only on the bottom face. There are at most p steps in the sequence. Note that because
∂2 = 0, once we ensure that πx(∂qvi) = 0, then we know that ∂qvi has not cells which are
1-cell in the first coordinate with midpoint as x− 1/2.

Now we explain the first step, moving the boundary off the top face. We apply above
the above procedure to the second coordinate. We let πp,x(∂qvi) be the projection ∂qvi onto
cells with first coordinate equal to p and second coordinate equal to x, for integer x. We
then construct a sequence so that this projection vanishes for x = p, p− 1, . . ., following the
same procedure as in the above paragraph. There are at most p steps in this sequence. We
then repeat this for the second coordinate, third coordinate, and so on; giving at most pn
steps.

The final step is the same as the first step, with the top face replaced by the bottom
face.

So, there are at most O(pn) steps in the sequence. We have wt(∂qvi) ≤ wt(∂qv) for all
vectors in the sequence, and there are at most O(pn) steps, so this gives εX(w) ≥ Ω(1/pn) =
Ω(1/ log(N)2). J

In the above construction, we lost a factor of n due to having n steps in the sequence
to move the boundary. Likely for this construction, this factor cannot be avoided since the
diameter of the hypercube is pn. One might wonder whether other geometries (such as
a geometry that more closely approximates a sphere) would improve on this factor; note
however that since the volume of a sphere of radius r in n-dimensional Euclidean space
scales roughly as (r/n)n/2, one would need to take the radius proportional to n in order to
obtain a large volume so again one would need to have a large diameter for the geometry.
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7 Discussion

We have presented several different code constructions based on the toric code on families
of higher-dimensional manifolds. Rather than varying the geometry or topology at fixed
dimension, as is more commonly done, we have considered varying dimension. This leads to
a scaling in which the number of qubits, N , scales exponentially with dimension, n, so that
the weight of the stabilizers w is proportional n ∝ log(N). Assuming conjecture 1, we have
constructed a code family with almost linear distance and logarithmic weight.

Acknowledgments. I thank L. Eldar and M. Freedman for useful discussions.
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