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Abstract
Given a pairwise similarity notion between objects, locality sensitive hashing (LSH) aims to
construct a hash function family over the universe of objects such that the probability two objects
hash to the same value is their similarity. LSH is a powerful algorithmic tool for large-scale
applications and much work has been done to understand LSHable similarities, i.e., similarities
that admit an LSH.

In this paper we focus on similarities that are provably non-LSHable and propose a notion of
distortion to capture the approximation of such a similarity by a similarity that is LSHable. We
consider several well-known non-LSHable similarities and show tight upper and lower bounds on
their distortion.
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1 Introduction

The notion of similarity finds its use in a large variety of fields above and beyond computer
science. Often, the notion is tailored to the actual domain and the application for which it
is intended. Locality sensitive hashing (henceforth LSH) is a powerful algorithmic paradigm
for computing similarities between data objects in an efficient way. Informally, an LSH
scheme for a similarity is a probability distribution over a family of hash functions such
that the probability the hash values of two objects agree is precisely the similarity between
them. In many applications, computing similar objects (i.e., finding nearest neighbors) can
be computationally very demanding and LSH offers an elegant and cost-effective alternative.

Intuitively, large objects can be represented compactly and yet accurately from the point
of view of similarity, thanks to LSH. Thus, the similarity between two objects can be quickly
estimated by picking a few random hash functions from the family and estimating the
fraction of times the hash functions agree on the two objects. This paradigm has been very
successful in a variety of applications dealing with large volumes of data, from near-duplicate
estimation in text corpora to nearest-neighbor search in a multitude of domains.
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54:2 The Distortion of Locality Sensitive Hashing

Given its success and importance1, researchers have looked for LSH schemes for more and
more similarities. Thus a natural question arises: which similarities admit an LSH scheme?
In [12] Charikar introduced two necessary criteria (the former weaker than the latter) for a
similarity S to admit an LSH:
(T1) 1− S must be a metric;
(T2) 1− S must be isometrically embeddable in `1.
These two tests can be used to rule out the existence of LSH schemes for various similar-
ities, for instance, the Sørensen–Dice and Sokal–Sneath similarities (see Table 1 or [15] for
definitions).

This brings us to a very natural question, and the one we address in this paper: if
a similarity S does not admit an LSH scheme, then how well can it be approximated by
another similarity S′ that admits an LSH?

Locality sensitive distortion. The two criteria (T1) and (T2) are one of the many points
of contact between LSH schemes and the theory of embeddability in metric spaces, where
the natural notion of “closeness” is distortion. We say that a similarity S has a distortion
not larger than δ if there is a similarity S′ defined on the same universe that admits an LSH
and such that

S

δ
≤ S′ ≤ S.

The distortion is 1 if and only if S admits an LSH.
In this paper we begin a systematic investigation of the notion of distortion for LSH

schemes and prove optimal distortion bounds for several well-known and widely used simil-
arities such as cosine, Simpson, Braun–Blanquet (also known as “all-confidence”), Sørensen–
Dice and several others (see Table 1). We obtain our lower bounds by introducing two new
combinatorial tools dubbed the center method and the k-sets method. In nearly all cases,
we also exhibit matching distortion upper bounds by explicitly constructing an LSH. As
concrete examples, we show that the distortion of cosine similarity is Θ (

√
n) and that of

Braun–Blanquet and Sørensen–Dice similarities is two (the full picture is given in Table 1).
Our framework also greatly expands the outreach of the tests (T1) and (T2). We demon-

strate its applicability by means of a few notable examples, in particular the Braun–Blanquet
similarity whose distortion is proven to be exactly two. This similarity is particularly note-
worthy because not only it passes test (T1) but also (T2). To show this we prove that this
similarity is embeddable isometrically in `1, a result that may be of independent interest.
Besides the two general methods discussed, we also provide ad hoc distortion bounds for
Sokal–Sneath 1 and Forbes similarities.

Of the two methods introduced in our work, the center method is easier to apply than
the k-sets method. The former is applicable to many instances of similarity but the latter is
unavoidable in the following sense. Braun–Blanquet similarity not only, as remarked, passes
(T1) and (T2), but also the test provided by the center method. However, the more powerful
k-sets method can instead be used to show a distortion bound of two. Other similarities to
which the k-sets method applies are Sørensen–Dice and the family sorensenγ .

1 The 2012 Paris Kanellakis Theory and Practice Award was given to Broder, Charikar, and Indyk for
their work on LSH.



F. Chierichetti, R. Kumar, A. Panconesi, and E. Terolli 54:3

Table 1 A list of similarities and of their lower and upper distortion bounds. The value n refers
to the cardinality of the ground set or to the number of dimensions.

Name
S(X,Y )
X 6= Y Distortion LB Distortion UB

Jaccard |X∩Y |
|X∩Y |+|X4Y | 1

1
(Shingles [8])

Hamming |X∩Y |+|X∪Y |
|X∩Y |+|X∪Y |+|X4Y | 1

1
(folklore)

Anderberg |X∩Y |
|X∩Y |+2|X4Y | 1

1
(RSS [13])

Rogers–Tanimoto |X∩Y |+|X∪Y |
|X∩Y |+|X∪Y |+2|X4Y |

1
1

(RSS [13])

Cosine X·Y
`2(X)·`2(Y )

√
n

(Theorem 6)
3
√
n

(Theorem 7)

Simpson |X∩Y |
min{|X|,|Y |}

n
(Theorem 5)

n
(Shingles [8])

Braun–Blanquet |X∩Y |
max{|X|,|Y |}

2
(Theorem 16)

2
(Shingles [8])

Sørensen–Dice |X∩Y |
|X∩Y |+1/2|X4Y |

2
(Theorem 5)

2
(Shingles [8])

Sokal–Sneath 1 |X∩Y |+|X∪Y |
|X∩Y |+|X∪Y |+1/2|X4Y |

4/3
(Theorem 8)

2
(RSS [13])

Forbes n |X∩Y |
|X| |Y |

n
(Theorem 18)

n
(Theorem 18)

sorensenγ |X∩Y |
|X∩Y |+γ|X4Y |

max(1, 1/γ)
(Theorem 5)

max(1, 1/γ)
(Shingles [8], RSS [13])

sokal-sneathγ
|X∩Y |+|X∪Y |

|X∩Y |+|X∪Y |+γ|X4Y |

max(1, 2/(1 + γ))
(Theorem 8)

max(1, 1/γ)
(RSS [13])

Upper bounds: worst-case vs. practice. The main motivation behind our work is to
extend the range of applicability of LSH as far as possible and our concept of distortion
should be understood in these terms. For instance, even if a similarity is shown not to
admit an LSH scheme it might be possible to approximate it efficiently by means of LSH
schemes of other similarities that are close to it. Our results show that some cases, such
as cosine, are a forlorn hope (since the distortion is not a constant), but in other instances,
such as Sørensen–Dice and Braun–Blanquet, our bounds give reasons to be optimistic. As
a first “proof of concept” of the notion of distortion we performed a series of experiments
with real-world text corpora. The results are encouraging, for they show that the distortion
of real data sets is smaller than the worst case. In our tests the average distortion turned
out to be approximately 1.4 as opposed to the worst-case bound of two.

In the same vein we also investigate experimentally for the first time the effectiveness of
two recent LSH schemes for Anderberg and Rogers–Tanimoto similarities. Until the work
in [13] it was not known whether these similarities admitted LSH schemes. That paper shows
that they do, in a somewhat peculiar way—strictly speaking they might need exponentially
many bits (albeit with low probability)! In this paper we report on experiments with real
text corpora that show that in practice these schemes are quite efficient.

ITCS 2017
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2 Related Work

LSH was formally developed over a series of papers [8, 9, 25, 26]. Broder et al. [8, 9] showed
that min-wise independent permutations form an LSH for the Jaccard similarity. Indyk
and Motwani [25] introduced sampling hash as an LSH scheme for the Hamming similarity.
Pursuing the work of characterizing similarities that admit an LSH, Charikar [12] introduced
(T1) and (T2) as necessary criteria. Chierichetti and Kumar [13] proposed the concept
of LSH-preserving functions, which are probability generating functions that preserve the
LSH property of a similarity. From applications point of view, LSH has been widely used
for solving the approximate or exact near-neighbor search [2] and similarity search [22, 30,
38] in high dimensional spaces. For a detailed bibliography on LSH, including pointers
to implementations, see Alex Andoni’s LSH page (www.mit.edu/~andoni/LSH/) and the
surveys of Andoni and Indyk [3] and Wang et al. [43].

Similarities are extensively used in various areas of computer science. Hamming similar-
ity, for instance, is widely used in information theory [5, 6, 18]. Areas like data mining and
data management have seen the usage of Anderberg similarity [1], Cosine similarity [10,37],
and Sokal–Sneath [40] similarity. Cosine similarity is also ubiquitous in information re-
trieval [21, 32, 36, 46] and bioinformatics [11] whereas Sokal–Sneath is used in image pro-
cessing [4]. We should note here that the success of similarity algorithms/functions is not
limited only within computer science. For instance, Sørensen–Dice is commonly used in
ecology [16,28,29], phytosociology [27,42], plant taxonomy [44], biology [39] and even in lex-
icography [35]. Biology has also seen the usage of Sokal–Sneath [41, 45], mentioned above.
Other interesting examples are Simpson similarity used in microscopy [31] and biology [17],
Braun–Blanquet in phytosociology [7] and ecology [33], and Rogers–Tanimoto used in tax-
onomy [34].

The notion of distortion is studied in various areas of computer science and mathematics,
especially in metric embedding problems. Here, we are given a source metric space (X, d),
and a target metric space (X ′, d′), and we wish to find a map f : X → X ′ from points in X
to points in X ′ that minimizes the distortion

max
{a,b}∈(X2 )

max
(

d(a, b)
d′(f(a), f(b)) ,

d′(f(a), f(b))
d(a, b)

)
.

Problems of this form have been studied for many source and target metric spaces (cf. [24]).
Examples include embeddings into the Euclidean (`2) metric, into the `1 metric, or into tree
metrics from shortest-path metrics on graphs or from normed spaces of large dimensional-
ity. Even though the LSH distortion problem seems to resemble distorted metric embedding
problems, an important difference is that we want to guarantee a multiplicative approxim-
ation to the “similarity” (as opposed to the “distance”).

3 Preliminaries

We use the notation 2A to represent the set of all subsets of a set A. Also, for any set A,(
A
2
)
is the set of all pairs {a, b} such that a 6= b and a, b ∈ A. For a positive integer n, let

[n] = {1, 2, . . . , n}.
Let U be a (finite) universe of objects. A symmetric function S : U ×U → [0, 1] such that

S(X,X) = 1 for all X ∈ U is called a similarity. See [15] for a rather complete illustration
of the different types of similarities that are used in a practical context.

We first define what it means for a similarity to admit a locality sensitive hash (LSH).

www.mit.edu/~andoni/LSH/
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IDefinition 1 (LSH [12]). An LSH for a similarity function S : U×U → [0, 1] is a probability
distribution over a set H of (hash) functions defined on U such that, for each X,Y ∈ U , we
have

Pr
h∈H

[h(X) = h(Y )] = S(X,Y ).

(See [25] for a somewhat different definition of LSH in the same spirit.) A similarity is
LSHable if there exists an LSH for it. The basic notion we introduce in this paper is defined
next.

IDefinition 2 (LSH distortion). The LSH distortion, or distortion, of a similarity S : U×U →
[0, 1] is the minimum2 δ ≥ 1 such that there exists an LSHable similarity S′ : U ×U → [0, 1]
for which

1
δ
· S(X,Y ) ≤ S′(X,Y ) ≤ S(X,Y ) ∀X,Y ∈ U .

We denote distortion(S) = δ.

At first blush a more general definition seems possible. One could define the distortion of S
as the minimum δ such that there exist an LSHable similarity S′ and α, β ≥ 1, with αβ = δ,
such that, for all X,Y ∈ U ,

1
α
· S(X,Y ) ≤ S′(X,Y ) ≤ β · S(X,Y ).

The next lemma however implies that Definition 2 can be adopted without loss of generality.

I Lemma 3. Let S : U ×U → [0, 1] be an LSHable similarity. Then, for each γ ∈ [0, 1], the
similarity

S′(X,Y ) =
{
γ · S(X,Y ) X 6= Y

1 X = Y

is also LSHable.

Proof. Let H be the hash function family for S given by Definition 1. We will build a
family H′ for S′ by bijectively obtaining an h′ for each h ∈ H. To define h′, consider
the following procedure: with probability γ, let h′(X) = (0, h(X)) for each X ∈ U , while
with probability 1 − γ, let h′(X) = (1, X), for each X ∈ U . Then, for each X 6= Y ,
Pr[h′(X) = h′(Y )] = γ · S′(X,Y ). J

Now, suppose that for a given similarity S, we have an LSHable similarity S′ satisfying
1
α · S(X,Y ) ≤ S′(X,Y ) ≤ β · S(X,Y ) with αβ = δ. By applying Lemma 3 to S′ we obtain
an LSH for the similarity S′′(X,Y ) = 1

β · S
′(X,Y ) (when X 6= Y ) which satisfies

1
αβ
· S(X,Y ) ≤ 1

β
· S′(X,Y ) = S′′(X,Y ) ≤ S(X,Y ).

Hence Definition 2 is robust.

2 A minimum δ exists because it is equal to the solution of a linear program (see, e.g., [14]) of size
polynomial in |U|.

ITCS 2017
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Known LSH for set similarities. Set similarities are those similarities whose universe U
satisfies U = 2U , for some finite ground set U . To give upper bounds on the distortions of
various similarities we employ a number of LSH schemes for set similarities proposed in the
literature. First and foremost, we employ shingles [8, 9], which is an LSH scheme for the
Jaccard similarity over sets (jaccard(X,Y ) = |X ∩Y |/|X ∪Y |), over the universe U = 2U .
To sample a hash function h ∈ H from this scheme, one picks a permutation π of the ground
set U uniformly at random. Then, h(X), for a set X 6= ∅, is equal to the element in X with
smallest rank in π. (And, h(∅) is identically equal to ⊥.) A simple calculation shows that
Prh∈H [h(X) = h(Y )] = |X∩Y |

|X∪Y | if X ∪ Y 6= ∅, and Prh∈H [h(∅) = h(∅)] = 1.
We also use a generalization of shingles given in [12] for the weighted Jaccard similarity.

Finally, we use some of the LSH schemes given in [13] for the various rational set similarities.
We will use these results as black-boxes and hence we will not describe them.

4 The Center Method

In this section we introduce our first lower bound tool for LSH distortion. It will be used
to get tight bounds for the distortion of Simpson, and two infinite families of similarities,
namely, Sγ and `p-norm dot product, that contain well-known similarities such as Sørensen–
Dice and Cosine as special cases. The main workhorse is given by the next theorem. Roughly,
it says that if we can find a set of points in our universe that are mutually far apart, then its
“center” is far apart from some point in the set. Later in this section, we will also present
matching distortion upper bounds for these similarities.

I Theorem 4. Suppose that S : U × U → [0, 1] is a similarity admitting an LSH such that
there exists ∅ 6= X ⊆ U , with S(X,X ′) = 0 for each {X,X ′} ∈

(X
2
)
. Then, for each Y ∈ U ,

there exists at least one X? ∈ X such that S (X?, Y ) ≤ 1/|X |.

Proof. Let H be the hash function family for S. Observe that no LSH with a finite dis-
tortion can assign a non-zero probability to any of the pairs in

(X
2
)
, since their pairwise

similarities are zero. Therefore each Y ∈ U can be hashed to the same value of at most one
element of X for each hash function. In other words, each hash function h ∈ H must satisfy
|{h(X) | X ∈ X}| = |X |. Therefore,

∑
X∈X

S(X,Y ) = Pr [h(Y ) ∈ {h(X) | X ∈ X}] ≤ 1.

By averaging, it follows that there must exists at least one X? ∈ X such that S(X?, Y ) ≤
1/|X |. J

We will use this characterization in the following way. For a given similarity, we will find
a set X ⊆ U of objects that are entirely dissimilar from one another (i.e., all their pairwise
similarities are zero) and an additional object Y ∈ U \ X (i.e., the center) that is more
similar than 1/|X | to each of the elements in X . If we can prove a lower bound of α/|X |,
α > 1, on the similarities S(Y,X) for each X ∈ X , then we can conclude that the similarity
S has to be distorted by at least α to admit an LSH. In the remainder of this section we
apply Theorem 4 to a few notable examples.



F. Chierichetti, R. Kumar, A. Panconesi, and E. Terolli 54:7

4.1 Simpson and generalized Sørensen–Dice
Let us begin by recalling the definition of the similarities to be discussed in this section.
The Simpson similarity, operating on the subsets of the ground set [n], is defined as

simpson(X,Y ) = |X ∩ Y |
min (|X|, |Y |) ,

if |X|, |Y | ≥ 1, as simpson(X,∅) = 0 if |X| ≥ 1 and as simpson(∅,∅) = 1. The infinite
family sorensenγ , for γ > 0, operating on the subsets of [n], is defined as

sorensenγ(X,Y ) = |X ∩ Y |
|X ∩ Y |+ γ|X4Y |

,

if |X| + |Y | ≥ 1, and sorensenγ(∅,∅) = 1. The sorensenγ family subsumes as special
cases several well-known similarities, for instance, Sørensen–Dice (γ = 1

2 ), Jaccard (γ = 1),
and Anderberg (γ = 2).

I Theorem 5. For a ground set of n elements,

distortion(simpson) = n, and
distortion(sorensenγ) = max(1/γ, 1)−O(1/n).

Proof. First, we show the lower bound by exhibiting an instance on a ground set of n
elements. Let U = [n], Y = U , and X = {X1, . . . , Xn}, where Xi = {i} for i ∈ [n]. Observe
that, for each {Xi, Xj} ∈

(X
2
)
, we have that simpson(Xi, Xj) = sorensenγ(Xi, Xj) = 0,

while, for each Xi ∈ X , we have simpson(Xi, Y ) = 1 and sorensenγ(Xi, Y ) = 1
γn+(1−γ) .

By Theorem 4 we know that for every similarity S with an LSH that finitely distorts
simpson or sorensenγ , there must exist at least one Xi such that S(Xi, Y ) ≤ 1

|X | = 1
n .

The lower bounds follow.
Next we show matching upper bounds for the distortion. Recall the definition of the

Jaccard similarity:

jaccard(X,Y ) = |X ∩ Y |
|X ∪ Y |

.

Broder’s shingles [8] and minwise independent permutations [9] are a well-known LSH scheme
for Jaccard similarity (see § 2). We use this to prove matching upper bounds for Theorem 5.

Minwise independent permutations form an LSH scheme with distortion n for Simpson
similarity since

min(|X|, |Y |) ≤ |X ∪ Y | ≤ n ·min(|X|, |Y |),

as long as |X|, |Y | ≥ 1. They also provide a distortion of 1/γ for sorensenγ , for every
γ ∈ (0, 1] since

γ|X ∪ Y | ≤ |X ∩ Y |+ γ|X4Y | ≤ |X ∪ Y |.

Finally, recall that a result in [13] proves that the similarity Hγ admits an LSH scheme as
long as γ ≥ 1. J

Figure 1 plots the minimum distortion of sorensenγ , as γ varies.

ITCS 2017
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Figure 1 The minimum distortion of sorensenγ .

4.2 Cosine and unit `p-norm dot product

Recall that given any p ≥ 1, the `p norm of a vector x ∈ Rn is `p(x) = (
∑n
i=1 |x(i)|p)1/p

and that the cosine similarity of two non-negative vectors x, y ∈ Rn
+ having unit `2 norm is∑n

i=1 x(i) · y(i).
Furthermore, given p ≥ 1, let

Bp,n :=
{
x ∈ Rn

+ |
n∑
i=1

x(i)p ≤ 1
}

and Sp,n :=
{
x ∈ Rn

+ |
n∑
i=1

x(i)p = 1
}
,

be, respectively, the set of points contained in the p-ball of p-radius 1 with non-negative
coordinates and the set of points lying on the p-sphere of p-radius 1 with non-negative
coordinates.

The universe of the dot product similarity (that we define next) is Bp,n, which is un-
countably infinite. To avoid technical issues in giving a minimally distorted LSH for this
similarity, we restrict the universe Bp,n to any finite subset Fp,n of Bp,n. Given any such
subset, the similarity dotp,n : Fp,n × Fp,n → [0,∞) is

dotp,n(x, y) =
n∑
i=1

x(i) · y(i).

Notice that dot2,n is the well-known cosine similarity (defined on the points of S2,n). (Note
that we have relaxed the notion of similarity to have range outside [0, 1]; the distortion
bounds will take care of this issue. However, for the cosine similarity, the range is still
[0, 1].) We first show an upper bound on distortion and follow that with a matching lower
bound.

I Theorem 6. For p ≥ 2, distortion(dotp,n) ≤ 3n1− 1
p .

Proof. The proof is omitted from this extended abstract. J

Now we show that the distortion of Theorem 6 is close to optimal using, once again, the
center method.
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I Theorem 7. For p ≥ 1, distortion(dotp,n) ≥ n1− 1
p .

Proof. Consider the n vectors ui defined as ui(i) = 1, and ui(j) = 0 for each i ∈ [n] and for
each j ∈ [n] \ {i}. Also, let u? be the vector such that u?(i) = n−

1
p , for each i ∈ [n], and let

X = {u1, u2, . . . , un}. Observe that for each x ∈ X, we have `p(x) = 1 and `p(u?) = 1.
Suppose that S is an LSHable similarity that distorts dotp,n by the minimum possible

amount. Since S(ui, uj) = 0 for every i 6= j, by Theorem 4 we know that there exists ui ∈ X
such that S(ui, u?) ≤ 1

n . Since dotp,n(ui, u?) = n−
1
p , the distortion is at least n1− 1

p . J

As a simple corollary, we observe that the distortion for the cosine similarity is Θ(
√
n) and

that the distortion bound is tight for p ≥ 2. We conjecture that it is generally tight for all
p ≥ 1, i.e., that Theorem 6 could be strengthened to all p ≥ 1.

4.3 Sokal–Sneath similarities
Finally, we look at the Sokal–Sneath similarities. For γ > 0, let

sokal-sneathγ(X,Y ) =
|X ∩ Y |+

∣∣X ∪ Y ∣∣
|X ∩ Y |+

∣∣X ∪ Y ∣∣+ γ |X4Y |
.

Observe that sokal-sneath1 is the Hamming similarity, sokal-sneath1/2 is the Sokal–
Sneath 1 similarity, and sokal-sneath2 is the Rogers–Tanimoto similarity.

Rational set similarities [13] prove that sokal-sneathγ has an LSH iff γ ≥ 1. Thus, the
Hamming similarity and the Rogers–Tanimoto similarity admit an LSH, while the Sokal–
Sneath 1 similarity does not admit an LSH.

We use the center method to prove a lower bound on the LSH-distortion of
sokal-sneathγ .

I Theorem 8. For any 0 < γ < 1,

2
1 + γ

≤ distortion(sokal-sneathγ) ≤ 1
γ
.

Proof. We begin with the lower bound. Given any ground set [n] of even cardinality, consider
the three setsX = [n/2],X ′ = [n]\[n/2] and Y = [n]. We have, sokal-sneathγ(X,X ′) = 0,
sokal-sneathγ(X,Y ) = sokal-sneathγ(X ′, Y ), and

sokal-sneathγ(X,Y ) =
1/2

1/2 + γ/2
= 1

1 + γ
.

Consider any set similarity S on the ground set [n] that admits an LSH, and that guar-
antees that S(X,X ′) = 0. By Theorem 4, there must exists X? ∈ {X,X ′} such that
S(X?, Y ) ≤ 1/2. It follows that the distortion is at least

1
1+γ

1
2

= 2
1+γ .

As for the upper bound, observe that for 0 < γ < 1, we can approximate sokal-sneathγ
with sokal-sneath1 by introducing a distortion of 1/γ. Since sokal-sneath1 admits an
LSH [13], it follows that distortion(sokal-sneathγ) ≤ 1/γ. J

5 The k-sets Method

In this section we introduce our second tool for lower bounding the distortion of LSH. This
method is geared towards set similarities. The main tool is the following theorem. Let Un,k
denote

([n]
k

)
.
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I Theorem 9. Let k = o (
√
n), and let S : Un,k × Un,k → [0, 1] be a similarity such that

S(X,Y ) = 0 if X ∩ Y = ∅. If S admits an LSH, then

f(S) := avg
{X,Y }∈(Un,k2 )
|X∩Y |=1

S(X,Y ) ≤ αk +O

(
k

n

)
, where αk := 1

2k − 1 .

This will be used in the following way. Suppose that we have a similarity S′ defined on sets
such that S′(X,Y ) = 0 whenever X and Y are disjoint (not all, but many set similarities
satisfy this property), and suppose also that S′(X,Y ) ≥ d · αk whenever X and Y are such
that |X| = |Y | = k and |X ∩ Y | = 1. If S is LSHable, how small can its distortion be with
respect to S′? By Theorem 9, there must exist a pair of sets such that S(X,Y ) ≤ αk+O(k/n)
which implies that the distortion of any LSHable S with respect to S′ is at least d−O(k2/n).

In what follows, we begin with some technical Lemmas (§ 5.1) to prove Theorem 9 (§ 5.2)
and then apply it, in § 5.3, to Braun–Blanquet similarity, establishing optimal distortion
bounds for it.

5.1 Extremal partitions
A hash function h on U naturally induces a partition in the following sense: two objects
X,Y ∈ U belong to the same side of the partition if h(X) = h(Y ). This view is particularly
useful for our purposes and from now on we will identify a hash function with the partition
that it induces.

I Definition 10 (Acceptable partition). A partition P of Un,k induces a pair {X,Y } (with
X 6= Y ) if X,Y belong to the same part of P. A partition is acceptable if it induces no
pair {X,Y } such that X and Y are disjoint. The value of a partition is the number of pairs
induced by it.

Our first goal is to prove that no acceptable partition of Un,k has value greater than

(
1 +O

(
k2
/n
))
· n2k−1

2(2k − 1)((k − 1)!)2 .

I Definition 11 (Nice partition). An acceptable partition P of Un,k is nice if it contains
n parts P1, . . . , Pt, and if there exists a partition I1, . . . , It of [n] (with Ii 6= ∅ for i ∈ [t],
∪ti=1Ii = [n] and Ii ∩ Ij = ∅ for each {i, j} ∈

([t]
2
)
) such that, for each i ∈ [t],

Pi =
{
X ∈ Un,k | Ii ⊆ X and X ∩

(
∪i−1
j=1Ij

)
= ∅

}
.

We first show that nice partitions satisfy a slightly stronger version of the the above
bound; we will then reduce any partition to a nice one.

I Lemma 12. The value of a nice partition of Un,k is at most

n2k−1

2(2k − 1) ((k − 1)!)2 .

Proof. The proof is omitted from this extended abstract. J

We now make use of the following theorem of Hilton and Milner [23] (see [20] for a short
proof), which bounds the maximum cardinality of an Erdös–Ko–Rado [19] family that is not
a star.
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I Theorem 13 (Hilton–Milner [23]). Let F ⊆ Un,k be a family of sets with pairwise non-
empty intersection with n ≥ 2k. If

⋂
F∈F F = ∅ then |F| ≤

(
n−1
k−1
)
−
(
n−k−1
k−1

)
+ 1.

I Fact 14.
(
n−1
k−1
)
−
(
n−k−1
k−1

)
+ 1 ≤ O

(
k · n

k−2

(k−2)!

)
.

I Lemma 15. The value of an acceptable partition of Un,k is at most(
1 +O

(
k2

n

))
· n2k−1

2(2k − 1) ((k − 1)!)2 .

Proof. The proof is omitted from this extended abstract. J

5.2 Proof of Theorem 9
Proof. Let α = avg{X,Y }∈(Un,k2 )

|X∩Y |=1

S(X,Y ) be the average similarity between pairs of sets of

cardinality k having an intersection of cardinality 1. Let σ be the total amount of similarity
between unordered pairs of sets of cardinality k having intersection 1. It is equal to:

σ = n

(
n−1
k−1
)(
n−k
k−1
)

2 α.

Recall that, in general, we have that(
n

`

)
≥ (n− `)`

`! =
n`
(
1− `

n

)`
`! ≥ n`

`!

(
1− `2

n

)
.

Substituting k for `, we obtain:

σ ≥
(

1−O
(
k2

n

))
n2k−1

2((k − 1)!)2 · α,

where the O (·) term tends to 0, since k = o (
√
n). Since S(X,Y ) = 0 whenever |X ∩Y | = 0,

we cannot give positive probability to a hash function placing two such sets X and Y in
the same part, for otherwise we would have infinite distortion. Hence, we can only use
acceptable partitions. Suppose that the S has an LSH and assume wlog that this LSH gives
positive probabilities p1, . . . , ph > 0 to partitions P1, . . . , Ph, and that it gives probability 0
to other partitions. Let v1, . . . , vh be the values of partitions P1, . . . , Ph, and observe that∑h
i=1 pi = 1. Then, we have

σ =
∑

{X,Y }∈(Un,k2 )
|X∩Y |=1

S(X,Y ) =
h∑
i=1

(pivi) ,

i.e., the total amount of similarity mass that an acceptable partition brings to our similarity’s
values is equal to the probability that the LSH assigns to the partition times the number of
the partition’s pairs, equivalently, its own value. By Lemma 15, the value of an acceptable
partition is at most

τ =
(

1 +O

(
k2

n

))
n2k−1

2(2k − 1) ((k − 1)!)2 .
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Therefore, σ ≤
∑h
i=1 (τph) = τ . I.e., if S admits an LSH, then τ ≥ σ. Thus, we must

have

1 ≥ σ

τ
≥
(

1−O
(
k2

n

)) n2k−1

2((k−1)!)2 · α
n2k−1

2(2k−1)((k−1)!)2

=
(

1−O
(
k2

n

))
α · (2k − 1),

which implies

α ≤
(

1 +O

(
k2

n

))
1

2k − 1 = 1
2k − 1 +O

(
k

n

)
. J

5.3 The distortion of Braun–Blanquet
Recall the definition of Braun–Blanquet, that operates on the subsets of the ground set [n]:

braun-blanquet(X,Y ) = |X ∩ Y |
max (|X|, |Y |) ,

if |X|+ |Y | ≥ 1, and braun-blanquet(X,Y ) = 1 if X = Y = ∅.
Observe that, for sets X,Y ⊆ [n] such that |X| = |Y | = k ≥ 1, both Braun–Blanquet and

Sørensen–Dice evaluate to 1/k if |X ∩ Y | = 1, and that they evaluate to 0 when |X ∩ Y | =
0. Therefore, Theorem 9 implies that they have to be distorted by at least (1 − on(1)) ·
(2− 1/k) when applied on such pairs of k-sets. By letting k grow to infinity, we obtain
an asymptotically tight lower bound of 2 on their distortions. More precisely, by selecting
k = Θ

(
n1/3), and by letting n grow to infinity, their distortion is at least 2−Θ

(
n−1/3). If

we denote with S any of the two similarities, with S′ any LSHable similarity with the same
domain, and with X,Y any two sets that minimize S′(X,Y ), we obtain,

S(X,Y )
S′(X,Y ) ≥

1
k

1
2k−1 +O( kn )

=
2− 1

k

1 +O(k2

n )
= 2−O(n−1/3).

We finally observe that min-wise independent permutations [8,9] achieve a distortion of
2−Θ

(
n−1) for Braun–Blanquet. Thus, we have the following theorem:

I Theorem 16. distortion(braun-blanquet) = 2− o(1).

I Theorem 17. 1− braun-blanquet can be isometrically embedded into `1.

Proof. The proof is omitted from this extended abstract. J

Thus, braun-blanquet passes both (T1) and (T2) (see the introduction), and yet it is not
LSH-able.

6 Ad hoc Approaches

In this section we discuss another similarity, whose distortion bound we prove through a
simple ad hoc approach.

6.1 Forbes similarity
The Forbes similarity is defined as forbes(X,Y ) = n· |X∩Y ||X| |Y | if |X|, |Y | ≥ 1, forbes(X,∅) =
0 if |X| ≥ 1, and if forbes(∅,∅) = 1. Since F ({1}, {1}) = n, we have the following simple
observation.
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I Theorem 18. distortion(forbes) = n.

Proof. The lower bound is trivial since forbes({1}, {1}) = n and no LSH can assign a
value larger than 1 to a pair of sets.

We give an LSH for the similarity forbes/n, thus proving an upper bound of n on its
distortion. The hash function h will be chosen as follows: h(∅) = ∅ and, for each X 6= ∅
independently, h(X) will be chosen uniformly at random from the elements of X. Then, if
X 6= Y , we have Pr [h(X) = h(Y )] = |X∩Y |

|X|·|Y | . J

7 Experiments

In this section we report on the outcome of two types of experiments. As we have seen in
the previous sections the distortion of Braun–Blanquet and of Sørensen–Dice is 2−o(1) and
this bound can be matched by Jaccard, which is LSHable. Distortion being a worst-case
notion, it is conceivable that the typical behavior of Jaccard with real-world datasets could
be somewhat better. This is exactly what our experiments with three real world data sets
show. We stress that our results are preliminary, but they give reasons for hope and might
justify a more comprehensive experimental assessment. The average distortion turns out
to be as low as 1.3 for some of our data sets and always less than two. The second set of
experiments is a feasibility study of the LSH scheme for Anderberg and Rogers–Tanimoto,
similarities that until recently were not known to be LSHable. As shown in [13] they are,
but in a somewhat peculiar way, for the LSH schemes might need exponentially many bits
(with low probability). The goal of our tests is to see whether such schemes are practical.
Our study shows that they are and that in fact they can be very effective with very few bits.
We begin by describing our data sets.

7.1 Datasets
We use three publicly available datasets: (i) a collection of more than 110K scientific pa-
pers downloaded from CiteSeerX, (ii) 29K scientific articles downloaded from ArXiv, and
(iii) 104K Wikipedia articles. The collection of XML metadata of CiteSeerX and ArXiv
where accessed using the OAI protocol for metadata harvesting, which is supported by both
digital libraries. The Wikipedia collection was obtained from en.wikipedia.org/wiki/
Wikipedia:Database_download. The words in each paper were transformed into lowercase
and each document became a bag of words (no repetitions).

For the experiments of § 7.3 the documents underwent the following “cleaning” procedure:
(i) all words not included in top 1000 most frequent words of the whole dataset were removed
and, (ii) every word was hashed to a unique integer. As a result, the papers are represented
as vectors containing integers in the range [1000] = {1, 2, . . . , 1000}.

7.2 Distortion on real data
From each corpus, we selected 50 million random pairs of documents and computed the dis-
tortion, i.e., the ratio between the Jaccard value (computed exactly) and the two similarities
Braun–Blanquet and Sørensen–Dice. Figure 2a shows the distortion w.r.t. Braun–Blanquet
for our three datasets ArXiv, CiteSeer, and Wikipedia. For each value of the distortion on
the x-axis, the plot gives, on the y-axis, the fraction of pairs with that distortion. Similarly,
Figure 2b shows the distortion w.r.t. Sørensen–Dice. Table 2 displays the average distortion
and the variance of these experiments.
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Table 2 Experimental results.

Braun–Blanquet Sørensen–Dice
µ σ µ σ

ArXiv 1.45 0.2 1.78 0.09
CiteSeerX 1.4 0.16 1.7 0.05
Wikipedia 1.29 0.21 1.81 1.14

(a) Braun–Blanquet similarity. (b) Sørensen–Dice similarity.

Figure 2 Percentage of document pairs with distortion δ with respect to shingles as δ increases.

Overall, these tests show that in real-world scenarios the average distortion of Braun–
Blanquet and Sørensen–Dice can be significantly smaller than the worst case bound.

7.3 LSH schemes for rational set similarities
Let us start by recalling the definitions of the similarities we deal with in this section. The
Anderberg similarity is defined as follows. Given two nonempty sets X,Y of n elements,

anderberg(X,Y ) = |X ∩ Y |
|X ∩ Y |+ 2|X4Y | ,

where 4 is the symmetric difference. (Note that S2 is the Anderberg similarity.) The value
is zero if exactly one of the two sets is empty, and it is 1 whenever X = Y . In [13] it
is proven that the following is an LSH scheme for it. Pick a positive integer r at random
with probability 2−r. Let h1, . . . , hr be r shingles picked independently. Then, h(X) :=
(h1(X), . . . , hr(X)) is an LSH scheme for A, i.e., anderberg(X,Y ) = Pr[h(X) = h(Y )].
The Rogers–Tanimoto similarity is defined as

rogers-tanimoto(X,Y ) =
|X ∩ Y |+

∣∣X ∪ Y ∣∣
|X ∩ Y |+

∣∣X ∪ Y ∣∣+ 2|X4Y |
.

(Note that H2 is the Rogers–Tanimoto similarity.) The following is the LSH scheme for
Rogers–Tanimoto proposed in [13]. Pick r as before, and then pick r elements e1, e2, . . . , er



F. Chierichetti, R. Kumar, A. Panconesi, and E. Terolli 54:15

(a) Anderberg similarity. (b) Rogers-Tanimoto similarity.

Figure 3 Mean Average Error as number of hash functions applied varies.

from the ground set independently at random. The random hash function h is defined as
follows. For a set X, we let h(X) := (e1 ∈ X, . . . , er ∈ X) (where ei ∈ X is a boolean value).
Given two sets X and Y , h(X) = h(Y ) iff the two vectors coincide on each coordinate (for
each element e = e1, e2, . . . , er, either both sets have it or they both do not).

Recall that in this experiment our corpora consists of bag of words in which only the one
thousand most popular words are retained. So each document can be thought of as binary
vector of one thousand coordinates (coordinate i is one iff the ith most popular word is in
the document).

The experiment is as follows. Let h denote a generic hash function of the LSH scheme
that we are testing. From each corpus, we picked one hundred thousand random pairs of
documents. Then, for every k ∈ [100], we selected k hash functions h1, . . . , hk and estimated
the similarity of the random pair in the usual fashion, i.e., as the fraction of times that
hi(X) = hi(Y ), for i ∈ [k].

Figure 3a shows, for each value of k on the x-axis, the mean absolute error (MAE) w.r.t.
the real value of Anderberg. Note that already for k = 20 the MAE is below 0.05. Since
the expected number of shingles used in each h is two (with very small variance) this shows
the LSH scheme is inexpensive both time-wise and space-wise. Similar conclusions apply to
Rogers–Tanimoto, as Figure 3b shows.

The experimental results show that the MAE decreases as the number of hashing func-
tions applied increase for each of the databases and similarities tested, reinforcing the the-
oretical aspects of LSH applied to specific group of similarities that admit such an LSH.

8 Conclusions

In this paper we studied the notion of distorted locality sensitive hashing schemes for a
number of widely-used similarities that do not admit exact such schemes. For most of them,
we have obtained tight bounds on the minimum distortion required for obtaining an LSH.
In doing so, we developed two lower bounding tools that could be useful for bounding the
distortion of other similarities that are not LSHable.
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To complement our theoretical bounds, we also studied the behavior of our proposed
distorted LSH schemes on real datasets. Our main observation is that in practice, the
average distortion is milder than what is dictated by the worst-case bounds.

It will be interesting to consider other non-LSHable similarities and study their distortion.
The encyclopedia [15] is a rich source for such similarities.

Acknowledgments. We thank the anonymous reviewers for several useful comments and
suggestions.
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