
Coding in Undirected Graphs Is Either Very
Helpful or Not Helpful at All
Mark Braverman∗1, Sumegha Garg2, and Ariel Schvartzman3

1 Princeton University, Princeton, USA
mbraverm@princeton.edu

2 Princeton University, Princeton, USA
sumeghag@cs.princeton.edu

3 Princeton University, Princeton, USA
acohenca@cs.princeton.edu

Abstract
While it is known that using network coding can significantly improve the throughput of directed
networks, it is a notorious open problem whether coding yields any advantage over the multicom-
modity flow (MCF) rate in undirected networks. It was conjectured in [11] that the answer is
‘no’. In this paper we show that even a small advantage over MCF can be amplified to yield a
near-maximum possible gap.

We prove that any undirected network with k source-sink pairs that exhibits a (1 + ε) gap
between its MCF rate and its network coding rate can be used to construct a family of graphs G′
whose gap is log(|G′|)c for some constant c < 1. The resulting gap is close to the best currently
known upper bound, log(|G′|), which follows from the connection between MCF and sparsest
cuts.

Our construction relies on a gap-amplifying graph tensor product that, given two graphs
G1, G2 with small gaps, creates another graph G with a gap that is equal to the product of the
previous two, at the cost of increasing the size of the graph. We iterate this process to obtain a
gap of log(|G′|)c from any initial gap.

1998 ACM Subject Classification G.2.2. Graph Theory, Network problems

Keywords and phrases Network coding, Gap Amplification, Multicommodity flows

Digital Object Identifier 10.4230/LIPIcs.ITCS.2017.18

1 Introduction

The area of network coding addresses the following basic problem: in a distributed commu-
nication scenario, can one use coding to outperform packet routing-based solutions? While
the problem of communicating information over a network can be viewed as the process of
moving information packets between terminals, a key distinction between moving packets and
moving commodities is that information packets can be re-encoded by intermediate nodes.
For example, a node which receives packets P1 and P2 can calculate and transmit the bitwise
XOR packet P1 ⊕ P2 to its neighbor. This operation has no analogue in multicommodity
flow scenarios.

∗ Research supported in part by an NSF Awards, DMS-1128155, CCF-1525342, and CCF-1149888, a
Packard Fellowship in Science and Engineering, and the Simons Collaboration on Algorithms and
Geometry. Any opinions, findings and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

© Mark Braverman, Sumegha Garg, and Ariel Schvartzman;
licensed under Creative Commons License CC-BY

8th Innovations in Theoretical Computer Science Conference (ITCS 2017).
Editor: Christos H. Papadimitrou; Article No. 18; pp. 18:1–18:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/132422785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

18:2 Coding in Undirected Graphs Is Either Very Helpful or Not Helpful at All

Whether (and to what extent) this ability confers any benefits over the simple routing-
based solution, depends on the specific goal of the communication at hand. Such goals may
include uni-cast and multi-cast throughput, error-resilience and security, to name a few.
These questions have been the subject of active study in the recent past. A summary of
major directions can be found in the books [14, 13], and surveys [5, 15].

In this paper we focus on noiseless unicast communication. The network is a capacitated
graph G with k source-sink terminal pairs (si, ti). Each source vertex si wants to transmit
an information stream to ti. The network coding rate NC(G) is the maximum rate at which
transmission between all pairs can happen simultaneously, given the capacity constraints [2].

If we forbid coding, and restrict nodes to forwarding information packets that they receive,
the problem becomes equivalent to multicommodity flow over G — the very well-studied
problem of maximizing the rate MCF(G) at which commodities are moved from sources
to sinks subject to the capacity constraints (see e.g. [3] for background). Clearly, the
multicommodity rate can always be achieved — but can it be beaten using “bit tricks”?

If the graph G is directed, there are well-known examples which show that coding can
improve throughput in a very dramatic way [7, 1]. There is a family of examples G, where
the gap between the multicommodity flow rate and network coding throughput is as large as
O(|G|). Despite substantial effort, it is not clear whether coding confers any benefit over
routing in undirected networks. Li and Li [11] conjectured that the answer is ‘no’. This
conjecture is currently open.

It is known that the Li and Li conjecture holds in some special cases. Naturally, it holds
whenever the sparsity of the graph matches the multicommodity flow rate. For cases where
these quantities are not equal, [8] and [9] show that the conjecture is true for the Okamura-
Seymour graph and [8, 1] show it for an infinite family of bipartite graphs. Empirical evidence
also suggests that the conjecture is true [12].

One simple case where coding rate cannot exceed capacity is the case when the channel is
a single edge: two parties cannot be sending messages to each other at a total rate exceeding
the channel’s capacity. This is a simple consequence of Shannon’s Noiseless Coding Theorem.
As a simple corollary, the sparsest cut in G provides an upper bound for the network coding
rate NC(G). The sparsity of a cut (U, V \ U) is defined as

Sparsity(U, V \ U) := Capacity(U, V \ U)
Demand(U, V \ U) (1)

If we merge the vertices on either side of the cut, the network coding rate becomes
Sparsity(U, V \ U). Merging nodes can only increase network coding rate, and thus we
have NC(G) ≤ Sparsity(U, V \ U). Since the sparsity of G is defined as the minimum of (1)
over all cuts, we have NC(G) ≤ Sparsity(G).

As discussed below, the multicommodity flow problem is very well-studied. In the one
commodity case, the Max-Flow Min-Cut Theorem asserts that sparsity is equal to the flow
rate. In the multicommodity case, the sparsity is still an upper bound on the multicommodity
flow rate MCF(G), but it might be loose by a factor of log |G|:

Sparsity(G)/O(log |G|) ≤ MCF(G) ≤ Sparsity(G). (2)

Thus the advantage one can gain for network coding over undirected graphs is at most
O(log |G|):

NC(G)/O(log |G|) ≤ Sparsity(G)/O(log |G|) ≤ MCF(G) ≤ NC(G). (3)

M. Braverman, S. Garg, and A. Schvartzman 18:3

Figure 1 Graph G1 and G2.

Figure 2 Basic gadget that embeds a copy of G2 into each edge of G1. The edges coming out
of the copies will be used to connect to other copies of the outer graph (G1). Labelled source-sink
pairs of G2 are just for reference. The thin edges are just an artifact and their respective end points
represent a single vertex.

The Li and Li conjecture asserts that the rightmost ‘≤’ is indeed an equality. Our main
result is that either the conjecture is true, or it must be nearly ‘completely false’: the gap
between NC(G) and MCF(G) can be as high as poly-logarithmic in |G|.

I Theorem 1. Given a graph G that achieves a gap of 1 + ε between the multicommodity
flow rate and the network coding rate, we can construct an infinite family of graphs G̃ that
achieve a gap of O

(
log |G̃|

)c
for some constant c < 1 that depends on the original graph G.

In order to prove Theorem 1, we will show a simpler construction that can be applied
repeatedly.

I Theorem 2. Given a graph G of size n with a gap of 1 + ε between the multicommodity
flow rate and the network coding rate, we can create another graph G′ of size nc2 and a gap
of (1 + ε)2, where c depends on the diameter of the graph G.

The idea of gap-amplification in the context of network coding has been studied before.
In [4] the authors combine linear programming techniques with hypergraph product operations
to prove general gap amplification results between linear and non-linear network coding for
directed graphs.

Proof outline

The main part of the construction is to define a graph tensor on graphs G1 and G2 that
have gaps of 1 + ε1 and 1 + ε2 respectively, between the multicommodity flow rate and the
network coding rate, which gives a new graph G with a gap of (1 + ε1)(1 + ε2) while keeping
a check on the size of G. We can then take a graph with a small gap and tensor it with itself
to produce a graph with an even larger gap. Repeatedly tensoring the output of the previous
iteration with itself will give us Theorem 1.

ITCS 2017

18:4 Coding in Undirected Graphs Is Either Very Helpful or Not Helpful at All

(a) A cheating path is highlighted with dashed
edges.

(b) An honest path is highlighted with dotted
edges.

Figure 3 Two copies of G1 (with source-sink pairs s1 − t1, s2 − t2 and s′
1 − t′

1, s′
2 − t′

2, respectively)
have 8 edges. These edges are replaced with 4 copies of G2, each copy having two source-sink pairs.
All edges in the first copy of G1 are replaced with s1X -t1X source-sink pairs of G2; edges in the
second copy of G2 are replaced with s2X -t2X source-sink pairs of G2

In G2, network coding allows us to send more information from every source to its
corresponding sink than what simple flows allow. We construct a gadget for the graph tensor
exploiting this fact as in Figure 2. We replace each edge of G1 by a copy of G2 with endpoints
at a deterministic source-sink pair. We keep the source-sink pairs of G1 and edges of G2.

For simplicity, assume that each edge in Figure 1 has capacity 1. The effective capacity
at each edge seen by G1 under network coding is more than that under flows. Intuitively,
replacing each edge with a source-sink pair of G2 should give network coding a “capacity
advantage” of (1 + ε2) over multicommodity flow. Since the information transferred grows
linearly with the capacity, the new information exchanged between source-sink pairs in the
gadget under network coding should be (1 + ε1)(1 + ε2) times the information exchanged
under flows.

We need to be careful because G2 exhibits a gap only when we need to send information
from all sources simultaneously. We address this by adding more copies of G1 to the graph
tensor and replacing its edges with other source-sink pairs of the copies of G2 as in Figure 3.
In each copy of G1, we replace all edges with the same source-sink pair of G2. At the same
time, each copy of G2 serves to replace the same edge in all copies of G1. This is done to
facilitate the proof of the upper bound on the MCF rate in the resulting graph.

Our work is not done here. It is easy to get a lower bound on the network coding rate
on the final graph G by just showing a network coding solution. For this, informally, we
just compose the network coding solutions for G1 and G2. The hard part is to get an upper
bound on the multicommodity flow rate. Since MCF is a linear program, we can upper
bound the value of multicommodity flows by looking at the dual solution of its relaxed linear
program. This dual, described in Section 2, involves computing shortest distances between
source-sink pairs under some metric. This metric readily tensorizes: we can take the length
of an edge in a copy of G2 to be the product of the length of that edge in G2 times the
length of the edge(s) in G1 this particular copy of G2 is replacing. The problem is to get the
lengths of whole paths to tensorize.

What could go wrong? Consider Figure 3. We would ideally want the dotted paths as in
Figure 3b to be the shortest path between S1 and T1 in G′, since its length is the length
of the shortest s1 − t1 path in G1 times the length of the shortest s1X − t1X path in G2.
Unfortunately, during the tensoring operation we inadvertently introduce additional s1 − t1
paths that do not correspond to “products” of paths from G1 and G2. For example, the
dashed path in Figure 3a is a “cheating” path which can make the distance between s1 and
t1 shorter than expected. We deter the use of “cheating” paths by increasing the number of

M. Braverman, S. Garg, and A. Schvartzman 18:5

hops between different copies of G1 that a path has to take before it reaches the same copy
again. The technical ingredient which prevents such cheating is in the design of the bipartite
graph which tells which copy of G1 should use which copies of G2 (and how to connect them).
To prevent cheating, the bipartite graph will need to be of high girth. The crucial part of
the construction is thus constructing high girth bipartite graphs while still keeping check on
the size so as to get a O(log(size)c) (c < 1) gap when the tensor is applied repeatedly.

Discussion

A natural question arises: Can we have a tensor construction that starts with a graph G
having some gap between the multicommodity flow rate and the network coding rate and
outputs a graph G′ with gap ω(log(|G′|)), thus contradicting (3) and proving the Li and
Li conjecture? We address this question with respect to our construction in Section 4. We
show that the MCF vs. Sparsest Cut gap tensorizes for our construction, and thus the
tensorization process on its own cannot cause the gap to exceed O(log |G′|).

At the same time, if one’s goal is to prove the conjecture, it might be easier to reach a
contradiction to the gap being (log |G|)c than to a constant gap.

2 Preliminaries

In this section we introduce the problems that we will be interested in studying and any
relevant notation. Where appropriate, we use the same notation and definitions as [1, 7].

When G = (V,E) is a graph, we specify vertex set of G with V (G) when the underlying
graph G is not clear from the context. Similarly E(G) represents the edge set for graph
G. The set {1, 2, ..., n} is represented by [n]. I(G) denotes the set of k source-sink pairs
(si, ti), i ∈ [k], si, ti ∈ V . Given a bipartite graph B = (V1, V2, E), we denote the left side of
the graph by V1(B) and the right by V2(B). A bipartite graph is (r, s) bi-regular when each
vertex on the left side has degree r whereas each vertex on right side has degree s.

2.1 Network coding
I Definition 3. An instance of the k-pairs communication problem consists of

a graph G = (V,E),
a capacity function c : E → R+,
a set I of commodities of size k, each of which can be described by a triplet of values
(si, ti, di) corresponding to the source node, the sink node and the demand of commodity i.

In line with [1], for undirected graphs we consider each edge e as two directed edges
~e, ~e, whose capacities will be defined later. It will also be convenient to think of source and
sink nodes as edges. Therefore, for every source and sink pair (si, ti), we create new nodes
Si, Ti and connect them via single edges to si, ti respectively. These edges are of unbounded
capacity and we will refer to these as the source and sink edges respectively. Every source Si
wants to communicate a message to its sink.

We give the formal definition of a network coding solution in Appendix A. Let Mi be
the set of messages the i-th source-sink pair wants to communicate, and M =

∏
iMi. Let

∆(e) be the alphabet of characters available at edge e. Informally, the solution to a network
coding problem must specify for each edge e a function fe : M → ∆(e), which dictates the
character transmitted on that edge. The function fe must be computable from the characters
on the incoming edges at the sender end point. The message at the source and sink edges of
any commodity must agree.

ITCS 2017

18:6 Coding in Undirected Graphs Is Either Very Helpful or Not Helpful at All

The network coding rate (henceforth known as coding rate) is the largest value r such
that for each source-sink pair at least r · di information is transmitted while preserving the
capacity constraint on all edges.

2.2 Multicommodity flow problems and sparsity cuts
A flow problem consists of a graph G = (V,E) with k commodities together with k pairs of
nodes (si, ti) and quantities di. The goal is to transmit di units of commodity i from si to ti
while keeping the total sum of commodities that go through a given edge e below its capacity
c(e). There are many optimization problems surrounding this problem. We will focus on the
following one: what is the largest λ such that at least λ fraction of each commodity’s demand
is routed? This is justified by assuming that no commodity is prioritized over another and
that all resources are shared. We refer to this quantity as the flow rate of the graph. There
are well-known linear programming formulations for these problems (see LP 5 in Section B
in the appendix). Since we will be interested in providing provable upper bounds to the flow
rate, it will suffice to look at the dual of this problem. In particular, we use the variables on
the following dual LP to provide upper bounds on the flow rate of the sequence of graphs we
create. We will refer to the w(u,v) as the weight of edge (u, v) in the dual solution.

minimize
∑
u,v

w(u,v)c(u, v)

subject to
∑

(si,ti)

l(si, ti)di ≥ 1 (Distance Constraint)

∑
(u,v)∈p

w(u,v) ≥ l(si, ti) ∀i ∈ [k], p ∈ Pi

w(u,v) ≥ 0 ∀(u, v) ∈ E ∧ ∀(u, v) = (si, ti)

(4)

This LP introduces a semi-metric on the graph which assigns weights to the edges. l(si, ti)
is the shortest distance between i−th source-sink pair w.r.t. this metric. The goal is to
minimize the weighted length of the edges of the graph while maintaining a certain separation
between the source-sink pairs. Zero weight edges can be problematic for our graph tensor
since they may reduce the weighted girth of the graph in ways we cannot account for. Our
tensor, however, does not produce new zero weight edges. Therefore it suffices for our
purposes to show that we can get rid of them at the beginning of the construction.

I Lemma 4. If G is a graph such that the gap between the flow rate and the coding rate is
(1 + ε), a new graph G′ can be constructed such that the gap does not decrease and all the
edge weights in LP (4) are non-zero.

Proof. We defer the proof of this lemma to Section B of the appendix. J

Interestingly, this lemma is not true for directed graphs.

3 Construction

In this section we present the construction of our graph tensor and prove our main results,
Theorems 1 and 2. The construction takes two graphs with small gaps and tensors them
in such a way that the resulting graph has a gap equal to the product of the previous gaps.
Iteratively tensoring a graph with a small gap with itself will yield our main results.

M. Braverman, S. Garg, and A. Schvartzman 18:7

Throughout this section, when referring to a graph Gi = (Vi, Ei), i ∈ [2], ki is the number
of source-sink pair, vi the number of vertices and mi the number of edges. The capacity of
edge e ∈ Ei will be denoted by cie.

3.1 Overview
As mentioned in Section 1, we need a bijection between the graph tensor on G1 and G2 and
bipartite graphs. We represent the copies of G1 by numbered nodes on the left side of the
bipartite graph (say B) and copies of G2 by nodes on the right side of B. We add an edge
(i, j) in B when an edge in the i-th copy of G1 got replaced by the j-th copy of G2 aligned at
a specific source-sink pair. But this definition of bipartite graph B loses information about
which specific edge was replaced with which specific source-sink pair. Thus, we consider a
variant of bipartite graphs: colored bipartite graphs, which have two colors associated with
each edge. We will use the first color to represent the edge that got replaced in a copy of G1
and the other to represent the source-sink pair of G2 that replaced that edge. Thus, edges
of B get colored from the set [m1]× [k2]. Note that each vertex on the left side has degree
m1 and that on right hand side has degree k2. The formal description of colored bipartite
graphs and graph tensor based on this idea is given in Subsection 3.2.

As discussed in Section 1, we can avoid “cheating” paths by increasing the number of
hops that a dashed path (Figure 3) needs to take to come back to the same copy of G1. Our
first requirement would be for the colored bipartite graph B to have high girth. Lemma 19
states the existence of nearly optimal sized high girth bipartite graphs and Subsection 3.2.2
shows how to construct specific colored bipartite graphs (as in Subsection 3.2) of high girth.

Is having a high girth B sufficient for the number of hops to be large? No. When G2
has two sources at the same vertex, the end points (on source side) of the edges in copies of
G1 that these two source-sink pairs replaced will collapse on the same vertex implying that
we can move between these copies of G1 instantly without traveling along any edge in the
tensored graph. But, we would have travelled two consecutive edges in B. To remedy this,
we condition on the graph G2 to have all sources and sinks lying on distinct vertices. Note
that the length of the cheating paths is defined with respect to the weights of edges in a
dual solution. Thus, we cannot just transfer the source/sinks to leaves at the corresponding
vertex through infinite capacity edges as they would always get weight 0 in the dual. In
Subsection 3.2.1, we present a way to modify graph G2 to satisfy the above condition.

The multicommodity flow rate for the tensored graph is upper bounded by constructing
a dual solution for it based on dual solutions for graphs G1 and G2. In Subsection 3.2.3, we
show the dual construction and prove that the gap of the tensored graph is the product of
the previous gaps given appropriate girth.

The last subsection of this section contains the details of repeated tensoring to get
Theorem 1.

3.2 Graph Tensor
I Definition 5. Colored Bipartite Graph: We define Bn1,n2,d1,d2,g,q1,q2 to be the set of
bipartite graphs (V1, V2, E) with girth g, |V1| = n1, |V2| = n2, such that degree of each vertex
in V1 and V2 is d1 and d2 respectively and each edge is given a color le in [q1]× [q2]. Note
that n1d1 = n2d2.

I Definition 6. T (G1, G2, B) is defined to be the graph tensor on directed graphs G1 and
G2 based on the colored bipartite graph B.

ITCS 2017

18:8 Coding in Undirected Graphs Is Either Very Helpful or Not Helpful at All

For T (G1, G2, B) to be defined, we need B to satisfy the following properties:
1. B ∈ Bn1,n2,m1,k2,g,m1,k2 for some n1, g ∈ {1, 2, ...}.

G1 has m1 edges and G2 has k2 source-sink pairs. Therefore the degrees of each node
on the left and right sides should be m1 and k2, respectively.
As mentioned in Subsection 3.1, edges must be colored in the set [m1]× [k2].

2. ∀v ∈ V2, the set Bv = {be | e is incident to v and le = (ae, be)} is the complete set [k2].
We want each source-sink pair of a copy of G2 to replace some edge in a copy of G1.

3. ∀u ∈ V1, the set Au = {ae |e is incident to u and le = (ae, be)} is the complete set [m1].
This ensures that each edge in a copy of G1 is replaced.

4. ∀v ∈ V2, the set Av = {ae | e is incident to v and le = (ae, be)} has cardinality 1. To
define capacities in the new tensored graph naturally, we want that each source-sink pair
in a copy of G2 replaces some unique edge in its corresponding copy of G1.

5. ∀u ∈ V1, the set Bu = {be | e is incident to u and le = (ae, be)} has cardinality 1. This
ensures that each edges in a copy of G1 is replaced by the same source-sink pair in
different copies of G2.

We construct the graph T (G1, G2, B) as follows:
Enumerate the n1 nodes in V1(B) and n2 nodes in V2(B): u(1), u(2), ..., u(n1) and
v(1), .., v(n2) respectively.
Enumerate all the edges in G1: e(1)

G1
, e

(2)
G1
, ..., e

(m1)
G1

.
Create n1 copies of G1 (vertices and source-sink pairs) and n2 copies of G2 (vertices
and edges). Represent the xth copy of graph Gy, y ∈ {1, 2} by G(x)

y . Let u(i) ∈ V1(B)
represent the i-th copy of G1 and v(j) ∈ V2(B) represent the j-th copy of G2.
For every edge e = (u(i), v(j)) colored (p, k), merge the vertices a

G
(i)
1

and s
kG

(j)
2
, and

t
kG

(j)
2

and b
G

(i)
1

in T (G1, G2, B). Here, e(p)
G

(i)
1

= (a
G

(i)
1
, b
G

(i)
1

) is the pth edge in the i-th

copy of G1 and (s
kG

(j)
2
, t
kG

(j)
2

) is the kth source-sink pair of the jth copy of G2. Informally,
we are replacing each edge in a copy of G1 by a copy of G2 with end points aligned with
the kth source-sink pair. Set the capacity of every edge e′ in this jth copy of G2 to be
c1e(p)

G1
c2e′ . This can be done consistently due to Property (4).

Make all the edges undirected.

We define a tensor on directed graphs to allow for composition of network coding solutions
of G1 and G2. The direction of an edge in G1 tells us how to align the source-sink pair of
G2 on that edge. An example of a tensor is the graph in Figure 3.

3.2.1 Standard Forms and Graph Extensions
Without loss of generality, we assume that for the graph G, all the demands di, i ∈ [|I(G)|]
are equal. Otherwise, we can just divide the demands into small demands of size x such that
x divides all the initial rational demands. As discussed in Subsection 3.1, we want all sources
and sinks to lie on distinct vertices. For all the dual solutions D that we mention, we assume
that D does not contain any zero weight edges. This is justified by Lemma 4 and the fact
that new duals constructed while tensoring, which will be defined later, don’t create zero
weight edges. We say a graph-dual pair (G, D) is in standard form when all the assumptions
above are satisfied.

We now present a construction whose goal is to make all si, ti, i ∈ [k] lie on distinct
vertices.

I Definition 7. Given a graph G = (V,E) with all demands being equal to d, and a dual
solution D with NCG

z(D) ≥ 1 + ε, ∀α, 0 < α < ε, construct a new graph Gα such that all

M. Braverman, S. Garg, and A. Schvartzman 18:9

si, ti, i ∈ [k] lie on distinct vertices and Gα has a dual solution Dα(G) with NCGα
z(Dα(G)) being

at least 1+ε
1+α . Gα is defined as the α-Extension of G given D. z(D) is the objective value

of dual solution D.

Here, we just move the sources/sinks at a vertex to the leaves of the new edges added at
this vertex while keeping edge capacities and dual weights in check. The detailed description
of Gα and Dα(G) is given in Section C of the Appendix.

3.2.2 Colored Bipartite Graph Construction
We need small, colored bipartite graphs for every degree and girth to define the graph tensor
on any two graphs with gaps. We construct such graphs using biregular bipartite graphs
with high girth. The following lemma states the existence of nearly-optimal sized colored
bipartite graphs.

I Lemma 8. ∀r, s, g ≥ 3, there exists a colored bipartite graph Crsg ∈ Bn1,n2,r,s,2g,r,s with
n1, n2 ≤ (9rs)g+3.

Proof. We defer the detailed construction and proof of the next lemma to Section D of the
Appendix. J

3.2.3 Gap Amplification
We are given G1 and G2 in standard form with Gy, y ∈ [2] having gap (1 + εy). Let Ny be
the optimal network coding solution for Gy, y ∈ [2]. Construct a directed graph G′1 from G1
by replacing each (undirected) edge e = (u, v) ∈ E(G1) of capacity c1e with 2 directed edges
(u, v) and (v, u) of capacities c1eu and c1ev respectively. Here, c1eu and c1ev are the capacities
of edge e used by N1 in the defined directions. Note that c1eu + c1ev ≤ c1e. Without loss of
generality, assume c1eu + c1ev = c1e, as we can always increase one of the capacities without
changing the network coding solution to get the equality. Similarly, construct G′2 from G2
based on N2. G′1 and G′2 has m′1 = 2m1 and m′2 = 2m2 edges respectively.

I Definition 9. Tensor(G1, G2, D1, D2) is defined as T (G′1, G′2, B′), where B′ = Cm′1k2g,
2g = 2l1l2

w1w2
. Here, l1 and l2 are the maximum dual distances between any source-sink pair in

the dual solutions D1 of G1 and D2 of G2 respectively. w1 > 0 and w2 > 0 are the minimum
edge weights in the dual D1 and D2 respectively.

Define Dual(G1, G2, D1, D2) to be the specific dual solution for Tensor(G1, G2, D1, D2)
that would be constructed in proof of Lemma 12.

All the demands in the graph Tensor(G1, G2, D1, D2) are equal to d1d2
q where q = V1(B′)

k2
=

V2(B′)
m1

. Here, dy is the demand of each commodity in graph Gy, y ∈ [2]. We use such a
scaling to have a simple description of Dual(G1, G2, D1, D2) in terms of D1 and D2.

We prove the gap amplification part of Theorem 2 next. The details of how size grows
are in the next subsection.

I Theorem 10. Given graphs G1 and G2 in standard form and dual solutions D1 and
D2 respectively, such that NCGy

z(Dy) ≥ 1 + εy, y ∈ [2], G = Tensor(G1, G2, D1, D2) has a dual
solution D = Dual(G1, G2, D1, D2) such that NCG

z(D) ≥ (1 + ε1)(1 + ε2).

In the next two lemmas, we lower bound the network coding rate and upper bound the
multicommodity flow rate of G.

ITCS 2017

18:10 Coding in Undirected Graphs Is Either Very Helpful or Not Helpful at All

I Lemma 11. The coding rate for G is at least r1r2(1 + ε1)(1 + ε2)q where r1 and r2 are
objective values of dual solutions D1 and D2 respectively.

Proof Sketch. The proof follows from composing the optimal network coding solutions of
G1 and G2. The details are given in Section E of the Appendix. J

I Lemma 12. D has objective value at most r1r2q where r1 and r2 are the objective values
of dual solutions D1 and D2 respectively.

Proof Sketch. G = T (G′1, G′2, B′) where variables are as defined in Definition 9. For every
edge e ∈ E(G), e is the undirected version of an edge in a copy of G′2 (of say e2 in G′2) and
this copy of G′2 must have replaced a unique edge (say e1 ∈ E(G′1)) in different copies of
G′1. Edges e1 and e2 are directed edges but have undirected counterparts in G1 and G2. Let
w1e1 and w2e2 be the weights given to the counterpart edges of e1 and e2 in dual solutions
D1 and D2 respectively. Give weight we = w1e1w2e2 to edge e in D. Note that ∀e, we > 0 if
w1e1 , w2e2 > 0∀e1, e2. Thus, non-zero dual solutions D1 and D2 give a non-zero dual solution
D to graph G. We still need to show that D is a valid dual solution for G. Since B′ has
girth at least 2l2l1

w1w2
and G2 is in standard form, the dotted paths (as in Figure 3) are the

shortest paths with respect to dual D. We can then write the distances between source-sink
pairs in G in terms of the distance of this source-sink pair in G1 w.r.t. D1 and the distance
of the source-sink pair in G2 that replaced edges in this copy of G1 w.r.t. D2. This allows
us to easily show the satisfiability of the distance constraint for D when demands are as
specified in Definition 9.

The detailed proof is continued in Section E of the Appendix. There we also show
z(D) = n1

k2
z(D1)z(D2) = qr1r2. J

Proof of Theorem 10. It follows from just dividing the lower bound on the network coding
rate of G and the upper bound on the objective value of D obtained in Lemma 11 and
Lemma 12. J

In the next subsection, we show how to repeatedly apply this construction. Note that,
we can only apply the tensor construction on graphs in standard form. The following lemma
allows us to tensor the new graph obtained with itself.

I Lemma 13. Given G1 and G2 in standard form, Tensor(G1, G2, D1, D2) is also in standard
form.

Proof. We defer the proof of this lemma to Section E of the Appendix. J

3.2.4 Iterative Tensoring
In the next two statements size refers to the number of vertices in the graph Ai. The
calculation of the size involves calculating the required girth at each iteration and the size of
the colored bipartite graph used to tensor at each iteration.

I Theorem 14. Given a graph A = (V,E) with gap (1 + ε), we can construct a sequence of
graphs Ai = (Vi, Ei) with gap at least (1 + ε

2)2i , size at most (3cm)(4c1)2i+1

where cm and c1
are absolute constants.

Proof. We defer the proof to Section F of the Appendix. Let α = 1+ε
1+ε/2 − 1. The proof first

considers the α-Extension of A to start the recursion with a graph in standard form, then
recursively defines pairs of tensored graphs and duals (Ai, Di) such that the gap increases
geometrically. J

M. Braverman, S. Garg, and A. Schvartzman 18:11

Proof of Theorem 1. Now, we calculate an expression for the gap in terms of size.
log(gap)

log(1+ε/2) ≥ 2i ≥ log log(size)−log log 3cm
log(16c2

1) . Thus, we get a sequence of graphs with gap at least
Ω((log(size))c2) where c2 is an absolute positive constant less than 1 equal to log(1+ε/2)

log(16c2
1) . J

4 Limits of the Construction

In this section, we show that the construction we present can not be used “as is” to prove
the Li and Li conjecture. The requirement for the underlying bipartite graph to have a
high girth seems to heavily contribute to the size of the graph in the next iteration. Can
we do better in terms of size to yield a gap of ω(log |G|) by choosing a smaller bipartite
graph at every iteration while still having a clever upper bound on the multicommodity flow
in the new graph? The answer is no. Theorem 15 states that for every colored bipartite
graph B, the tensor of G1 and G2 with B as basis has sparsity of at least the product of the
sparsities of G1 and G2 when the demands are all 1 in all the graphs. With the appropriate
demands, this means that the sparsity grows exactly like the coding rate as in Lemma 11.
Thus, for any iterative tensoring procedure that starts with a graph G with NC/MCF gap
and repeatedly tensors the graph at the ith iteration (Gi) with itself or with G based on
a colored bipartite graph Bi will end up with a graph G′ with ω(log |G′|) gap. Hence we
can start with a graph H with a gap between the flow rate and the sparsity and apply this
procedure to get a graph H ′ with ω(log |H ′|) gap between the flow rate and the sparsity,
contradicting the bounds from [10]. This means that through iterative tensoring, if we were
able to prove the conjecture, we would also prove the statement that there exists no graphs
with sparsity-multicommodity flow rate gap which is clearly false.

I Theorem 15. For any G1, G2, B for which G = T (G′1, G′2, B) is defined (G′1 and G′2 are
directed graphs obtained from G1 and G2 by directing each edge arbitrary in two directions
such that new capacities add up to the previous),

Sparsity(G) ≥ Sparsity(G1) · Sparsity(G2).

when the demands of G1, G2 and G are all scaled to 1.

Proof. We defer the proof to Section G in the Appendix. J

Note that this gives an identical theorem as Theorem 10 for sparsity vs multicommodity flow
rate for the corresponding demands.

References
1 M. Adler, N. J. A. Harvey, K. Jain, R. Kleinberg, and A. Rasala Lehman. On the capacity

of information networks. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium
on Discrete Algorithm, SODA ’06, pages 241–250, Philadelphia, PA, USA, 2006. Society
for Industrial and Applied Mathematics.

2 Rudolf Ahlswede, Ning Cai, S-YR Li, and Raymond W Yeung. Network information flow.
IEEE Transactions on information theory, 46(4):1204–1216, 2000.

3 R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

4 Anna Blasiak, Robert Kleinberg, and Eyal Lubetzky. Lexicographic products and the power
of non-linear network coding. In Foundations of Computer Science (FOCS), 2011 IEEE
52nd Annual Symposium on, pages 609–618. IEEE, 2011.

ITCS 2017

18:12 Coding in Undirected Graphs Is Either Very Helpful or Not Helpful at All

5 C. Fragouli and E. Soljanin. Network coding applications. Found. Trends Netw., 2(2):135–
269, January 2007.

6 Z. Furedi, F. Lazebnik, A. Seress, V. A. Ustimenko, and A. J Woldar. Graphs of prescribed
girth and bi-degree. Journal of Combinatorial Theory, Series B, 64(2):228–239, 1995.

7 N. J. A. Harvey, R. Kleinberg, and A. Rasala Lehman. Comparing network coding with
multicommodity flow for the k-pairs communication problem, 2004.

8 K. Jain, V. V. Vazirani, and G. Yuval. On the capacity of multiple unicast sessions in
undirected graphs. IEEE/ACM Trans. Netw., 14(SI):2805–2809, June 2006.

9 G. Kramer and S. A. Savari. Edge-cut bounds on network coding rates. J. Netw. Syst.
Manage., 14(1):49–67, March 2006.

10 T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their use in
designing approximation algorithms. J. ACM, 46(6):787–832, November 1999.

11 Z. Li and B. Li. Network coding in undirected networks, 2004.
12 Z. Li, B. Li, D. Jiang, and L. C. Lau. On achieving optimal throughput with network

coding. In INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and
Communications Societies, 13-17 March 2005, Miami, FL, USA, pages 2184–2194, 2005.

13 M. Medard and A. Sprintson. Network Coding: Fundamentals and Applications. Academic
Press. Elsevier, 2012.

14 R. W. Yeung. Information theory and network coding. Springer Science & Business Media,
2008.

15 R. W. Yeung, S.-Y. R. Li, N. Cai, and Z. Zhang. Network coding theory: Single sources.
Commun. Inf. Theory, 2(4):241–329, September 2005.

A Definition of Network Coding

Let M(i) be the set of all messages si wants to send, and let M = ΠiM(i). For every v ∈ V ,
let In(v) ⊆ E denote the set of edges incident to e.

I Definition 16. A network coding solution for a graph G specifies for each directed edge
e ∈ E an alphabet Γ(e) and a function fe : M → Γ(e) mapping the symbol transmitted on
edge e. This must satisfy the following two conditions:

Correctness: each sink node receives the message from its corresponding source, i.e.
fT (i) = fS(i).
Causality: every message transmitted on edge e is computable from information received
at its tail vertex at a time prior to the message’s transmission.

I Definition 17. A causal computation of a network consists of
A sequence of edges e1, ..., eT where each edge can appear multiple times,
A sequence of alphabets Λ1, ...,ΛT , and
A sequence of coding functions ρ1, ..., ρT , which in turn satisfy:
1. For each function ρt such that et = (u, v) is not a source edge, the value of ρt is

uniquely determined by the values of the functions in the set {ρx : x < t, ex ∈ In(u)}.
2. For each edge e, the Cartesian product of the alphabets in the set {Λi : ei = e} is

equal to Γ(e).
3. For each edge e, the set of coding functions {ρi : ei = e} together define the coding

function fe specified by the network coding solution.

At this point we are equipped with the tools needed to define the network coding rate,
the information-theoretic equivalent of the flow rate.

M. Braverman, S. Garg, and A. Schvartzman 18:13

I Definition 18. A network coding solution for a graph G achieves a rate r if there exists a
constant b ≥ 0 such that

H(S(i)) ≥ r · di · b for each commodity i,
for each edge e ∈ E, H(~e) +H(~e) ≤ c(e) · b,

where by H(~e) we denote the entropy of edge ~e. The coding rate is defined to be the
supremum of the rates of all network coding solutions.

B Multicommodity Flows

The standard LP formulation for concurrent multicommodity flow problems is written below.
It has a variable for every path p ∈ Pi, where Pi is the set of all paths between si and ti. We
want to find the largest rate λ that can be concurrently sent between all source-sink pairs
subject to the path variables being non-negative and not exceeding the capacity of any edge
over all commodities.

maximize λ

subject to
∑
p∈Pi

f(p) ≥ λdi ∀i ∈ [k]

∑
p:e∈p

f(p) ≤ c(e) ∀e ∈ E

f(p) ≥ 0 ∀p
λ ≥ 0

(5)

Proof of Lemma 4. We contract all the edges with zero weight in the dual. We need to
show that the gap does not decrease. Removing a zero dual variable from a multicommodity
solution cannot improve the flow rate, since the distances and the dual objective remains the
same. We can use the same coding solution for the new graph with the exception that we
now compose the encoding on the edges that were contracted. This shows that the flow rate
does not increase and the coding rate does not decrease, proving that their ratio does not
decrease. J

C Standard Form

This section gives the detailed description of Gα and Dα(G). Let kv be the number of sources
and sinks at vertex v ∈ V (G). In the graph Gα, add kv edges (leaves) at v with capacity
z(D)d(1 + ε) and shift all the sources or sinks at v to the unique endpoints of these leaves.
As each source sends ≥ z(D)d(1 + ε) amount of information in an optimal network coding
solution and can still send z(D)d(1 + ε), the network coding rate doesn’t decrease below
z(D)(1 + ε). We construct Dα(G) as follows:
1. For each edge originally in G, assign the same weights as in D.
2. Give weight α

kd(1+ε) to the new edges.
Distances in the dual don’t decrease, so Dα(G) is a valid solution. Since we added k new
edges, z(Dα(G)) = kz(D)d(1 + ε) α

kd(1+ε) + z(D) = z(D)(1 + α). Thus, NCG
z(Dα(G)) ≥

1+ε
1+α .

D Colored Bipartite Graph Construction

In this section, we give a construction for a colored bipartite graph CB in Bn1,n2,r,s,2g,r,s
∀r, s, g ≥ 3 with n1, n2 ≤ rs(9rs)g+2. We start with a (r, s)-biregular bipartite graph with
girth at least 2g.

ITCS 2017

18:14 Coding in Undirected Graphs Is Either Very Helpful or Not Helpful at All

Figure 4 (2,3) biregular bipartite graph with girth 4.

Figure 5 Intermediate graph when one set of colors hasf been assigned.

Figure 6 Final colored bipartite graph with girth 4.

M. Braverman, S. Garg, and A. Schvartzman 18:15

I Lemma 19. [6] For all r, s, g ≥ 3, there exists a (r, s)-biregular bipartite graph with girth
at least 2g and having at most n = (9rs)g+2 vertices.

This lemma follows from Theorem E in [6].

Proof of Lemma 8. Let B(r, s, g) be a graph satisfying the above property. For simplicity,
denote B(r, s, g) by just B = (V1, V2, E). Denote the coloring for every edge e by (ae, be).
First we construct an intermediate graph H in Bn′1,n′2,r,s,2g,1,s (n′1 = s|V1|, n′2 = s|V2|) as
follows:
1. Enumerate all the edges incident to a vertex v ∈ V2 as e(1)

v , ..., e
(s)
v .

2. Add s copies of V to graph H. Enumerate these copies as (V (1)
1 , V

(1)
2), ..., (V (s)

1 , V
(s)

2).
3. ∀vj ∈ V (j)

2 , j ∈ [s], ∀i ∈ [s], corresponding to edge e(i)
v = (u, v) ∈ E(B), add an edge e

from vj to u(((j+i−2)mod s)+1) ∈ V (((j+i−2)mod s)+1)
1 (copy of u in (((j+ i− 2)mod s) + 1)-

th copy of V1). Set be = ((j + i− 2)mod s) + 1. Therefore, ∀uj ∈ V (j)
1 , edges e′ incident

at uj have be′ = j (same color).
For a vertex v ∈ V (j)

2 , the edge corresponding to e(i)
v comes from a vertex in V (((j+i−2)mod s)+1)

1 .
Thus, all edges incident to v have distinct colors.

We still need to show that the girth of H is at least 2g. For this, we show that a cycle
C of length c in H implies a cycle of length ≤ c in B. As all the edges incident to a vertex
in H correspond to different edges in B, when we project back C to a cycle C ′ in B, no
two consecutive edges in C ′ are the same implying C ′ has no cycle of length 2. Thus, C ′
must have a cycle of length 3 ≤ c′ ≤ c. B has girth at least 2g, so the girth of H cannot be
smaller.

Now, we repeat the process for H = (H1, H2) to get graph CB with H1 playing the role
of V2 and H2 playing the role of V1 in the above algorithm. This time we assign ae ∈ [r] and
make r copies of H. We can see that as was the case for be, each vertex in a copy of H1 gets
r distinct ae values and each vertex in a copy of H2 gets the same ae depending on which
copy it belongs to. The girth doesn’t decrease on going from H to CB giving us the result
we claim. J

An example of a colored bipartite graph in B12,18,3,2,4,3,2 is given in Figure 6. We
start with K2,3 as in Figure 4 with girth 4. Then, we construct the intermediate graph in
B4,6,3,2,4,1,2 as shown in Figure 5. The color of the edge depends on the copy it is incident
to on the lower side. For a vertex on the upper side, we send edges to correct vertices in
distinct copies cyclically.

E Gap Amplification Proofs

Proof of Lemma 11. Graph G1 has a network coding rate of at least r1(1 + ε1) and hence
each source sends r1(1 + ε1)d1 amount of information to its corresponding sink, and similarly
for G2. This is true even for the directed graphs G′1 and G′2 by definition. While constructing
T (G′1, G′2, B′), we aligned the source-sink pair in the same direction as the directed edge.
This allows us to compose the network coding solutions (N2 over N1) to get the information
sent from each source in G to be at least r1r2(1 + ε1)(1 + ε2)d1d2. This is due to the fact that
as we are replacing edges in G′1 by a source-sink pair of a copy of G′2, the effective capacity
seen by the replaced edge (e) with capacity c1e is now c1er2(1 + ε2)d2. Thus, the coding rate
for graph G is at least r1r2(1+ε1)(1+ε2)d1d2

(demand in graph G) = r1r2(1+ε1)(1+ε2)d1d2q
d1d2

= r1r2(1 + ε1)(1 + ε2)q. J

Proof of Lemma 12. Here, we prove that D is indeed a valid dual solution. B′ has n1 = k2q

nodes on the left side. Let l1(si, ti) denote the shortest distance between i-th source-sink pair

ITCS 2017

18:16 Coding in Undirected Graphs Is Either Very Helpful or Not Helpful at All

with respect to dual D1. Let l2(si, ti) denote the shortest distance between i-th source-sink
pair with respect to dual D2.

Let G′u1 and G′u2 be the undirected version of the graphs G′1 and G′2 respectively. G′u1 and
G′u2 are graphs G1 and G2 where each edge is divided into 2 edges with capacities adding up
to the previous one. Construct dual solutions D′1 and D′2 for G′u1 and G′u2 such that each
divided edge still gets the same weight as in dual solutions D1 and D2. The distances between
source-sink pairs remain the same. In G, calculate the shortest distance, i.e. l(s(y)

i , t
(y)
i)

between source-sink pair (s(y)
i , t

(y)
i) which corresponds to the i-th source-sink pair (si, ti) in

the y-th copy of G′u1 (finally, we make the graph undirected). In this copy of G′u1 , assume
that we replaced each edge with the jy-th source-sink pair of G′u2 (this is unique due to
Property (2) in Definition 6). Therefore, according to D, l(s(y)

i , t
(y)
i) ≤ l1(si, ti)l2(sjy , tjy)

(these correspond to dotted paths). Any other path from s
(y)
i to t(y)

i involves traversing to
another copy of G′u1 through a copy of G′u2 that replaced edges in this copy of G′u1 . This
transition from a copy of G′u1 to another copy of G′u1 in G corresponds to two consecutive
edges in the bipartite graph B′. Any such path in G having no loops would thus have to
make at least g of these transitions to revert back to the original copy of G′u1 containing the
source. Here, the girth of graph B′ is at least 2g. Each transition involves crossing at least
one edge (in a copy of G′2) with weight at least w1w2 in D because G2, being in standard
form, has all sources and sinks lying on distinct vertices and vertices of a copy of G′1 connect
only to the vertices of a copy of G′2 carrying a unique source or sink. Thus, such a path would
have distance at least gw1w2 = l2l1

w1w2
w1w2 ≥ l1l2 using l1, l2, w1, w2 from Definition 9. The

cheating paths have distance at least l1l2 implying l(s(y)
i , t

(y)
i) = l1(si, ti)l2(sjy , tjy). The left

hand side of the distance constraint in LP 4 becomes
∑k1,n1
i=1,y=1

d1d2
q l(s(y)

i , t
(y)
i) ≥ 1, where

the first expression in the summand is the demand of source-sink pairs in G. Now, we are
going to show that the constraint is true:

k1,n1∑
i=1,y=1

d1d2

q
l(s(y)

i , t
(y)
i) =

k1,n1∑
i=1,y=1

d1d2

q
l1(si, ti)l2(sjy , tjy) = d1d2

q

n1∑
y=1

l2(sjy , tjy)
k1∑

i=1

l1(si, ti)

= 1
q

· n1

k2

(
k2∑

j=1

d2l2(sj , tj)

)(
k1∑

i=1

d1l1(si, ti)

)
≥ n1

qk2
= 1

The second to last equality follows from the fact that there are total n1 copies of G′1, jy
is fixed for fixed y-th copy of G′1 and each l2(sj , tj) (j ∈ [k2]) is thus counted n1

k2
time. The

last inequality follows from D′1 and D′2 being valid dual solutions of G′u1 and G′u2 respectively
(distance constraints). This proves that D is a valid dual solution.

The value of z(D′1) for graph G′u1 is r1. D′1 assigns the same dual weights as that of D1
for the divided edges and is a valid dual solution for G′1, and similarly for D′2. We can see
from the construction of D and the edge capacities that z(D) = n1

k2
z(D′1)z(D′2) = qr1r2. D

is a function of G1, G2, D1, D2. J

Proof of Lemma 13. Demands are equal for all source-sink pairs in
G = Tensor(G1, G2, D1, D2) by definition. We need to prove that all sources and sinks
in G still lie on distinct vertices. We don’t add any new source-sink pairs and thus, each
source-sink pair lies on distinct vertices on a copy of G′1. While constructing T (G′1, G′2, B′),
we merge a vertex v in a copy of G′1 with a source or a sink vertex of a copy of G′2 and since
each vertex contains a unique source or sink of G′2, no two vertices from different copies of
G′1 are merged together. This implies that all sources and sinks still lie on distinct vertices
of G. J

M. Braverman, S. Garg, and A. Schvartzman 18:17

F Proof of Theorem 14

Proof. Using Lemma 4, we can assume that graph A has an optimal dual solution D with
all dual variables being non-zero. It is without loss of generality that A has equal demands
for all source-sink pairs. Define A∗ to be the α-Extension of A given D and D∗ = Dα(A)
(1+α = 1+ε

1+ε/2). Let A
∗ have cn vertices, cm edges and ck source-sink pairs having cd demand

each. Without loss of generality we can assume that cm ≥ ck, cn as otherwise we can just
divide some edges into multiple edges with reduced capacities. Let l be the largest distance
between any source-sink pair in the dual D∗ and w > 0 be the minimum weight of an edge
in dual D∗. We also know that NCA∗

z(D∗) ≥
1+ε
1+α = 1 + ε

2 . As the objective value of any dual
solution is at least the flow rate, we get that A∗ has a gap of at least (1 + ε

2). A∗ is in
standard form. Ai is defined iteratively as follows:
A0 = A∗, D0 = D∗, ε0 = ε

2 .
For i ≥ 1:
εi is such that (1 + εi) = (1 + εi−1)2.
Ai =Tensor(Ai−1, Ai−1, Di−1, Di−1).
Di =Dual(Ai−1, Ai−1, Di−1, Di−1).

Note that ∀i, Ai is in standard form using Lemma 13 and thus iterative tensoring is valid.
Through Theorem 10, we know that if NCAi−1

z(Di−1) ≥ (1+εi−1), then NCAi
z(Di) ≥ (1+εi−1)2 = 1+εi.

As NCA∗
z(D∗) = 1 + ε

2 , we get NCAi
z(Di) ≥ 1 + εi = (1 + ε/2)2i∀i by induction. The objective value

of any dual solution is at least the flow rate implying that the gap between coding and flow
rate for Ai is at least (1 + ε

2)2i .
To see how the size of Ai grows, we first calculate the required girth (2gi) at each iteration.

From the construction of Di = Dual(Ai−1, Ai−1, Di−1, Di−1) in the proof of Lemma 12 we
see that wi = w2

i−1, li ≤ l2i−1. By induction, we have that for all i, wi = w2i and li ≤ l2
i .

From Definition 9, we have that gi = l2i−1
w2
i−1
≤ (l2

i−1
)2

(w2i−1)2 = (lw)2i . Therefore, gi ≤ (lw)2i∀i ≥ 1.
Let c = l

w ≥ 1.
Now, we establish an upper bound on the size of the graph. Recall Ai is the T (A′i−1, A

′
i−1, Bi)

where Bi = Cm′
i−1ki−1gi andm′i−1 = 2mi−1. A′i−1 is the directed graph constructed according

to the optimal network coding solution of Ai−1. Let n1i = |Vi(Bi)|, n2i = |V2(Bi)|. From
Lemma 8, n1i ≤ (9mi−1ki−1)gi+3 ≤ (9mi−1ki−1)c2i+3.

Note that mi = n1i
ki−1

mA′
i−1
mA′

i−1
= n1i

ki−1
(4m2

i−1) and ki = n1iki−1. Each edge in A′i−1 is
replaced by a copy of A′i−1 and each copy is counted ki−1 times implying vi ≤ 2mi−1vi−1

n1i
ki−1

.
Moreover, mi

ki
= 4(mi−1

ki−1
)2. By induction, ki ≤ mi as ck ≤ cm. Likewise, we get that

mi
vi

= 2mi−1
vi−1

≥ 1∀i. The upper bound on mi (the number of edges in Ai) is as follows:

mi ≤ 4n1i(m2
i−1) ≤ 4m2

i−1(9mi−1ki−1)gi+3 ≤ (9m2
i−1)gi+4 = (3mi−1)2c2i+8 ≤ (3mi−1)2(c+1)2i+8 ≤

(3mi−1)4(c+1)2i∀i ≥ 1 (c ≥ 1).
Let c1 = c+ 1.

I Claim 20. mi ≤ (3cm)(4c1)2i+1

.

Proof. For i = 0, the right hand side evaluates to (3cm)(4c1)2 ≥ cm, which is equal to the
left hand side. Now we assume that the statement is true for i − 1 and prove for i where
i ≥ 1. mi ≤ (3mi−1)4c2i

1 ≤ (3(3cm)(4c1)2i)4c2i
1 = 3(4c1)2i4c2i

1 +4c2i
1 c

(4c1)2i4c2i
1

m ≤ (3cm)(4c1)2i+1

as 42i+1 + 4 ≤ 42i+1∀i ≥ 1.

We have vi ≤ mi. Thus, the size of graph Ai is at most (3cm)(4c1)2i+1

. J

ITCS 2017

18:18 Coding in Undirected Graphs Is Either Very Helpful or Not Helpful at All

J

G Proof of Theorem 15

Proof. Think of G1 and G2 as undirected G′1 and G′2; their sparsity remains the same. Let
H be the set of edges on the cut that achieves the sparsest cut on G separating n source-sink
pairs. Consider partitioning this set into sets Hi = {e1i, e2i, ..., ehii} according to which copy
of G2 (or equivalently G′2), the edge belongs to in G. Hi denotes the edges belonging to the
i-th copy of G2, |Hi| = hi. Note that |H| =

∑
i hi. Let n(2)

i be the number of source and
sink pairs that Hi separates in the i-th copy of G2. These cuts have capacity

∑
e∈Hi c2e in

G2. By construction, each of these source-sink pairs would have replaced an edge in some
copy of G1 (or equivalently undirected G′1). Assume the k-th (k ∈ [n(2)

i]) source-sink pair
replaced edge ei in the jik-th copy of G1 (All source-sink pairs replace the same edge). Mark
this edge in the jik-th copy of G1 (which has now been replaced in G). The i-th copy of G2
makes n(2)

i marks. Let Fj be the set of all such marked edges in the j-th copy of G1. Let Fj
cut n(1)

j source-sink pairs in G1. Any source-sink pair that gets cut in G by H must be cut
in G1 under Fj by construction. Therefore,

∑
j n

(1)
j ≥ n. It is not an equality because there

could be a source-sink pair that gets cut by Fj but not by H in G, due to paths that travel
from the source to other copies of G1 through connecting copies of G2 and come back at the
sink. The theorem follows from the following inequalities:

∑
e∈H

ce =
∑
i

c1ei
∑
e∈Hi

c2e =
∑
i

n
(2)
i c1ei

∑
e∈Hi c2e

n
(2)
i

≥
∑
i

n
(2)
i c1eiSparsity(G2) = Sparsity(G2)

(∑
i

n
(2)
i c1ei

)

= Sparsity(G2)

∑
j

∑
e∈Fj

c1e

 = Sparsity(G2)

∑
j

n
(1)
j

∑
e∈Fj c1e

n
(1)
j

≥ Sparsity(G2)

∑
j

n
(1)
j

 Sparsity(G1) ≥ n (Sparsity(G1) · Sparsity(G2))

(6)

The first equality follows from the definition of edge capacities in G in terms of edge
capacities in G1 and G2. Since Hi cuts n(2)

i source-sink pairs in a copy of G2, the first
inequality follows from the Sparsity(G2) being the smallest ratio for all the cuts. The first
equality on the third line follows from the fact that an edge belongs to Fj only when the
corresponding source-sink pair that replaced this edge in G1 is cut by the cut corresponding
to that copy of G2 and i-th copy of G2 result in exactly n(2)

i such edges distributed amongst

Fjs. Therefore,
∑

e∈H
ce

n ≥ Sparsity(G1) · Sparsity(G2) =⇒ Sparsity(G) ≥ Sparsity(G1) ·
Sparsity(G2). Here, we assumed that all the demands are 1 in graphs G1, G2 and G. J

	Introduction
	Preliminaries
	Network coding
	Multicommodity flow problems and sparsity cuts

	Construction
	Overview
	Graph Tensor
	Standard Forms and Graph Extensions
	Colored Bipartite Graph Construction
	Gap Amplification
	Iterative Tensoring

	Limits of the Construction
	Definition of Network Coding
	Multicommodity Flows
	Standard Form
	Colored Bipartite Graph Construction
	Gap Amplification Proofs
	Proof of Theorem 14
	Proof of Theorem 15

