
Constant-Rate Interactive Coding Is Impossible,
Even In Constant-Degree Networks
Ran Gelles∗1 and Yael T. Kalai2

1 Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
ran.gelles@biu.ac.il

2 Microsoft Research, Boston, USA
yael@microsoft.com

Abstract
Multiparty interactive coding allows a network of n parties to perform distributed computations
when the communication channels suffer from noise. Previous results (Rajagopalan and Schulman,
STOC ’94) obtained a multiparty interactive coding protocol, resilient to random noise, with a
blowup of O(log(∆ + 1)) for networks whose topology has a maximal degree ∆. Vitally, the
communication model in their work forces all the parties to send one message at every round of
the protocol, even if they have nothing to send.

We re-examine the question of multiparty interactive coding, lifting the requirement that
forces all the parties to communicate at each and every round. We use the recently developed
information-theoretic machinery of Braverman et al. (STOC ’16) to show that if the network’s
topology is a cycle, then there is a specific “cycle task” for which any coding scheme has a
communication blowup of Ω(logn). This is quite surprising since the cycle has a maximal degree
of ∆ = 2, implying a coding with a constant blowup when all parties are forced to speak at all
rounds.

We complement our lower bound with a matching coding scheme for the “cycle task” that
has a communication blowup of Θ(logn). This makes our lower bound for the cycle task tight.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity, E.4
Coding and Information Theory

Keywords and phrases Interactive Communication, Coding, Stochastic Noise, Communication
Complexity

Digital Object Identifier 10.4230/LIPIcs.ITCS.2017.21

1 Introduction

In multiparty interactive communication, n parties, connected via some arbitrary network
G = (V,E), try to compute some function f of their private inputs by communicating
messages over the network. Coding for interactive communication asks for coding schemes
that succeed to compute any such function even when the communication may be noisy.
A fundamental question in this field is finding the maximal rate such coding schemes can
achieve1, that is, what is the minimal amount of redundancy coding schemes must add in
order to successfully compute any function f despite the noise.

∗ Part of this work was done while the author was at Princeton University. Supported in part by NSF
grant CCF-1149888.

1 The rate of a coding scheme is the ratio between the communication of a protocol that performs over a
noiseless network, to the communication of the coding scheme for the same task, over the noisy network.

© Ran Gelles and Yael T. Kalai;
licensed under Creative Commons License CC-BY

8th Innovations in Theoretical Computer Science Conference (ITCS 2017).
Editor: Christos H. Papadimitrou; Article No. 21; pp. 21:1–21:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 Constant-Rate Interactive Coding Is Impossible

The work of Rajagopalan and Schulman [13] gave an initial answer to this question,
assuming stochastic noise (e.g., when each bit is being flipped independently with some fixed
probability ε < 1/2): Let ∆ be the maximal degree inG, then any (noiseless) protocol χ can be
simulated with high probability over the noisy network by a protocol χ′ with communication
complexity CC(χ′) = CC(χ) · O(log(∆ + 1)). That is, for constant-degree networks such
as the line or the cycle, the rate, CC(χ)/CC(χ′), is a constant bounded away from 0 while
for highly-connected graphs such as the star or the complete graph, the rate goes to zero
when n tends to infinity, i.e., the rate is Θ(1/ logn). The work of Alon et al. [2] shows that
coding schemes with constant (non-zero) rate also exist for the complete graph, and other
highly-connected graphs, hinting that it may be possible to achieve a constant rate coding
scheme for any network G. This hope was terminated by Braverman et al. [3], showing that
a rate of Θ(log logn/ logn) is maximal for a specific task over the star network.

All the above works assume that the communication over the network is performed
in rounds, where at every round all the parties speak, that is, 2|E| symbols are being
communicated—one symbol over each channel of the network. A natural question to ask is:
Why is such an assumption justifiable? One interpretation is that these previous works try
to optimize the round complexity, as opposed to the communication complexity, and hence
the assumption that all parties send a message to all other connected parties in each round.

In this work, our goal is to optimize the communication complexity (as opposed to round
complexity), and we ask whether similar bounds on the rate follow if we don’t force all
parties to speak at every round.

Surprisingly, we show that the rate of coding schemes when G is a cycle (assuming
channels with large alphabets) is at most O(1/ logn). This corresponds to a lower bound of
Ω(logn) on the communication blowup. Informally, our main theorem is the following:

I Theorem 1 (main, informal). Let G be the cycle graph with n parties. Then, for any
constant ε < 1/2 there exists a task whose communication complexity over the noiseless G
is d while any coding scheme over any noisy graph G′ (with noise parameter ε) that succeeds
with high probability has communication complexity Ω(d logn).

The above theorem is quite surprising in light of the result of Rajagopalan and Schul-
man [13]: the maximal degree in the cycle graph is ∆ = 2, therefore the coding scheme
of [13] (in the “everybody speaks” model) has a rate of Θ(1), regardless of the size of the
network! In hindsight, the reason for this discrepancy is simple: the fact that everybody
speaks in the model of [13] implies an inherent blowup in the communication of O(n), which
allows the parties to overcome errors. Indeed, assume that the “relevant” information for
computing the function f progresses along the cycle: first p1 sends a message to p2 (while
all the other parties have nothing to send in the meantime), only then p2 has a message to
send to p3 and so on. While the “relevant” information is limited to a single edge on the
network at any round, the fact that all the parties must speak at every round multiplies the
effective communication by n both for the noiseless and noisy protocols, hence, it cancels out
in the rate. On the other hand, this superfluous redundancy gives the parties the opportunity
to correct previous errors in rounds where they are supposed to be idling if we weren’t
to force all the parties to speak at every round, and charge the parties according to the
communication that actually happened.

For our lower bound we don’t restrict the topology G′ of the noisy graph, and allow any
party to communicate with any other party (since anyways we count the actual communication,
allowing the coding scheme to utilize any underlying graph just makes our lower bound
stronger). Our lower bound actually works when the noise erases symbols instead of corrupting
symbols (again, making the result stronger). The only “restrictive” assumption we have on
the coding scheme is a fixed speaking order, independent of the inputs and the noise; see the
“Communication Model” subsection below for a discussion regarding this assumption.

R. Gelles and Y. T. Kalai 21:3

1.1 The Cycle Task
The noiseless task we use for Theorem 1 is an analog of the “pointer jumping” task over
a cycle (see formal description in Section 2.5). Every party begins with a 2n-ary tree of
depth d, where each edge is labeled by a single bit. Each party begins at the root of its own
tree, and the goal is to travel down the tree until it reaches a leaf.

It is most convenient to describe this task via the protocol that solves it. The parties are
activated in a cyclic order (first p1, then p2, etc.). When pi is activated, it receives a message
of the form (b1, . . . , bn) from pi−1, corresponding to the labels of the edges traversed by the
parties in the previous n rounds (padding with zeros as necessary in the first n− 1 rounds).
Upon receiving this message ` = (b1, . . . , bn) from pi−1, pi moves down from its current node
to its `-th child. Denoting by b the label of the edge it just took, pi communicates to pi+1
the string (b2, . . . , bn, b). This process continues until all parties reach a leaf at depth d in
their input tree. The output is the path each party took along its tree.

In addition to the lower bound on the communication blowup, we show a coding scheme
that successfully computes the cycle task over a noisy network with rate Θ(1/ logn), matching
the rate of our lower bound for the cycle task (up to a constant).

I Theorem 2 (upper bound, informal). For any constant ε < 1/2, there exists a coding
scheme that solves the cycle task of depth d over noisy channels with large alphabet and
error parameter ε. The coding scheme obtains a rate of Θ(1/ logn) and a success probability
of 1− 2−Ω(d logn).

1.2 Communication Model
For our communication model, we assume that protocols have a fixed order of speaking. That
is, we can assume that the protocol works in rounds so that the party that speaks at round i
is determined in advance, independently of inputs and noise. This assumption is not without
loss of generality, but we claim here that lifting this assumptions trivializes the model.

A completely unrestricted model would let the parties determine, at any round, whether
they speak or not (cf. adaptive protocols for the two party case [1]; see also [8]). Such a
model trivializes coding in the multiparty scenario, as parties can “encode” information via
the path that the message is sent through: say p1 wants to send a single bit to p2. If the
bit is 0, then p1 sends the message directly. If it is 1, he can send the bit through pn (who
will relay it to p2). Now, even if noise occurs2, p2 can figure out the bit in certainty by the
identity of the sender.

Another model, which is not completely unrestricted but still trivializes coding in our
scenario, is described in [11]. There, parties are allowed to decide whether to send a message
or not (and to whom) according to the transcript so far. On its surface, this restriction
avoids the “path encoding” described above, as parties are not allowed to change the delivery
path according to their inputs. Nevertheless, such a model still enables error correction via
“path selection”, since the transcript still depends on the inputs. To give a simple example,
assume a noiseless protocol in which the parties speak in order (p1 sends a bit to p2, then p2
sends a bit to p3, and so on). Such a protocol can be easily simulated over a noisy network in
the [11] model: After pi sends a bit to pi+1 the latter sends the bit back either directly (if it
was a 0), or through pi−1 (if it was a 1); note that this decision is made as a function of the
observed (possibly noisy) transcript, and thus it is allowed in that model. Now p1 knows if its

2 As long as we do not allow a stronger type of noise, i.e., insertions and deletions, see [4].

ITCS 2017

21:4 Constant-Rate Interactive Coding Is Impossible

original bit reached pi+1 correctly or not and either retransmits the bit, or sends a message
to pi+2 (who forwards it to pi+1) to indicate that the bit was transferred correctly, and the
simulation can move on to simulating the next bit of the noiseless protocol. In other words,
this model reduces bit flips into erasures, and performing error correction from erasures with
rate 1− ε is fairly simple if the model allows changing the order of the speaking according to
the observed noise.

To conclude, we show that there is a strong relation between the order of speaking and
the obtained coding rate. On one hand, allowing the order of speaking to change adaptively,
allows trivial coding schemes. On the other hand, fixing the order of speaking allows us to
show an Ω(logn) lower bound on the blowup for the cycle task. It is however possible that
worse rates are possible for other tasks. In fact, we conjecture that the blowup can get as
high as Ω(n) in specific situations, as a function of the “mismatch” between the order of
speaking in the noiseless protocol and the coding scheme.

I Conjecture 3. There exists a topology G and a noiseless protocol χ with a fixed order of
speaking for which any coding scheme χ′ with fixed order of speaking has rate at most O(1/n).

Our findings are reminiscent of the two-party case: if the simulation has a fixed order,
the order of speaking in the original scheme determines the maximal rate of the coding;
specifically, it is conjectured that there exists a protocol whose simulation has rate bounded
away from 1. On the other hand, if the simulation is allowed to be adaptive, better rates
(that approach 1) can be achieved. See discussion in [12, 9].

1.3 On Binary vs. Large Alphabet
While our main result (Theorem 1) assumes that the parties communicate symbols from a
large alphabet, we also obtain a lower-bound for the case where the parties communicate bits,
i.e., use a binary alphabet. Typically, constructing coding schemes over the binary alphabet
is harder than constructing such schemes over a large alphabet. However, our result is a
lower-bound rather than a coding scheme, and it is not necessarily so that the binary-case is
stronger (nor is more difficult to obtain).

Nevertheless, the setting of binary channels and the setting of large-alphabet channels
seem incomparable, since the alphabet applies both to the original (noiseless) protocol and
to the coded (noisy) protocol. We elaborate on this in Section 5.

We extend our lower bound result also to the case where the noiseless protocol and the
coding scheme are binary. Specifically, we show a lower bound of Ω̃(logn) on the blowup of
the communication for binary coding scheme over the star network (where the Ω̃ notation
means neglecting log logn terms). Informally, the theorem is the following.

I Theorem 4 (binary case, informal). Let G be the star graph with n parties. Then, for any
constant ε < 1/2 there exists a task whose communication complexity over the noiseless G is d
while any coding scheme (with fixed order) over any noisy graph G′ (with noise parameter ε)
that succeeds with high probability has communication complexity Ω̃(d logn).

We stress that the above theorem is incomparable to the result of [3]: in our model parties
may speak in an arbitrary (but fixed) order and are not forced to speak at every round.
The task in consideration is the generalized jumping pointer described in [3]. The proof of
Theorem 4 follows by combining the techniques developed in this paper for the cycle task
with the techniques of [3] in quite a straightforward way, and we omit the details here.

R. Gelles and Y. T. Kalai 21:5

1.4 Overview of our Techniques
The proof of our lower bound uses techniques from [3] for bounding the progress of a
coding scheme χ′ in simulating a noiseless protocol χ. As in [3], we use the notion of cutoff
(Definition 11) that measures for any partial transcript of χ′, how many cycles of the noiseless
protocol χ are still not-simulated: when the cutoff is k, then the last d− k cycles of χ are not
simulated by the given transcript. More accurately (but still very informally) the transcript
gives very little of information about the labels {bi} of the last d− k cycles.

We show that any coding scheme that solves the cycle task with high probability must
produce transcripts whose cutoff is ≈ d, in expectation. Then, we show that for any segment
in which the coding scheme communicates O(n logn) symbols, the cutoff advances by at
most O(1) cycles in expectation. Namely, let π be some fixed previous communication
(including erasures), and let Πnew be the random variable describing the next O(n logn)
symbols communicated by the coding scheme χ′ (including erasures), then

E[cutoff(π ◦Πnew) | cutoff(π) = k] ≤ k +O(1).

In order for χ′ to achieve an expected cutoff of ≈ d, which is crucial for being correct with
high probability, the coding scheme must communicate at least Ω(dn logn) symbols, yielding
a rate of O(1/ logn).

The reason for the restricted progress in the cutoff is that many parties do not send any
useful information in the segment Πnew, and that the next “move” (in the input tree) of each
party depends on the moves of all the parties in the previous cycle. This means that most
parties are missing a lot of crucial information in order to advance more than a constant
number of levels in their input tree. Bounding the exact information sent by the parties (and
thus the expected increase in the cutoff) is performed via the machinery of [3].

Showing that many parties give no information in any segment of O(n logn) rounds in our
setting is a main technical difference from [3]. In the model of [3] all parties speak at every
round, thus when the coding scheme communicates O(n logn) symbols we know that this
communication is evenly spread—every party communicates exactly O(logn) symbols. In
our setting, it is possible that the communication is evenly spread, but it is also possible that
all O(n logn) symbols are communicated by a single party (or any other pattern in between).
In the latter case, even if the noise targets the single party that speaks, that party could still
convey O(n logn) bits of information by encoding its message via a standard error-correction
code. Nevertheless, we show that there is a large set of parties that do not communicate
any information in the new segment: either they don’t speak at all, or they speak very little
and their entire communication is completely erased by the noise. Furthermore, previous
communication of these parties contains very little information on their labels in the last
d− k cycles to begin with.

The existence of this set of “erased” parties implies that the non-erased parties in this
segment don’t know how to proceed in their input tree, and their communication in that
segment is “irrelevant” to the progress of the protocol, even if it is not erased by the noise.
Indeed, assume a party’s current node in its input tree is given, and assume that the party
doesn’t know which of its children it should go to next. The best that a party can do is to
send all the labels below its current node. However, due to the fact that each node has 2n
children, that party cannot communicate more than O(1) levels below its current node even
if it gets to speak all the O(n logn) symbols in the next segment.

Naturally, the actual proof is more complex, since the party has some prior information
about the children it should go (due to communication in previous rounds). This means that
the children are not equiprobable and the party can communicate more information about

ITCS 2017

21:6 Constant-Rate Interactive Coding Is Impossible

(the labels of) more probable children. Still, since the arity of the input tree is so large and
since the information on the next children it should take is rather little, the party will be
able to communicate information on the labels of only O(1) levels below its current node (in
expectation).

1.5 Other Related Work
The field of coding for interactive communication was initiated by Schulman [14, 15] who
formalized the question for the two-party case and developed basic techniques used for
solving this task, either when the noise is stochastic (where each bit is flipped with some
constant probability) or adversarial (where any subset of up to ε-fraction of the bits can
be flipped). Later works in the two-party setting improve on the computational efficiency,
success probability, and achievable rate of coding schemes. We refer the reader to [6] for a
survey on interactive coding.

As mentioned above, the interactive coding in the multiparty case was initiated by
Rajagopalan and Schulman [13] for the random noise case. Efficiency for this setting is
obtained by Gelles, Moitra and Sahai [7]. The works of Alon et al. [2] and of Braverman et
al. [3] identify the maximal rate obtainable over the complete graph and the star (and provide
efficient schemes that obtain such a rate). The case of adversarial noise is considered by Jain,
Kalai and Lewko [11] providing a scheme for topologies that have a star as a subgraph, that
withstands O(1/n)-fraction of adversarial noise and blows up the communication by only a
constant. The work of Hoza and Schulman [10] provides a coding scheme for any topology
G = (V,E) that withstands O(1/n)-fraction of noise and obtains a rate of Θ(n/|E| logn).

2 Preliminaries: Notations, Model, Coding Schemes

2.1 Notations and Basic Properties
For n ∈ N we denote by [n] the set {1, 2, . . . , n}. The log() function is taken to base 2.

I Definition 5. The Hamming distance ∆(σ, σ′) of two strings σ = σ1 . . . σm and σ′ =
σ′1 . . . σ

′
m of length m over an alphabet S, is the number of positions i such that σi 6= σ′i.

Given any tree T of depth N , we denote its first k levels by T ≤k and its N − k last levels
by T >k. Given a path z = (e1, e2, . . .), we denote by T [z] the subtree of T rooted at the end
of the path that begins at the root of T and follows the edge-sequence z. The above notation
composes for sets of trees, e.g., if ~T = (T1, T2, ...) is an array of trees and ~z = (z1, z2, . . .)
is an array of paths, then we let ~T ≤k denote the array (T ≤k1 , T ≤k2 , ...) and ~T [~z] the array
(T1[z1], T2[z2], ...), etc.

As a rule, we use small letters to denote specific values (e.g., the input xi given to party i),
and capital letters to denote the corresponding random variables (i.e., Xi for the random
variable describing the input of the i-th party, when the inputs are drawn from some given
distribution).

2.2 Multiparty Interactive Communication and Protocols
We assume an undirected network G = (V,E) of n = |V | parties, p1, . . . , pn, where pi is
connected to pj if and only if (i, j) ∈ E. Each party is given an input xi, and is assumed to
output fi(x1, . . . , xn) at the end of the protocol.

A protocol dictates to each party what is the next symbol to send and over which channel,
given the party’s input, the round number, and all the symbols that the party has received

R. Gelles and Y. T. Kalai 21:7

so far. After a fixed and predetermined number of rounds, the protocol terminates and each
party outputs a value as a function of its input and observed transcript. We assume that the
order of speaking is fixed and is independent of the party’s inputs and the noise. That is, it
is determined in advance which channel is utilized at each round.

2.3 Noisy and Noiseless Networks
For the noiseless network, we focus on the cycle network. In the cycle, each party pi is
connected to pi−1 and pi+1 (all indices are modulo n).

For showing lower bounds over the noisy network we allow the parties to utilize the
complete graph, avoiding any limitation on the protocol (since limiting the connectivity may
harm the rate artificially). For our upper bound (coding scheme) the underlying topology is
still the complete graph, however, the specific scheme we show does not need to communicate
over all possible links—it communicates only over the cycle subgraph.

In a noisy network, each channel is assumed to suffer from random noise. For our lower
bound we will assume each channel is a large-alphabet erasure channel ECε with erasure
probability ε.

I Definition 6. For ε ∈ [0, 1] and a finite set Σ, the erasure channel over alphabet Σ is a
random function ECε : Σ→ Σ ∪ {⊥} which turns each input symbol into an erasure mark ⊥
with probability ε, or otherwise keeps the symbol intact. When a channel is accessed multiple
times, each instance is independent.

When considering upper bounds (coding schemes), channels with random noise are too
weak (i.e., they can be reduced to erasure channels with high probability). Therefore, for
our scheme we will assume a stronger type of noise we name semi-adversarial. Here, the
transmissions that will be corrupted are determined in a random manner, however the
received symbol of a corrupted transmission is determined adversarially; see discussion in
Section 3.

I Definition 7. For ε ∈ [0, 1] and a finite set Σ, the semi-adversarial noisy channel over
alphabet Σ is a random function SACε : Σ → Σ which corrupts any input symbol with
probability ε, independently per instance. Once a symbol is corrupted, it may turn into any
symbol in Σ, determined adversarially by the channel (possibly, all the corrupted symbols
are chosen in a dependent manner).

2.4 Communication Complexity
For any protocol χ communicating symbols from an alphabet Σ, denote by |χ| the maximum
number of symbols communicated by any execution of χ. Since we assume the order of
speaking is fixed regardless of the inputs (and noise), each execution of χ has exactly
|χ| number of symbols communicated. The communication complexity of χ is given by
CC(χ) = |χ| · log |Σ|.

2.5 The Cycle Task
In this section we define the cycle task and discuss a simple protocol that solves it over the
noiseless cycle network.

Recall we have n parties {p1, . . . , pn} where each pi receives the input xi. We assume
each input xi is a labeled |Σ|-ary tree of depth d, where Σ = {0, 1}n and each edge in the
tree is labeled by a single bit.

ITCS 2017

21:8 Constant-Rate Interactive Coding Is Impossible

The output of pi is a simple root-to-leaf path (of length d) denoted by pathi, and the
complete task output is denoted by path = (path1, . . . , pathn). We define the output in an
inductive manner. For i ∈ [n] and j ∈ [d], let pathi(j) ∈ {0, 1}n denote the (index of the)
j-th edge of pathi. Moreover, let bi(j) ∈ {0, 1} denote the label of the edge that corresponds
to pathi(j). For the induction basis, assume bi(j) = 0 for all i ∈ [n] and j ≤ 0.

For j ≥ 1, and for i ∈ [n] we define pathi(j) as a function of {pathi′(j′)}(j′,i′)<(j,i), where
(x, y) < (u, v) holds if x < u or if both x = u and y < v; note that this implies a total order
on pairs (j, i). The value of pathi(j) is given by the labels bi′(j′) for the n− 1 pairs (j′, i′)
preceding (j, i) according to the total order we defined. Namely,

pathi(j) = (bi+1(j − 1), bi+2(j − 1) . . . , bn(j − 1), b1(j), . . . , bi−2(j), bi−1(j)).

Note that the cycle task can be solved by a simple protocol as described in Section 1.
The protocol works in “cycles” where each such cycle means repeating the following process
for p1, p2, . . . , pn in order. During the j-th cycle pi sends to pi+1 the value of pathi(j) along
with the label bi(j) of the edge it just took. Now pi+1 can infer the value of pathi+1(j),
and obtain the bit bi+1(j) labeling that edge in its input xi+1. It follows that after d such
“cycles” all parties reach a leaf at level d in their input, and can output pathi. Assuming the
parties communicate symbols from Σ, the protocol communicates dn symbols3 and has a
communication complexity of dn2 bits. It can be verified that the communication complexity
of solving the cycle task is Θ(dn2).

For our lower bound, we assume the inputs X = (X1, . . . , Xn) are sampled so that each
label is uniform in {0, 1}. We are looking for coding schemes that solve the above task with
high probability over the inputs X, the noise and the randomness of the coding scheme.

3 Upper Bound: A Coding Scheme For The Cycle Task With
Blowup Θ(logn)

Before showing a lower bound of Ω(logn) on the communication blowup of the cycle task over
noisy networks, let us provide a sketch for a coding scheme that achieves a communication
blowup of Θ(logn), rendering our lower bound tight for the cycle task. The key idea is
that repeating each symbol for Θ(logn) times reduces the error probability to polynomially
small in the number of parties. Then, the event of an error is so rare that standard coding
techniques (that recover from small amount of errors) succeed with overwhelming probability.

When considering random noise over large alphabet, notice that the analog of the binary-
symmetric-channel—a channel that uniformly picks the corrupted symbol—is too weak.
Indeed, the parties could use only a small fraction of the symbol space in order to “catch”
errors with high probability, thus essentially reducing the noise model into the case of erasures,
while keeping the asymptotic rate the same up to a constant (see, for instance, the blueberry
code technique in [5]).

Hence, our upper bound is defined in the somewhat stronger noise-model, which we
call semi-adversarial, formally defined in Definition 7. In this noise model, each symbol
is corrupted with probability ε, independently across different symbols. However, once a
symbol is corrupted, the output symbol of the channel is chosen adversarially, in a worst
case manner.

3 In fact, it is enough to use Σ = {0, 1}n−1. We will neglect this issue as it doesn’t change the asymptotic
behaviour of the communication complexity, nor the asymptotic rate of related coding schemes.

R. Gelles and Y. T. Kalai 21:9

3.1 Coding Scheme For The Cycle Task
The construction of our coding utilizes a primitive known as tree codes (see [15]; also see [6]).

I Definition 8. A β-ary tree code of depth γ, distance α and alphabet σ is a prefix code
TC : [β]≤γ → σ≤γ that satisfies the following. For any two strings x, y ∈ [β]` of the same
length ` ≤ γ whose first difference is at the i-th coordinate,

∆(TC(x), TC(y)) ≥ α(`− i+ 1),

where ∆(·, ·) is the Hamming distance.

Schulman [15] showed that infinite-depth tree codes exist, and described the tradeoff between
their distance and arity to their alphabet size.

I Lemma 9 ([15]). For any fixed β ∈ N and α ∈ (0, 1), there exists a finite alphabet σ of
size |σ| = βO(1/(1−α)) which suffices to construct a β-ary tree code with distance α and any
depth.

Our coding scheme, denoted by χ′, uses tools from [13], and adapts them to our
communication-model in which the parties are not forced to speak at every round. Let χ
be the noiseless protocol for the cycle task described in Section 2.5. Our coding scheme χ′
simulates χ step by step, sending each symbol that χ sends using two levels of coding (tree
code and repetition code). While the decoding cannot guarantee that a party correctly
decodes all the symbols sent to him so far, the symbols that were sent earlier in the protocol
will be decoded correctly with an increasing probability. The party can then verify that
the symbols he has already sent during previous rounds are consistent with his current
understanding of the decoded incoming transmissions. In case they are not, the party will
transmit a special B symbol whose meaning at the recipient is to “delete” the last (non-B)
symbol it has received. By sending multiple B symbols, the party can delete any incorrect
suffix of his outgoing transmissions, until they become consistent with his (current view of
his) incoming transmissions.

In the coding scheme χ′ the parties communicate over channels with alphabet of size
(|Σ|+ 1) that corresponds to all the symbols of χ and the additional “back” symbol B. We
assume a tree code with input alphabet O(Σ) (specifically, a (|Σ|+ 1)-ary tree), distance
α > ε, and output alphabet of size |Σ′| = |Σ|Oε(1). Such a tree code exists due to Lemma 9.
The coding scheme is described in Figure 1.
I Remark. In Figure 1, “sending a symbol” means sending k = Oε(logn) repetitions of the
same symbol using a repetition code with failure probability at most n−10.

I Theorem 10. For any ε < 1/2, the coding scheme χ′ has rate Θε

(
1

logn

)
and success

probability ≥ 1− 2−Ωε(d logn), assuming the communication is over a SACε network.

4 The Lower Bound

In this section we give an outline of the proof of our lower bound. The complete description
as well as detailed proofs are deferred to the full paper. Following [3], we define the notion
of cutoff which measures the progress in simulating the cycle task. We show that the cutoff
of a simulation is correlated with the length of the correct simulated output, in the sense
that if the cutoff is k, it is improbable that the simulation gives an output whose correct
prefix is of length more than k. Hence, if a simulation is correct with high probability, the
implied cutoff must be high (i.e., around d).

ITCS 2017

21:10 Constant-Rate Interactive Coding Is Impossible

The coding scheme χ′.
1. Repeat the following for d′ = 100d times.
2. For i = 1 to n, perform the following for pi:

a. Let y ∈ (Σ′)≤d′ be all the received communication from pi−1 in all the previous
rounds.
i. Decode y via the tree code to obtain x ∈ (Σ ∪ {B})≤d′ , i.e., set x = TC−1(y).
ii. Parse x to obtain x′ = Parse(x).

The function Parse(x) is defined in the following manner: Process x symbol-
by-symbol in order. When processing a symbol from Σ, copy it to the output
register. When processing a B symbol, delete the last non-deleted symbol in
the output register. For instance, the string ‘abdBcccBdBBd’ is parsed to the
string ‘abcd’.

b. Let z ∈ (Σ ∪ {B})≤d′ be all the symbols communicated by pi so far during
the protocol (before the tree-code encoding); let z′ = Parse(z). pi checks the
consistency of its parsed incoming string x′ and its parsed outgoing transmissions z′.
The consistency is checked according to what pi should have communicated over
the noiseless χ, given the communication x′.
If all its (parsed) outgoing messages z′ are consistent with the (parsed) incoming
messages, the next symbol to be sent, σ, is determined according to χ (if χ has
already terminated, set σ = 0).
If pi finds an inconsistency, the next symbol to be sent is σ = B.

c. pi encodes the next symbol using the tree code, that is, it sends to pi+1 the last
symbol of TC(z ◦ σ).

Figure 1 The coding scheme χ′ for the Cycle Task.

Recall that xi is the input of the i-th party, and Xi is the random variable describing it;
similarly, π is used to describe a specific (observed) transcript while Π is the corresponding
random variable. Also recall that the output of the i-th party is pathi describing the root-to-
leaf path that the party traversed along xi. Finally, recall that we denote by pathi(k) the
first k edges in pathi and by xi[pathi(k)] the subtree of xi rooted at the end of pathi(k).

I Definition 11 (Cutoff). For any transcript π, and any input x = (x1, . . . , xn), the cutoff
of the protocol, denoted by cutoff(π, x), is the minimal number k, such that

n∑
i=1

I(Xi[pathi(k)] | Π = π,PATH(k) = path(k)) ≤ 0.01n. (1)

We note that if cutoff(π, x) = k then for any x′ such that x′≤k = x≤k, it holds that
cutoff(π, x′) = k. Furthermore, the cutoff is only a function of the path up to level k,
that is, if cutoff(π, x) = k then for any input x′ that has the same path(k) it holds that
cutoff(π, x′) = k; This property allows us to abuse notation and write cutoff(π, path(k)) = k,
when the path is fixed but we do not care about the specific input.

The following proposition shows that in order for a protocol to output the correct value
with high probability, the cutoff (given the complete transcript) must be ≈ d. Hence,
protocols that succeed with high probability must produce transcripts whose cutoff is large
in expectation.

R. Gelles and Y. T. Kalai 21:11

I Proposition 12. Fix a protocol that solves the cycle task of depth d over a network with
n parties (with large enough n), that succeeds with probability at least 1/5 on average, i.e., a
protocol for which PrX,Π[correct output] ≥ 1/5. Then,

EX,Π[cutoff(Π, X)] ≥ d

10 .

Our main theorem shows that in order to obtain a coding with such a high cutoff (which
is required for high success probability) a communication blowup of Ω(logn) is necessary.

I Theorem 13. For any ε ∈ (0, 1) there exists a constant c = c(ε) such that for large
enough n, any protocol that solves the cycle task of depth d over a network with n parties
communicating less than cd ·n logn symbols assuming each communication channel is an ECε,
has a success probability at most 1/5.

The main idea is to show that O(n logn) symbols sent by the simulation can increase
the cutoff by at most O(1), in expectation. That is, O(logn) cycles of the simulation are
required in order to advance O(1) cycles of the original protocol, giving a rate of O(1/ logn).

Assume that given the (partial) observed transcript π and some path path(`), the cutoff
of the coding scheme is `, that is, cutoff(π, path(`)) = `. Then, assume we let the coding
scheme communicate another δ ·n logn symbols for some parameter δ = δ(ε) we set later. We
denote these new observed (potentially erased) symbols by Πnew; This is a random variable
that depends on the noise and the randomness of the protocol. The claim is that the new
cutoff (i.e., with respect to π ◦Πnew), is bounded by `+O(1) in expectation.

I Proposition 14. For any ` ≤ d, any path(`) and any transcript π,

E[cutoff(π ◦Πnew, X) | Π = π,PATH(`) = path(`), cutoff(π, path(`)) = `] ≤ `+ 500.

With the above proposition, the proof of the main theorem is immediate.

Proof of Theorem 13. Assume χ is a coding scheme that succeeds with probability at
least 1/5. Proposition 12 claims that the expected cutoff at the end of the protocol χ is at
least d/10.

On the other hand, assume toward contradiction that χ communicates less than c · d ·
n logn symbols. Split χ’s transcript into segments of δ · n logn transmissions each. Using
Proposition 14, the cutoff at the end of χ is bounded in expectation by

cd · n logn · 1
δn logn · 500 ≤ 500c

δ
d.

By choosing, say, c < δ/5000, we get that the expected cutoff at the end of χ is strictly less
than d/10, contradicting Proposition 12. J

The proof of Proposition 14 is rather involved and the details are deferred to the full
version of this work.

5 Discussion: On the Rate vs. the Channel’s Alphabet

In this section we discuss the effect of the channel’s alphabet size on the obtainable rate.
We can consider four independent settings: binary/large alphabet at the original (noiseless)
scheme vs. binary/large alphabet at the coding scheme. For any n ∈ N and for orig, code ∈
{b, l} let corig,code(n) be the infimum over all possible n-party functions f of the maximal rate

ITCS 2017

21:12 Constant-Rate Interactive Coding Is Impossible

Table 1 The relations between maximal rates of coding schemes with {binary, large}-alphabet,
given the noiseless protocol uses {binary, large}-alphabet.

Coding Scheme χ′
Noiseless Scheme χ binary alphabet large alphabet

binary alphabet cbb cbl ≥
cbb

log |Σ|

large alphabet
Ω(cll) ≤clb

cbb ≤clb

cll ≥ cbl

cll ≥
clb

log |Σ|

obtainable when the original protocol χ for f is binary (orig = b) or with a large alphabet
(orig = l) and the coding schemes χ′ for f is binary or with a large alphabet (code = b or
code = l, respectively),

corig,code(n) = inf
f

minχ CC(χ)
minχ′ CC(χ′) .

The capacity of each setting—the maximal achievable rate in each setting—is defined to be
the limit inferior of the above quantities when n tends to infinity,

corig,code = lim inf
n→∞

corig,code(n).

We now explore relations between the four capacities. See Table 1 for a summary of the
relations between the capacities of the different settings.

Any binary coding can be simulated by a large-alphabet coding by incurring a blowup of
log |Σ|, thus trivial relations are cbl ≥ cbb/ log |Σ| and cll ≥ clb/ log |Σ|.

When the original protocol uses large alphabet, a large-alphabet coding can be reduced
to a binary one by translating each symbol to a sequence of bits encoded with a standard
error-correction code (so that the probability for the entire sequence to be decoded incorrectly
is below ε; this can be done with a constant overhead). Thus Ω(cll) ≤ clb.

To see that clb ≥ cbb, note that we can convert the original large-alphabet protocol (that
determines clb) into a binary one with the same communication complexity; this converted
protocol may not be the hardest one for coding with a binary simulation, thus the rate we
can achieve when coding it may be larger than the rate for the “worst” binary protocol,
which determines cbb. A similar reasoning yields cll ≥ cbl.

The above relations still allow cbb to be either larger or smaller than cll, and their specific
relation (as well as their feasibility with respect to a given underlying topology) remains an
interesting open question.

References
1 Shweta Agrawal, Ran Gelles, and Amit Sahai. Adaptive protocols for interactive commu-

nication. In 2016 IEEE International Symposium on Information Theory (ISIT), pages
595–599, 2016. doi:10.1109/ISIT.2016.7541368.

2 Noga Alon, Mark Braverman, Klim Efremenko, Ran Gelles, and Bernhard Haeupler. Re-
liable communication over highly connected noisy networks. In Proceedings of the 2016
ACM Symposium on Principles of Distributed Computing, PODC ’16, pages 165–173, 2016.
doi:10.1145/2933057.2933085.

3 Mark Braverman, Klim Efremenko, Ran Gelles, and Bernhard Haeupler. Constant-rate
coding for multiparty interactive communication is impossible. In Proceedings of the 48th

http://dx.doi.org/10.1109/ISIT.2016.7541368
http://dx.doi.org/10.1145/2933057.2933085

R. Gelles and Y. T. Kalai 21:13

Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, pages 999–1010,
2016. doi:10.1145/2897518.2897563.

4 Mark Braverman, Ran Gelles, Jieming Mao, and Rafail Ostrovsky. Coding for interactive
communication correcting insertions and deletions. In 43rd International Colloquium on
Automata, Languages, and Programming (ICALP 2016), volume 55 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 61:1–61:14, 2016. doi:10.4230/LIPIcs.ICALP.
2016.61.

5 Matthew Franklin, Ran Gelles, Rafail Ostrovsky, and Leonard J. Schulman. Optimal coding
for streaming authentication and interactive communication. Information Theory, IEEE
Transactions on, 61(1):133–145, Jan 2015. doi:10.1109/TIT.2014.2367094.

6 Ran Gelles. Coding for interactive communication: A survey, 2015. URL: http://www.
eng.biu.ac.il/~gellesr/survey.pdf.

7 Ran Gelles, Ankur Moitra, and Amit Sahai. Efficient coding for interactive communication.
Information Theory, IEEE Transactions on, 60(3):1899–1913, March 2014. doi:10.1109/
TIT.2013.2294186.

8 Mohsen Ghaffari, Bernhard Haeupler, and Madhu Sudan. Optimal error rates for interactive
coding I: Adaptivity and other settings. In Proceedings of the 46th Annual ACM Symposium
on Theory of Computing, STOC ’14, pages 794–803, 2014. doi:10.1145/2591796.2591872.

9 Bernhard Haeupler. Interactive Channel Capacity Revisited. In Proceedings of the IEEE
Symposium on Foundations of Computer Science, FOCS ’14, pages 226–235, 2014. doi:
10.1109/FOCS.2014.32.

10 William M. Hoza and Leonard J. Schulman. The adversarial noise threshold for distributed
protocols. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 240–258, 2016. doi:10.1137/1.9781611974331.ch18.

11 Abhishek Jain, Yael Tauman Kalai, and Allison Lewko. Interactive coding for multiparty
protocols. In Proceedings of the 6th Conference on Innovations in Theoretical Computer
Science, ITCS ’15, pages 1–10, 2015. doi:10.1145/2688073.2688109.

12 Gillat Kol and Ran Raz. Interactive channel capacity. In STOC ’13: Proceedings of
the 45th annual ACM Symposium on theory of computing, pages 715–724, 2013. doi:
10.1145/2488608.2488699.

13 Sridhar Rajagopalan and Leonard Schulman. A coding theorem for distributed computa-
tion. In STOC ’94: Proceedings of the twenty-sixth annual ACM symposium on Theory of
computing, pages 790–799, 1994. doi:10.1145/195058.195462.

14 Leonard J. Schulman. Communication on noisy channels: a coding theorem for computa-
tion. Foundations of Computer Science, Annual IEEE Symposium on, pages 724–733, 1992.
doi:10.1109/SFCS.1992.267778.

15 Leonard J. Schulman. Coding for interactive communication. IEEE Transactions on In-
formation Theory, 42(6):1745–1756, 1996. doi:10.1109/18.556671.

ITCS 2017

http://dx.doi.org/10.1145/2897518.2897563
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.61
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.61
http://dx.doi.org/10.1109/TIT.2014.2367094
http://www.eng.biu.ac.il/~gellesr/survey.pdf
http://www.eng.biu.ac.il/~gellesr/survey.pdf
http://dx.doi.org/10.1109/TIT.2013.2294186
http://dx.doi.org/10.1109/TIT.2013.2294186
http://dx.doi.org/10.1145/2591796.2591872
http://dx.doi.org/10.1109/FOCS.2014.32
http://dx.doi.org/10.1109/FOCS.2014.32
http://dx.doi.org/10.1137/1.9781611974331.ch18
http://dx.doi.org/10.1145/2688073.2688109
http://dx.doi.org/10.1145/2488608.2488699
http://dx.doi.org/10.1145/2488608.2488699
http://dx.doi.org/10.1145/195058.195462
http://dx.doi.org/10.1109/SFCS.1992.267778
http://dx.doi.org/10.1109/18.556671

	Introduction
	The Cycle Task
	Communication Model
	On Binary vs. Large Alphabet
	Overview of our Techniques
	Other Related Work

	Preliminaries: Notations, Model, Coding Schemes
	Notations and Basic Properties
	Multiparty Interactive Communication and Protocols
	Noisy and Noiseless Networks
	Communication Complexity
	The Cycle Task

	Upper Bound: A Coding Scheme For The Cycle Task With Blowup Theta(log n)
	Coding Scheme For The Cycle Task

	The Lower Bound
	Discussion: On the Rate vs. the Channel's Alphabet

