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Abstract
Machine learning and statistics typically focus on building models that capture the vast majority
of the data, possibly ignoring a small subset of data as “noise” or “outliers.” By contrast, here
we consider the problem of jointly identifying a significant (but perhaps small) segment of a
population in which there is a highly sparse linear regression fit, together with the coefficients
for the linear fit. We contend that such tasks are of interest both because the models themselves
may be able to achieve better predictions in such special cases, but also because they may aid
our understanding of the data. We give algorithms for such problems under the sup norm, when
this unknown segment of the population is described by a k-DNF condition and the regression fit
is s-sparse for constant k and s. For the variants of this problem when the regression fit is not so
sparse or using expected error, we also give a preliminary algorithm and highlight the question
as a challenge for future work.
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1 Introduction

Linear regression, the fitting of linear relationships among variables in a data set, is a
standard tool in data analysis. In particular, for the sake of interpretability and utility in
further analysis, we desire to find highly sparse linear relationships, i.e., involving only a
few variables. Of course, such simple linear relationships often will not hold across an entire
population. But, more frequently there will exist conditions – perhaps a range of parameters
or a segment of a larger population – under which such sparse models fit the data quite well.
For example, Rosenfeld et al. [22] used data mining heuristics to identify small segments of a
population in which a few additional risk factors were highly predictive of certain kinds of
cancer, whereas these same risk factors were not significant in the overall population. Simple
rules for special cases may also hint at the more complex general rules. More generally,
we need to develop new techniques to reason about populations in which most members
are atypical in some way, which are colloquially (and somewhat abusively) referred to as
long-tailed distributions. We are seeking computationally efficient, principled alternatives to
ad-hoc approaches such as trying a variety of methods for clustering the data and hoping
that the identified clusters can be modeled well.
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1.1 Our results
In this work we consider the design and analysis of efficient algorithms for the joint task of
identifying significant segments of a population in which a sparse model provides a good fit.
We are able to identify such segments when they are described by a k-DNF and there is a
s-sparse regression fit for constant k and s. More specifically, we give algorithms when there
is a linear relationship with respect to which the error is bounded by ε with probability 1
(i.e., ε sup norm). In this case, we find a condition in which the error is bounded by ε for a
1− γ fraction of the population (with probability 1− δ over the sample of data).

I Theorem 1 (Conditional sparse linear regression). Suppose that D is a joint probability
distribution over ~x ∈ {0, 1}n, ~y ∈ Rd, and z ∈ R such that there is a k-DNF c for which for
some s-sparse ~a ∈ Rd

Pr
(x,y,z)∈D

[
|〈~a, ~y〉 − z| ≤ ε|c(~x) = 1

]
= 1 and Pr

(x,y,z)∈D
[c(~x) = 1] ≥ µ.

Then given ε, µ, and δ in (0, 1), γ ∈ (0, 1/2], and access to examples from D, for any
constants s and k, there is an algorithm that runs in polynomial time in n, d, 1/µ, 1/γ, and
log 1/δ, and finds an s-sparse ~a′ and k-DNF c′ such that with probability 1− δ,

Pr
(x,y,z)∈D

[
|〈~a′, ~y〉 − z| ≤ ε|c′(~x) = 1

]
≥ 1− γ and Pr

(x,y,z)∈D
[c′(~x) = 1] ≥ (1− γ)µ.

Our algorithms make crucial use of the sought solution’s sparsity. The key observation
is that since the linear rule has constant sparsity, with respect to the relevant dimensions
there are a constant number of “extremal examples” such that we can obtain low error on
the unknown event by fitting these extremal examples. We can then use the linear rule we
obtain from fitting such a set of examples to label the data according to whether or not that
point has low error under the linear rule. Finally, this enables us to find an event on which
the linear rule has low error. Thus, it suffices to simply perform a search over candidates for
the extremal examples and return one for which the corresponding event captures enough of
the data.

We also note a trivial (weak) approximation algorithm for an expected-error variant of
the problem that does not rely on sparsity: when there is a k-DNF c and a linear rule a
giving conditional expected error ε (and c is true with probability µ), we find a condition c′
and a linear rule a′ with conditional expected error O(nkε) and probability Ω(µ/nk). We
pose the design of better algorithms for the dense regression and expected-error tasks as
challenges for future work.

1.2 Related work
We are building on recent work by Juba [15] on identifying potentially rare events of interest
in a distribution, which captures a family of data mining tasks similar to, e.g., association
rule discovery [1] or “bump hunting” [10]. This work is closely related to theoretical work
on positive-reliable learning [16, 17], which is in turn very closely related to the “heuristic
learning” model introduced by Pitt and Valiant [21] and studied in depth by Bshouty and
Burroughs [5]: these are models of classification in which one type of error is minimized
subject to a hard bound on the other type of error. The key difference between heuristic
or positive-reliable learning on the one hand, and the work by Juba or the work in data
mining on the other, is that the latter works focus on bounding the error conditioned on the
identified event (i.e., the precision rather than the raw false-positive rate). In the present
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work, we develop this perspective further, and seek to perform supervised learning in such a
conditional distribution. In this context, these earlier works can be viewed as identifying a
conditional distribution in which the class consisting solely of the constant 1 function fits the
selected points with low error. We are generalizing this to the problem of fitting a (sparse)
linear rule in the identified conditional distribution.

Our work also has some relationship to the enormous body of work on robust statistics [13,
23], in which outliers are identified and ignored or otherwise mitigated. The difference in
what we consider here is two-fold. First, we are specifically interested in the case where we
may decline to fit the vast majority of the data, thus treating most of the data as “outliers”
in the model of robust statistics. Second, we are also interested in finding a (simple) rule
that identifies which subset of the data we are fitting (and which subset we are ignoring). By
contrast, in robust statistics, an arbitrary subset of the data may be considered “corrupted”
and ignored. Note that without this extra structure, Hardt and Moitra [12] found that the
problem of finding subspaces described by a single linear constraint is intractable (precisely,
SSE-hard) when the subspace does not contain nearly all (1− 1/d fraction) of the data.

Similarly, our problem differs from linear mixed models [18, 14] in that linear mixed
models seek several linear rules to try to explain (almost) all of the data. Again, in such
models, the only description of the “clusters” are the linear models themselves (so points are
taken to lie in the cluster of the linear fit with which they have the smallest residual).

Our problem is also very closely related to the problem solved by RANSAC [9] and its
variants, that use sampling to find nontrivial linear relationships in data even when these
are only of moderate density. The difference is principally that RANSAC is designed to find
linear relationships in very low dimension (e.g., in R2), and does not scale to high dimensions
since we need d points to determine a linear fit in Rd, i.e., we need to hit the subspace d times
when sampling. In the present work, by contrast, although the linear fit we are seeking is of
constant sparsity, we wish to find linear relationships in asymptotically growing dimension d.
Also, RANSAC-like algorithms, as in robust statistics (or linear mixed models), do not aim
to provide a description of the data for which they find a linear relationship.

Finally, we note that our work has a connection to the list-learning model introduced
independently (subsequent to the original posting of this work on arXiv) by Charikar et
al. [6]. The connection is more technical, and we postpone discussing it to Section 5.

2 Problem definition and background

In this work, we primarily focus on the following task:

I Definition 2 (Conditional linear regression). The conditional (realizable) linear regression
task is the following. We are given access to examples from an arbitrary distribution D over
{0, 1}n × Rd × R for which there exists a k-DNF c∗ and ~a∗ ∈ Rd such that
1. Pr(x,y,z)∈D [|〈~a∗, ~y〉 − z| ≤ ε|c∗(~x) = 1] = 1 and
2. Pr(x,y,z)∈D[c∗(~x) = 1] ≥ µ,
for some ε, µ ∈ (0, 1]. Then with probability 1− δ, given ε, µ, δ, and γ as input, we are to
find some ~a′ ∈ Rd and k-DNF c′ such that
1. Pr(x,y,z)∈D [|〈~a′, ~y〉 − z| ≤ ε|c′(~x) = 1] ≥ 1− γ and
2. Pr(x,y,z)∈D[c′(~x) = 1] ≥ Ω

((
(1− γ) µnd

)k) for some k
in time polynomial in n, d, 1/µ, 1/ε, 1/γ, and 1/δ. If ~a∗ is assumed to have at most s nonzero
entries and ~a′ is likewise required to have at most s nonzero entries, then this is the conditional
sparse linear regression task with sparsity s.

ITCS 2017
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We will also briefly consider the following variant that in some contexts may be more natural.

I Definition 3 (Conditional `2-linear regression). The conditional `2-linear regression task
is the following. We are given access to examples from an arbitrary distribution D over
{0, 1}n × {~y ∈ Rd : ‖~y‖2 ≤ B} × [−B,B] for which there exists a k-DNF c∗ and ~a∗ ∈ Rd
with ‖~a∗‖2 ≤ B such that
1. E(x,y,z)∈D

[
(〈~a∗, ~y〉 − z)2|c∗(~x) = 1

]
≤ ε and

2. Pr(x,y,z)∈D[c∗(~x) = 1] ≥ µ,
for some B ∈ R+, ε, µ ∈ (0, 1]. Then with probability 1− δ, given B, ε, µ, δ, and γ as input,
we are to find some ~a′ ∈ Rd and k-DNF c′ such that
1. E(x,y,z)∈D

[
(〈~a′, ~y〉 − z)2|c′(~x) = 1

]
≤ poly(B, d, n)ε and

2. Pr(x,y,z)∈D[c′(~x) = 1] ≥ Ω
((

(1− γ) µ
Bdn

)k) for some k
in time polynomial in n, d,B, 1/µ, 1/ε, 1/γ, and 1/δ.

One could further consider, for example, regression under the other `p norms, but we will
not pursue this here.

In both variants of the problem, we have sought to only recover a condition c′ that only
comprises a polynomial fraction of the probability of the optimal condition µ. A controllable
1 − γ factor loss is generally necessary when we are choosing among various candidate
“clusters” based on sampling. Although in the earlier work on conditional distribution
search [15] (see Definition 4, next), it was possible to find an event c′ that actually captured
the same probability mass as the target c (since there we are uniquely seeking a “cluster”
that selects positive points), even in that setting, the reductions between related models
generally incurred a controllable 1−γ loss. Nevertheless, the value of such a formal definition
is usually in enabling us to formulate negative results, and in that case we seek the most
liberal definition possible. Hence, here, we allow c′ to only contain a polynomial fraction of
µ depending on the main parameters, B, d, and n, that we might expect to encounter in an
approximation guarantee, such as the one we show for Algorithm 2.

The restriction of c to be a k-DNF is not arbitrary. Although we could consider other
classes of representations for c, it seems that essentially any of the other standard hypothesis
classes that we might naturally consider here will lead to an intractable problem, even under
the relatively liberal version of the problems defined above. This will follow since we can
reduce the simpler problem of finding such conditions to our problem:

I Definition 4 (Conditional distribution search). For a representation class C of c : {0, 1}n →
{0, 1}, the conditional distribution search problem is as follows. Given access to i.i.d. examples
(~x(1), b(1)), . . . , (~x(m), b(m)) from an arbitrary distribution D over {0, 1}n × {0, 1} for which
there exists c∗ ∈ C such that Pr(x,b)∈D[b = 1|c∗(~x) = 1] = 1 and Pr(x,b)∈D[c∗(~x) = 1] ≥ µ,
with probability 1− δ, find some circuit c′ such that
1. Pr(x,b)∈D[b = 1|c′(~x) = 1] ≥ 1− γ and
2. Pr(x,b)∈D[c′(~x) = 1] ≥ Ω(((1− γ)µ/n)k) for some k
in time polynomial in n, 1/µ, 1/γ, and 1/δ.

I Theorem 5 (Conditional distribution search reduces to conditional linear regression). Suppose
there is an algorithm that given access to examples from an arbitrary distribution D′ over
{0, 1}n × {0, 1} × {0, 1} for which there exists c∗ ∈ C and a∗ ∈ R such that

Pr
(x,y,z)∈D′

[
|a∗y − z| ≤ ε|c∗(~x) = 1

]
= 1 and Pr

(x,y,z)∈D′
[c∗(~x) = 1] ≥ µ,
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with probability 1− δ, finds some a′ ∈ R and circuit c′ such that

Pr
(x,y,z)∈D′

[
|a′y − z| ≤ ε|c′(~x) = 1

]
≥ 1− γ and

Pr
(x,y,z)∈D′

[c′(~x) = 1] ≥ Ω
((

(1− γ)µ
n

)k)
for some k

in time polynomial in n, 1/µ, 1/γ, 1/ε and 1/δ. Then there is a randomized polynomial-time
algorithm for conditional distribution search for C.

Proof. Let D be a distribution satisfying the hypotheses of the conditional distribution
search task for C, that is, for some c∗ ∈ C,
1. Pr(x,b)∈D[b = 1|c∗(~x) = 1] = 1 and
2. Pr(x,b)∈D[c∗(~x) = 1] ≥ µ.
Let D′ be the distribution over {0, 1}n × {0, 1} × {0, 1} sampled as follows: given an
example (~x, b) from D, if b = 1 we produce (~x, 1, 0) and otherwise we produce (~x, 1, b′)
for b′ uniformly distributed over {0, 1}. Notice that for c∗ and a∗ = 0, then whenever
c∗(~x) = 1, |a∗y−z| = 0 ≤ 1/3 over the entire support of the distribution; and, by assumption,
Pr(x,y,z)∈D′ [c∗(~x) = 1] = Pr(x,b)∈D[c∗(~x) = 1] ≥ µ. So, the pair a∗ = 0 and c∗ certainly
satisfy the conditions for our task for ε = 1/3. Therefore, by hypothesis, an algorithm for our
task given access to D′ with ε = 1/3 and γ′ = γ/2 must return a′ and a circuit c′ such that
1. Pr(x,y,z)∈D′ [|a′y − z| ≤ 1/3|c′(~x) = 1] ≥ 1− γ′ and
2. Pr(x,y,z)∈D′ [c′(~x) = 1] ≥ Ω(((1− γ′)µ/n)k) for some k.
But now, since the distribution we used is uniform over examples with z = 0 and z = 1
whenever b = 0 (and y ≡ 1), it must be that whatever a′ is returned, |a′ − z| > 1/3 with
probability 1/2 conditioned on b = 0 in the underlying draw from D. We must therefore
actually have that

1
2 Pr

(x,b)∈D
[b = 0|c′(~x) = 1] ≤ Pr

(x,y,z)∈D′

[
|a′y − z| > 1/3|c′(~x) = 1

]
≤ γ

2

so indeed, also Pr(x,b)∈D[b = 1|c′(~x) = 1] ≥ 1− γ. Thus c′ is as needed for a solution to the
conditional distribution search problem. Since it is trivial to implement the sampling oracle
for D′ given a sampling oracle for D, we obtain the desired algorithm. J

In turn now, algorithms for finding such conditions would yield algorithms for PAC-
learning DNF [15], which is currently suspected to be intractable (c.f. in particular work by
Daniely and Shalev-Shwartz [8] for some strong consequences of learning DNF).

I Theorem 6 (Theorem 5 of [15]). If there exists an algorithm for the conditional distribution
search problem for conjunctions, then DNF is PAC-learnable in polynomial time.

Informally, therefore, an algorithm for conditional realizable linear regression for con-
junctions, or any class that can express conjunctions (instead of k-DNF), even under the
relatively lax version of the problem formulated here, would yield a randomized polynomial
time algorithm for PAC-learning DNF. This seems to rule out, in particular, the possibility
of developing algorithms to perform regression under conditions described by halfspaces,
decision trees, and so on.

For conditional `2-linear regression, a stronger conclusion holds: such algorithms would
solve the agnostic variant of the conditional distribution search task, with a similar error
bound:

ITCS 2017
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I Theorem 7 (Agnostic condition search reduces to conditional `2-linear regression). Sup-
pose there is an algorithm that given access to examples from an arbitrary distribution
D′ over {0, 1}n × {0, 1} × {0, 1} for which there exists c∗ ∈ C and a∗ ∈ [0, 1] such that
E(x,y,z)∈D′

[
(a∗y − z)2|c∗(~x) = 1

]
≤ ε and Pr(x,y,z)∈D′ [c∗(~x) = 1] ≥ µ, with probability 1− δ,

finds some a′ and circuit c′ such that
1. E(x,y,z)∈D′

[
(a′y − z)2|c′(~x) = 1

]
≤ p(n)ε for some polynomial p and

2. Pr(x,y,z)∈D′ [c′(~x) = 1] ≥ Ω(((1− γ)µ/n)k) for some k
in time polynomial in n, 1/µ, 1/γ, 1/ε and 1/δ. Then there is a randomized polynomial-time
algorithm for agnostic conditional distribution search for C: that is, if there exists c ∈ C
achieving
1. Pr(x,b)∈D[b = 1|c(~x) = 1] ≥ 1− ε and
2. Pr(x,b)∈D[c(~x) = 1] ≥ µ
then the algorithm finds a circuit c′′ achieving
1. Pr(x,b)∈D[b = 1|c′′(~x) = 1] ≥ 1− 2p(n)ε and
2. Pr(x,b)∈D[c′′(~x) = 1] ≥ Ω(((1− γ)µ/n)k) for some k
in time polynomial in n, 1/µ, 1/γ, 1/ε and 1/δ.

Proof. For a given distributionD over (x, b) satisfying the promise for conditional distribution
search, we use the same construction of D′ and reduction as in the proof of Theorem 5. Here,
we note that for a∗ = 0, given that Pr(x,b)∈D[b = 1|c(~x) = 1] ≥ 1− ε for the c assumed to
exist for conditional distribution search

E
(x,y,z)∈D′

[
(0 · 1− z)2|c(~x) = 1

]
≤ 1

2ε.

Therefore, an algorithm for conditional `2-linear regression must find some a′ and circuit c′
such that Pr(x,y,z)∈D′ [c′(~x) = 1] ≥ Ω(((1− γ)µ/n)k) for some k and

E
(x,y,z)∈D′

[
((a′ − z)2|c′(~x) = 1

]
≤ 1

2p(n)ε.

Now, again, since D′ gives z = 0 and z = 1 equal probability whenever b = 0, we note that
for such examples the expected value of (a′ − z)2 is minimized by a′ = 1/2, where it achieves
expected value 1/4. Thus as (a′ − z)2 is surely nonnegative,

1
4 Pr

(x,b)∈D
[b = 0|c′(~x) = 1] ≤ E

(x,y,z)∈D′

[
(a′ − z)2|c′(~x) = 1

]
≤ 1

2p(n)ε

so c′ indeed also achieves Pr(x,b)∈D[b = 1|c′(~x) = 1] ≥ 1− 2p(n)ε. J

The restriction to constant sparsity is also key, as our problem contains as a special case
(when µ = 1, that is, when the trivial condition that takes the entire population can be used)
the standard sparse linear regression problem. Sparse linear regression for constant sparsity
is easy, but when the sparsity is allowed to be large, the problem quickly becomes intractable:
In general, finding sparse solutions to linear equations is known to be NP-hard [20], and
Zhang, Wainwright, and Jordan [30] extend this to bounds on the quality of sparse linear
regression that is achievable by polynomial-time algorithms, given that NP does not have
polynomial-size circuits.

3 Algorithms for conditional sparse linear regression

We now turn to stating and proving our main theorem. In what follows, we use the following
(standard) notation: Πd1,...,ds

denotes the projection (of Rd) to the s coordinates d1, d2, . . . , ds
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Algorithm 1: Find-and-eliminate.
input :Examples (~x(1), ~y(1), z(1)), . . . , (~x(m), ~y(m), z(m)), target fit ε and

fraction (1− γ/2)µ.
output :A k-DNF over x1, . . . , xn and linear predictor over y1, . . . , yd, or

INFEASIBLE if none exist.
begin

forall (d1, . . . , ds) ∈
([d]
s

)
, (σ1, . . . , σs+1) ∈ {±1}s+1 and (j1, . . . , js+1) ∈

( [m]
s+1
)

do
Initialize c to be the (trivial) k-DNF over all

(2n
k

)
terms of size k.

Let (~a, ε′) be a solution to the following linear system:

〈~a,Πd1,...,ds~y
(j`)〉 − z(j`) = σ`ε

′ for ` = 1, . . . , s+ 1

if ε′ > ε then continue to the next iteration.
for j = 1, . . . ,m do if |〈~a,Πd1,...,ds

~y(j)〉 − z(j)| > ε then
forall T ∈ c do if T (~x(j)) = 1 then Remove T from c.

end

if #{j : c(~x(j)) = 1} > (1− γ/2)µm then return ~a and c.
end
return INFEASIBLE.

end

from [d] (which denotes the integers 1, . . . d). For a set S, we let
(
S
k

)
denote the subsets of S

of size exactly k.
At a high level, the algorithm (Algorithm 1, below) generates a list of possible coefficient

vectors for the regression fit. For each such candidate, it generates labels for the points
indicating whether or not the candidate linear fit achieves small error under that fit or not.
It then solves the conditional distribution search problem given by these labels (by using
the Elimination algorithm [15]), and estimates the fraction of the data captured this way. It
returns the first linear fit that captures a sufficiently large fraction (or “INFEASIBLE” if
none do).

I Theorem 8 (Realizable sparse regression – full statement of Theorem 1). Suppose that D
is a joint probability distribution over ~x ∈ {0, 1}n, ~y ∈ Rd, and z ∈ R such that there is a
k-DNF c for which for some s-sparse ~a ∈ Rd

Pr
(x,y,z)∈D

[
|〈~a, ~y〉 − z| ≤ ε|c(~x) = 1

]
= 1 and Pr

(x,y,z)∈D
[c(~x) = 1] ≥ µ.

Then given ε, µ, and δ in (0, 1) and γ ∈ (0, 1/2] and

m = O

(
1
µγ

(
s log s+ s log d+ nk + log 1

δ

))
examples from D, for any constants s and k, Algorithm 1 runs in polynomial time in n, d,
and m (= poly(n, d, 1/µ, 1/γ, log 1/δ)) and finds an s-sparse ~a′ and k-DNF c′ such that with
probability 1− δ,

Pr
(x,y,z)∈D

[
|〈~a′, ~y〉 − z| ≤ ε|c′(~x) = 1

]
≥ 1− γ and Pr

(x,y,z)∈D
[c′(~x) = 1] ≥ (1− γ)µ.

ITCS 2017
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Proof. It is clear that the algorithm runs for O(dsms+1) iterations, where each iteration (for
constant s) runs in time polynomial in the bit length of our examples and O(mnk). Thus,
for constant s and k, the algorithm runs in polynomial time overall, and it only remains to
argue correctness.

We will first argue that the algorithm succeeds at returning some solution with probability
1− δ/3 over the examples. We will then argue that any solution returned by the algorithm
is satisfactory with probability 1− 2δ/3 over the examples, thus leading to a correct solution
with probability 1− δ overall.

Completeness part 1: Generating the linear rule

We first note that for m ≥ 6
µγ ln 3

δ examples, a Chernoff bound guarantees that with
probability 1−δ/3, there are at least (1−γ/2)µm examples satisfying the unknown condition
c in the sample. Let S be the set of examples satisfying c. Given the set of s dimensions
that are used in the sparse linear rule, we set up a linear program in s+ 1 dimensions to
minimize ε′ subject to the constraints

−ε′ ≤ 〈~a, ~y(j)〉 − z(j) ≤ ε′ for j ∈ S.

It is well known (see, for example, Schrijver [24, Chapter 8]) that the optimum value for
any feasible linear program may be obtained at a basic feasible solution, i.e., a vertex of the
polytope, given by satisfying s+ 1 of the constraints with equality. Since each constraint
corresponds to an example and sign (for the lower or upper inequality), this means that we
can obtain ~a by solving for ~a and ε′ in the following linear system

〈~a, ~y(j`)〉 − z(j`) = σ`ε
′ for ` = 1, . . . , s+ 1

for some set of s+ 1 examples, j1, . . . , js+1 and s+ 1 signs σ1, . . . , σs+1 corresponding to the
tight constraints. Thus, when the algorithm uses the appropriate set of s dimensions, the
appropriate s+ 1 examples, and the appropriate s+ 1 signs, we will recover an ~a∗ and ε∗
such that for all j ∈ S, |〈~a∗, ~y(j)〉 − z(j)| ≤ ε∗ ≤ ε.

Completeness part 2: Recovering a suitable condition given a rule

Now, given ~a∗ such that for all j ∈ S, |〈~a∗, ~y(j)〉 − z(j)| ≤ ε, we observe that the algorithm
identifies a k-DNF h∗ such that h∗(~x(j)) = 1 for all j ∈ S. Indeed, the algorithm only
eliminates a k-term T for examples j such that |〈~a∗, ~y(j)〉−z(j)| > ε. Thus, it never eliminates
any term appearing in c, and so in particular, Pr(x,y,z)∈D[h∗(~x) = 1] ≥ Pr(x,y,z)∈D[c(~x) =
1] ≥ µ. Moreover, since (as noted above, with probability 1 − δ/3) there are at least
(1− γ/2)µm examples satisfying c in the sample, there are at least (1− γ/2)µm examples
satisfying h∗. Thus, with probability 1 − δ/2, when the algorithm considers the relevant
s dimensions in the support of ~a and considers an appropriate choice of s + 1 examples
to obtain a suitable ~a∗, it will furthermore obtain an h∗ that will lead the algorithm to
terminate and return ~a∗ and h∗.

Soundness: Generalization bounds

Next, we argue that any ~a′ and h′ returned by the algorithm will suffice with probability
1− 2δ/3 over the examples.
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We will use the facts that
1. a union of k hypothesis classes of VC-dimension d has VC-dimension at most O(d log d+

log k) (for example, see [25, Exercise 6.11]),
2. linear threshold functions in Rs have VC-dimension s+ 1 (e.g., [25, Section 9.1.3]), and
3. the composition of classes of VC-dimension d1 and d2 has VC-dimension at most d1 + d2

(follows from [25, Exercise 20.4]).
We now consider the class of disjunctions of a k-CNF over {0, 1}n and (intersections of)
linear threshold functions [|〈(~a,−1), (~y, z)〉| ≤ ε] for an s-sparse ~a over Rd. By writing this
latter class as a union over the 2(n

k) k-CNFs and
(
d
s

)
coordinate subsets of size s, we find

that it has VC-dimension O(s log s+ s log(d/s) + nk) = O(log d+ nk) for constant s.1
An optimal bound for sample complexity in terms of VC-dimension was recently obtained

by Hanneke [11] (superseding the earlier bounds, e.g., by Vapnik [28] and Blumer et al. [4],
although these would suffice for us, too): in this case, given

m = O

(
1
µγ

(
s log s+ s log d+ nk + log 1

δ

))
examples, if [|〈(~a′,−1), (~y, z)〉| ≤ ε] ∨ ¬h′(~x) is consistent with all of the examples, then with
probability 1− δ/3 over the examples,

Pr
(x,y,z)∈D

[(|〈(~a′,−1), (~y, z)〉| ≤ ε) ∨ ¬h′(~x)] ≥ 1− µγ/2

or, equivalently,

Pr
(x,y,z)∈D

[(|〈(~a′,−1), (~y, z)〉| > ε) ∧ h′(~x)] ≤ µγ/2.

Now, since for m ≥ 4
µγ ln 3

δ , with probability 1− δ/3,

Pr
(x,y,z)∈D

[h′(~x)] ≥ 1− γ/2
1 + γ/2µ ≥ (1− γ)µ,

we find that for our choice of ~a′ and h′,

Pr
(x,y,z)∈D

[
|〈~a′, ~y〉 − z| > ε|h′(~x)

]
≤ γ

2
1 + γ/2
1− γ/2

and so, Pr
(x,y,z)∈D

[
|〈~a′, ~y〉 − z| ≤ ε|h′(~x)

]
≥ 1− γ since γ ≤ 1/2

as needed. J

Although it was not a focus of the analysis, we remark that the multiplicative Chernoff
bound also guarantees that if no k-DNF event of probability greater than (1 − γ)µ has a
linear rule that is γ-close to having ε sup norm, then the algorithm is guaranteed to output
INFEASIBLE with probability 1− δ: the k-DNFs of probability less than (1− γ)µ fail the
final test, and for the rest, the standard VC-dimension sample complexity analysis guarantees
that we catch a point with error greater than the sup norm bound of ε in the sample (and so
rule out the k-DNF during the Elimination algorithm). It follows that the algorithm is easily
modified to solve a few natural variants of our problem. Suppose we return the list of all

1 Exercises in Anthony and Biggs [2, Chapter 8, Exercise 6] and Mohri et al. [19, Exercise 3.15] on the
growth function for ANDs/ORs of two distinct concept classes also yield this easily.

ITCS 2017
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Algorithm 2: Dense Expected-error Regression Pigeonhole (DERP)
input :Examples (~x(1), ~y(1), z(1)), . . . , (~x(m), ~y(m), z(m)), target fit ε.
output :A k-DNF over x1, . . . , xn and linear predictor over y1, . . . , yd.
begin

Initialize c = ⊥, µ∗ = 0.
forall Terms T of size k over x1, . . . , xn do

Put S(T ) = {j : T (~x(j)) = 1}.
Let ~a minimize the squared-error on (~y(j), z(j)) over j ∈ S(T ) subject to
‖~a‖2 ≤ B.

if 1
m

∑
j∈S(T )(〈~a, ~y(j)〉 − z(j))2 ≤ 4µε and |S(T )| ≥ µ∗m then

Put c = T and µ∗ = |S(T )|/m.
end

end
return c and ~a

end

coefficient vectors and k-DNFs that would pass our termination condition. We then obtain a
list that contains all events that have probability µ (and only those that have probability at
least (1− γ)µ) for which the conditional distribution is γ-close to one where the linear rule
has ε sup norm. Or, suppose we return the pair for which the k-DNF empirically satisfies the
most examples. We then return a k-DNF that is within a 1− γ factor of having the largest
probability (provided that this is at least µ) among those with a suitable linear rule.

4 Towards conditional dense, expected-error linear regression

While sparsity is a highly desirable feature to have of a linear regression fit, it may be the
case that solutions are often not so sparse that Algorithm 1 is truly efficient. Moreover,
we may also wish for an algorithm that handles an expected error variant of the regression
task; the sup norm is particularly sensitive to noise or outliers, and thus is usually not a
particularly desirable norm to use on real data. Our technique certainly does not address
either of these concerns. The simple Algorithm 2 illustrates the best technique we currently
have for either dense regression or expected error regression.

I Theorem 9. Algorithm 2 solves the conditional `2-linear regression task: given access to
a joint distribution D over ~x ∈ {0, 1}n, ~y ∈ Rd with ‖~y‖2 ≤ B, and z ∈ [−B,B] such that
there is a k-DNF c and ~a ∈ Rd with ‖~a‖2 ≤ B such that

E
(x,y,z)∈D

[
(〈~a, ~y〉 − z)2|c(~x) = 1

]
≤ ε and 2µ ≥ Pr

(x,y,z)∈D
[c(~x) = 1] ≥ µ

and given B, k, ε, µ, and δ ∈ (0, 1), using

m = O

(
B8nk

µε

(
k logn+ log 1

δ

))
examples from D, for any constant k, Algorithm 2 runs in polynomial time and finds a ~a′
and k-DNF c′ such that with probability 1− δ,

E
(x,y,z)∈D

[
(〈~a′, ~y〉 − z)2|c′(~x) = 1

]
≤ O(nkε) and Pr

(x,y,z)∈D
[c′(~x) = 1] ≥ Ω(µ/nk).
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Note that we can find such an estimate for µ by binary search.

Proof. We first observe that in particular, since for any T the objective function∑
j∈S(T )

(〈~a, ~y(j)〉 − z(j))2

is convex, as is the set of ~a of `2-norm at most B, the main step of the algorithm is a convex
optimization problem that can be solved in polynomial time, for example by gradient descent
(see, e.g., [25, Chapter 14]). Thus, the algorithm can be implemented in polynomial time as
claimed.

We next turn to correctness. Let c∗ be the k-DNF promised by the theorem statement. By
the pigeonhole principle, there must be some term T ∗ of c∗ such that Pr[T ∗(~x) = 1] ≥ µ/

(2n
k

)
.

Observe that for the rule ~a∗ promised to exist,

E
D

[
(〈~a∗, ~y〉 − z)2|T ∗(~x) = 1

]
Pr
D

[T ∗(~x) = 1] ≤ E
D

[
(〈~a∗, ~y〉 − z)2|c∗(~x) = 1

]
Pr
D

[c∗(~x) = 1]

≤ ε · 2µ.

For a suitable choice of leading constant in the number of examples, a (multiplicative)
Chernoff bound yields that with probability 1− δ/4, at least mPr[T ∗(~x) = 1]/2 examples
satisfy T ∗ and noting that (〈~a∗, ~y〉 − z)2 ∈ [0, 2B4], with probability 1− δ/4,

1
m

m∑
j=1

(〈~a∗, ~y〉 − z)2T ∗(~x) ≤ 4µε

Thus, the ~a′ minimizing the squared error on the set of examples also achieves
1
m

∑
j:T∗(~x(j))=1

(〈~a′, ~y(j)〉 − z(j))2 ≤ 4µε

as needed, so with probability 1 − δ/2, at least T ∗ is considered for c and the algorithm
produces some c and ~a as output.

To see that any such T and ~a is satisfactory, we first note that any T we produce as
output must satisfy at least as many examples as T ∗ by construction, so T must satisfy at
least

Pr
D

[T ∗(~x) = 1]m/2 ≥ Ω
(
B8

ε

(
k logn+ log 1

δ

))
examples. In particular, this is at least µm/2

(2n
k

)
examples, and a Chernoff bound guarantees

that for suitable constants, with probability 1− δ/4
(2n
k

)
, no T with PrD[T (x) = 1] < µ/4

(2n
k

)
satisfies so many examples. Next, simply note that if for the best a for T with ‖~a‖2 ≤ B,
ED
[
(〈~a, ~y〉 − z)2|T (~x) = 1

]
Pr[T (x) = 1] > 8µε, then since ‖~y‖2 ≤ B, z2 ≤ B2, and the loss

function is B-Lipschitz on this domain, a Rademacher bound (see, for example, [25, Theorem
26.12]) guarantees that with probability 1− δ/4

(2n
k

)
, for any such ~a,

1
m

∑
j:T (~x(j))=1

(〈~a, ~y(j)〉 − z(j))2 > 4µε

and T will not be considered. A union bound over both events for all such T establishes that
any T that is returned has, with probability 1− δ/2, both

Pr
D

[T (~x) = 1] ≥ µ

4
(2n
k

) and E
D

[
(〈~a, ~y〉 − z)2|T (~x) = 1

]
Pr
D

[T (~x) = 1] ≤ 8µε

and thus is as needed. Therefore, overall, with probability 1− δ, the algorithm considers at
least T ∗ as a candidate to output, and outputs a suitable term T and vector ~a. J

ITCS 2017
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5 Discussion and future directions

The main defect of Algorithm 2 is that in general it only recovers a condition with a Ω(1/nk)-
fraction of the possible probability mass of the best k-DNF condition. This is in stark contrast
to both Algorithm 1 and all of the earlier positive results for condition identification [15],
in which we find a condition with probability at least a (1 − γ)-fraction of that of the
best condition, for any γ we choose. Indeed, we are most interested in the case where the
probability of this event is relatively small and thus a 1/nk-fraction is extremely small. The
main challenge here is to develop an algorithm for the dense and/or expected-error regression
problem that similarly identifies a condition with probability that is a (1 − γ)-fraction of
that of the best condition.

Of course, the O(nk) blow-up in the expected error is also undesirable, but as indicated by
Theorem 7, this is the same difficulty encountered in agnostic learning. Naturally, minimizing
the amount by which constraints are violated is generally a harder problem than finding a
solution to a system of constraints, and this is reflected in the quality of results that have been
obtained. The results for such agnostic condition identification of k-DNFs in the previous
work by Juba [15] suffers a similar blow-up in the error, which was recently improved to
Õ(
√
nk) by Zhang et al. [29]. The state-of-the-art algorithms for agnostic supervised learning

for disjunctive classifiers by Awasthi et al. [3] suffer a similar blow-up of a nk/3+o(1)-factor,
and yet even for the harder problem of agnostic learning of linear threshold functions, only a
sub-polynomial approximation factor is known to be necessary [7]. The question of what
approximation factor is necessary is similarly wide open for our problem. We note briefly
that a variant of Algorithm 2 in which we seek ~a satisfying |〈~a, ~y(j)〉 − z(j)| ≤ ε for all j
satisfying a candidate term T solves the sup norm variant of Definition 2 for dense regression,
and does not suffer this increase of the error. Of course, as mentioned earlier, one typically
wishes to solve `1 or `2-norm regression, as these are much better behaved.

It is also natural to ask if instead of constant sparsity (as used here), we could simply
bound the `1-norm of the coefficient vector, as in LASSO [27]. It’s well known that this
tends to produce sparse solutions (with `2-regression), without necessarily demanding an a
priori fixed constant bound on the sparsity. Again, our technique does not achieve this.

Looking towards developing a better algorithm and solving further, related tasks, we
note that a common strategy seems to be emerging. Our first algorithm, for the sup norm
(Algorithm 1) operated by first generating a list of possible coefficient vectors for the regression
fit, and then learning a condition that captures the various candidates in the list. This
strategy is similar to the list-learning model independently introduced by Charikar et al. [6]
for solving a variety of statistical problems when seeking to capture only a minority fraction
of the data. Of course, in our work we ultimately sought to find a condition to single out one
member of the list, rather than producing the entire list as output. Also, at a technical level,
while their work applies to a much, much broader variety of problems, their technique also
suffers an increase in the losses that grows with 1/√µ. (The relatively trivial Algorithm 2,
as discussed above, suffers a nk-factor increase, but has no dependence on µ, which naturally
may be more or less desirable depending on the setting.) These technical differences aside, we
believe that both of these works suggest that a relatively broad family of problems involving
statistics of minority sub-populations may be tackled by variants of the list-learning approach.
Indeed, we observe that the problem is essentially similar to that tacked by list-decoding in
coding theory (e.g., see Sudan [26] for an overview): although the amount of agreement with
the data may be too small to uniquely determine a “best” hypothesis, it may be possible to
output a small list containing all possible hypotheses. Although most of the work in coding
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theory is focused on finite characteristic (in contrast to most problems we would seek to
solve in data analysis), it may be informative.

One immediate family of questions to be addressed is, which conditional variants of the
standard supervised learning tasks can be solved efficiently? In particular, when can such
tasks solved without suffering an increase in the loss that depends polynomially on 1/µ?
For example, for which families of Boolean classification tasks do such algorithms exist? We
know that the conditions (essentially) must be described by k-DNFs, but this seems to tell
us nothing about which rules we can fit on such conditional distributions.

Acknowledgements. I thank Madhu Sudan for originally suggesting the joint problem
of learning under conditional distributions. I also thank Ben Moseley for many helpful
discussions about these problems. Finally, I thank the reviewers for their comments and
suggestions.
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