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Abstract
We consider a multi-receivers Bayesian persuasion model where an informed sender tries to per-
suade a group of receivers to take a certain action. The state of nature is known to the sender,
but it is unknown to the receivers. The sender is allowed to commit to a signaling policy where
she sends a private signal to every receiver. This work studies the computation aspects of finding
a signaling policy that maximizes the sender’s revenue.

We show that if the sender’s utility is a submodular function of the set of receivers that
take the desired action, then we can efficiently find a signaling policy whose revenue is at least
(1− 1/e) times the optimal. We also prove that approximating the sender’s optimal revenue by
a factor better than (1− 1/e) is NP-hard and, hence, the developed approximation guarantee is
essentially tight. When the sender’s utility is a function of the number of receivers that take the
desired action (i.e., the utility function is anonymous), we show that an optimal signaling policy
can be computed in polynomial time. Our results are based on an interesting connection between
the Bayesian persuasion problem and the evaluation of the concave closure of a set function.
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1 Introduction

Sender-receiver models have been extensively studied in economics to understand the role
of information in strategic settings; see, e.g., [5, 2, 12, 18]. Since these models study how
information, or lack thereof, affects strategic decisions, they have found applications in
various domains such as voting [2, 27], regulation policies [21, 28], marketing [8, 3], and
auctions [7]. In these models, there is a sender who is more informed than the receiver, and
the receiver has to take an action that affects both the sender’s and the receiver’s utility. An
important objective behind studying these models is to quantify the informational advantage
of the sender. In particular, the goal is to understand the optimal policy using which the
sender can transmit (partial) information – or, equivalently send signals – to persuade the
receiver into taking an action that is beneficial for the sender. Therefore, research work in
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this field is aimed at characterizing signaling policies that yield the sender the maximum
possible revenue.

A fundamental sender-receiver model considered in the literature is the Bayesian persua-
sion model, wherein the sender is allowed to commit to a signaling (information-revelation)
policy before she receives the information.1 In this model, the utilities of the sender and
the receiver (obtained from different sender/receiver actions) depend on the state of nature,
which is drawn from a prior distribution. This distribution is known to the receiver and the
sender. But, only the sender knows the realized state of nature (i.e., the draw) and, hence,
has an informational advantage. In this Bayesian model – building upon the classical work
by Aumann and Maschler [5] – Kamenica and Gentzkow [18] study the case in which there is
exactly one receiver and they obtain a clean characterization of the sender’s optimal signaling
policy and her optimal revenue. However, this clean characterization fails to hold when there
are multiple receivers; this is true even if the receivers have no payoff externalities.

In fact, except for a few specific instances [29, 11], little is known about optimal signaling
policies in settings wherein the sender has to transmit to multiple receivers. To address this
limitation, in a recent work Arieli and Babichenko [4] examine the following multiple-receiver
setting, which will also be the focus of the our work: there are two states of nature, a single
sender, and n receivers with binary ({0,1}) actions. Like the standard Bayesian setting, in
this model the state of nature is drawn from a prior distribution that is known to the receivers
and the sender; but, only the sender has access to the realized state. Each receiver’s utility
depends on her action and the state of nature (which she does not know). Furthermore, in
this model the sender is allowed to send private signals to the receivers, and her utility is a
monotonic set function of the profile of actions of the receivers, i.e., the sender’s utility is a
function which depends upon the set of receivers that, say, play action one.

Our goal is to examine the algorithmic aspects of this model. In particular, we focus on
the computation of an (approximately) optimal policy for the sender. When the sender’s
utility is a submodular function, we show that a signaling policy whose revenue is at least
(1− 1

e − ε) times the sender’s optimal revenue can be found in polynomial time; here ε > 0 is
an arbitrarily small constant. In addition, we establish that there does not exist a polynomial-
time algorithm which approximates the sender’s optimal revenue by a factor better than
(1− 1

e + ε), unless P = NP. Hence, the obtained approximation ratio is almost tight. For
the case in which the sender’s utility is anonymous – i.e., depends only on the number of
receivers that play action one and not on their identities – we develop a polynomial algorithm
for finding the optimal policy.

Our results are based on an interesting connection between the sender’s optimal policy
and the concave closure of a set function. We observe that computation/approximation,
of an optimal signaling policy is equivalent to computation/approximation of the concave
closure. Our signaling results follow from the following analogous results for the concave
closure: a tight (1− 1

e ) approximation bound for the concave closure of submodular functions
and a polynomial-time algorithm for the concave closure of anonymous functions. Since
concave closure is a fundamental object of study in discrete convex analysis (see, e.g., [26])
our results for the evaluation of the concave closure might be of independent interest.

Although our focus is on a basic setting (in particular, on a setting in which the receivers
have no payoff externalities,2 they have binary actions, and the state of nature is binary),
the considered model does capture several interesting – albeit stylized – scenarios.

1 The Bayesian persuasion model complements the classical cheap talk model [12] which assumes that
sender decides which signal to send after she receives the information.

2 That is, each receiver’s utility depends on her action and the state of nature, and not on the action of
other receivers.
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For example, the model can be used to represent a marketer (a sender) who is trying to
persuade consumers (the receivers) to buy a certain product. Here, it is natural to assume
that the marketer has more information about the quality of the product than the consumers.
Also, different potential consumers may have different utilities for adopting the product.
Note that each consumer has two possible (binary) actions, either to buy the product or not.
In addition, we can consider the product (state of nature) to be in one of two possible states:
the product is either high-quality or low-quality. Furthermore, the marketer’s production
cost may not be linear. Since it is reasonable to assume that the marketer’s utility depends
on the number of consumers that buy the product, this example is exactly captured by our
result on anonymous utilities. In particular, using the algorithm developed for anonymous
utilities we can efficiently compute an optimal signaling policy for the marketer.

Along these lines, the considered model also captures a viral marketing scenario where
the receivers are the “opinion leaders", say, in a social network. After persuading a subset
of “opinion leaders" to adopt a product, the information about the product will be spread
through the network according to some diffusion process. As demonstrated in the notable
work for Kempe et al. [23], many diffusion processes satisfy the submodularity property.
Hence, our result on submodular utilities can be applied in such settings.

Another example is that of a lobbyist who is trying to persuade politicians to support
a certain proposal. The proposal will pass if the number of supporters is above a specified
threshold. Under the assumption that politicians vote sincerely3 (i.e., they vote in favor of
the alternative that maximizes their utility, given the information they posses about the
proposal), this example is captured by the anonymous supermajority utility case.

Techniques. As mentioned above, our proofs are based on an interesting connection between
the Bayesian persuasion model and the concave closure of a set function [25, 13, 30]. Spe-
cifically, in Section 2 (Lemma 1) we show that computation (or approximation) of sender’s
optimal revenue with utility V : 2[n] → R+ is (computationally) equivalent to evaluation
(or approximation) of the concave closure of the function V , here [n] is the set of receivers.
Concave closure has been studied in the context of submodular maximization, see, e.g.,
[10] and [30]. In particular, prior work has shown that even though the concave closure
provides a tight relaxation for constrained maximization of submodular functions, it is
NP-hard to compute. Hence, instead of focusing on the computation of the concave closure,
approximation results for submodular maximization typically rely on finding the multilinear
relaxation. It turns out that in the context of the Bayesian persuasion problem the concave
closure is not just a technical tool, but a core object. Therefore, a key focus of the paper is
on efficiently approximating concave closures.

Specifically, we develop a (1− 1
e )-approximation algorithm for computing the concave

closure of monotone submodular functions. Our tight approximation result rests on an
approximation preserving reduction between computing the concave closure and the problem
of maximizing a monotone submodular function subject to a matroid constraint. We obtain
such a reduction by a careful rounding of the problem parameter to a discrete grid. Since
submodular maximization under matroid constraints admits a (1− 1

e ) approximation (see
[10]) the desired result follows. For the hardness result, we use tools from [24] and [17] which
were developed to establish the hardness of approximating the maximum social welfare in
combinatorial auctions.

3 Note that this simplifying assumption assumes that politicians adopt a simple behavioral rule rather
than a sophisticated equilibrium behavior. In equilibrium, each politician should condition his vote on
the event that his vote will be pivotal, which leads the politicians to a completely different behavior, see
e.g., [6].

ITCS 2017
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We establish the result for anonymous utility functions (which are not necessarily submod-
ular/concave) by developing a polynomial-time algorithm for computing the concave closure
of anonymous functions. This result builds upon a lemma from [4], which characterizes
the maximum “mass” that can be assigned to subsets of size k ≤ n under given marginal
constraints; see Lemma 3 below for details. In addition to Lemma 3, to obtain the result we
show a non-trivial property that in this case the maximal assignment is “monotonous across
all ks,” see details in Lemma 4. This additional property allows us to formulate the original
concave closure problem as an LP with a polynomial number of variables.

1.1 Additional Related Work
The current literature on Bayesian persuasion starts with the result of [18] who – building
upon the classical work by [5] – analyze the case of a single sender and a single receiver.
Several extensions of this model – including ones that consider multiple receivers – have
been studied in recent years, see, e.g., [1, 19, 20]. The setting wherein the sender is only
allowed to send a public signal to the receivers is considered in [2, 27]. Furthermore, the
complementary setting in which the sender is allowed to send private signals to the receivers
has been studied in [4, 29, 31]. Our result is most closely related to the work of [4] where
the optimal policy and the optimal revenue are characterized for supermodular utilities,
utilities that are both anonymous and submodular, and also for supermajority utilities. In
particular, we build upon the work of [4] with a computation perspective. We show that
for every anonymous utility the optimal revenue can be computed in polynomial time. This
result generalizes the claim in [4] where the same result (along with a closed-form expression
for the sender’s revenue) was established for anonymous utilities that are also submodular.
We provide a tight approximation result for submodular utilities. Our inapproximability
result for submodular functions (Theorem 9) indicates that it is unlikely that there exists a
closed-form expression for the sender’s revenue when her utility function is submodular.

A number of recent results in the computer science community have examined algorithmic
questions surrounding the above mentioned models and signaling in general [15, 14, 16, 22, 9].
In particular, an interesting paper by Dughmi and Xu [15] studies the complexity of Bayesian
persuasion in the single-receiver model of Kamenica and Gentzkow [18]. They consider the
case in which the receiver has n actions and there are exp(n) states of nature. Dughmi and
Xu [15] show that when the payoff profiles are i.i.d. distributed (for all receiver’s actions)
the problem can be solved in polynomial time. The same is not true if the payoff profiles are
independently, but not identically, distributed – in this case the problem becomes #P-hard.
Finally, they also show that the general problem (with arbitrary payoff profiles) can be
approximately solved efficiently in a query model, if we assume that the receiver follows the
recommended action by the sender in all cases where no ε-better action (according to her
belief) exists.4

2 Notations and Preliminaries

We consider a Bayesian persuasion model with a sender and n receivers, [n] = {1, 2, ..., n}.
Write Ω = {ω0, ω1} to denote the two possible states of nature. Each receiver i ∈ [n] has
two actions, {0, 1}, and a utility function, ui, that depends on the state of nature and its
own action, ui : Ω × {0, 1} → R. All receivers share a common prior distribution, where

4 This notion is called ε-incentive compatibility.
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0 < γ < 1 is the probability of state ω1, and 1− γ of state ω0. Note that even though the
receivers’ utilities are dependent on the realized state of nature they are a priori unaware of
it. Throughout, we will use ∆(A) to denote the set of probability distributions over set A.

It is shown in [4] that, without loss of generality, we can assume that ui(ω0, 0) > ui(ω0, 1)
and ui(ω1, 1) > ui(ω1, 0) for all receivers i ∈ [n]. In particular, it is shown in [4] that we can
efficiently reduce an instance with arbitrary utility functions to an instance in which the
receivers prefer to play 1 when the state of nature is ω1 and prefer to play 0 when the state
is ω0. Hence, throughout the paper we will work with this assumption on receivers’ utilities.

As mentioned earlier, the sender’s utility, V , depends on the set of receivers that play
action 1, V : {0, 1}n → R. With a slight abuse of notation, for a subset S ⊆ [n], we will use
V (S) to denote V (1S), where 1S is the characteristic vector of subset S. Throughout we will
assume that the sender’s utility monotonically increases with the set of receivers that play
action 1: V (S) ≤ V (T ) for every S ⊆ T .

Note that we have restricted our attention to the case wherein the sender’s utility does
not depend on Ω. More generally, the sender’s utility can be defined to be a function of the
state of nature as well, i.e., we can have V : Ω× {0, 1}n → R. It is shown in [4] that such a
general case can always be efficiently reduced to a setting in which V (ω0, S) = V (ω1, S) for
each S. Hence, in this paper we will focus on utility functions, V , that are state independent.

Recall that the utility function V is said to be submodular if it satisfies the decreasing
marginal property. That is, for every subset S ⊂ T ⊂ [n] and each i ∈ [n] \ T , we have
V (S ∪ {i})− V (S) ≥ V (T ∪ {i})− V (T ).

As is typical is Bayesian persuasion models, we assume that only the sender knows the
realized state. The receivers remain unaware of it. Furthermore, following the model of
Kamenica and Gentzkow [18] we allow the sender to commit in advance to an information-
revelation/signaling policy. In this work, however, we allow the sender to reveal the informa-
tion to every receiver privately. This translates to a state dependent signaling distribution.
Formally a policy of the informed sender consists of n finite sets {Θi}i=1,...,n, where Θi

is the private signal set of receiver i, and a mapping F : Ω → ∆(Θ1 × · · · × Θn). Write
Θ := Θ1 × · · · ×Θn. The sender can commit to a policy F that is known to the receivers
prior to stage in which the state ω is realized.

The sequence of the interaction between the sender and the receivers is as follows. First,
the sender commits to a signaling policy F . Then, a state ω ∈ Ω is realized in accordance
with the prior (γ, 1−γ). After that a profile of signals θ = (θ1, . . . , θn) is generated according
to the distribution F (ω). Every receiver i observes her private signal realization θi ∈ Θi and
forms a posterior PF (ω1|θi) = p(θi).

With the posterior in hand, receiver i selects an action that maximizes her expected
utility. In other worlds, receiver i plays action 1 if and only if

p(θi)ui(ω1, 1) + (1− p(θi))ui(ω0, 1) ≥ p(θi)ui(ω1, 0) + (1− p(θi))ui(ω0, 0).

We assume that in case of indifference, receivers plays action 1. Let gi(θi) ∈ {0, 1} denote
receiver i’s best-reply action when she observes the signal θi. Also, write g(θ) to be the
action profile of the receivers when the realized vector of signals is θ. We will use F1 ∈ ∆(Θ)
to denote the signal distribution conditional on state ω1 and F0 ∈ ∆(Θ) to denote the signal
distribution conditional on state ω0.

Let s(F ) be the sender’s utility from the policy (Θ, F ):

s(F ) := γEθ∼F1 [V (g(θ))] + (1− γ)Eθ∼F0 [V (g(θ))]. (1)

A signaling policy (Θ, F ) is said to be optimal if it maximizes sender’s utility among all
possible signal sets Θ and all possible signals F : Ω→ ∆(Θ).

ITCS 2017
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We begin by stating a result from [4] (see Lemma 1 in [4]) that shows the existence of an
optimal policy with the following useful properties:

For every receiver i, the private signal set Θi is equal to {0, 1} and receiver i’s best reply
gi(θi) = θi. In other words, when signal θi is recommended by the sender to receiver
i it is profitable (after receiver i performs a Bayesian update of her belief on the state
of the world) for her to follow the recommendation. In [18], such policies are called
straightforward.
In the optimal policy F1(1, 1, . . . , 1) = 1, i.e., when state ω1 is realized the sender
recommends everyone to adopt the product. Recall that F1 is a distribution over the set
Θ, which (by the previous property) is {0, 1}n for the optimal policy under consideration.
When the realized state is ω0, the sender recommends to receiver i to adopt the product
with probability of at most ai := min

{
γ

1−γ
ui(ω1,1)−ui(ω1,0)
ui(ω0,0)−ui(ω0,1) , 1

}
. Write marginal F0(θi =

1) :=
∑
θ∈{0,1}n: θi=1 F0(θ). We succinctly express this condition as F0(θi = 1) ≤ ai. The

number ai can be interpreted as the maximal probability that the sender can “lie” to the
receiver, and will be called the persuasion level of player i.

Under such an optimal policy, the sender’s utility is given by

s(F ) = γV ([n]) + (1− γ)Eθ∼F0V (θ) (2)

Overall, in light of these properties the problem of determining an optimal policy (over
general signal sets Θ and mappings F : Ω→ ∆(Θ)) reduces to the following well-structured
maximization problem:

maximize Eθ∼F0V (θ) subject to F0(θi = 1) ≤ ai ∀i ∈ [n]. (3)

Note that the prior γ and the utility V ([n]) are fixed parameters. Hence, an optimal
solution of (3) gives us an optimal solution of (2).

For each subset S ⊂ [n], with characteristic vector 1S , write µS to be the probability
that exactly the receivers is S will receive the recommendation to adopt the product, i.e.,
µS := F0(1S). For a given persuasion levels profile a := (a1, ..., an), the maximization
problem (3) can be written as

V +(a) := max
∑
S⊆[n]

µSV (S)

s.t.
∑
S⊂[n]

µS1S ≤ a

∑
S⊂[n]

µS = 1

µS ≥ 0.

(4)

This is exactly the definition of the concave closure of the set function V evaluated at a given
vector a.

Throughout, we will use V +(a) to denote the concave closure of the sender’s utility function
V at a ∈ [0, 1]n. We will refer to solving (approximating) the optimization problem (4)
as computing (approximating) the concave closure. Interestingly, the concave closure has
been studied in the optimization literature. In particular, it is considered as a technical
tool for submodular maximization; see, e.g., [10]. Note that computing the concave closure
corresponds to solving a linear programming with polynomial number of constraints, but
with an exponential number of variables (the variables are µS for every S ⊂ [n]).
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In some cases we will be interested in approximating the optimal revenue of the sender and,
hence, we introduce here the following lemma that states that computing (approximating)
the concave closure is computationally equivalent to computing (approximating) the sender’s
optimal revenue. Note that, for a given parameter α ∈ (0, 1], an α approximation of the
concave closure corresponds to a distribution {µS}S⊆[n] that satisfies the feasibility constraints
of the optimization problem (4) and obtains an objective function value,

∑
S⊆[n] µSV (S), that

is at least α times the optimal. The next lemma states that there exists an approximation-
preserving, polynomial-time reduction between computing the concave closure and finding the
optimal revenue of the sender. Specifically, the lemma establishes that computing the concave
closure of the sender’s utility function lies at the core of determining a revenue-maximizing
policy for the sender.

I Lemma 1. Given a persuasion profile a ∈ [0, 1]n and utility function V along with an α
approximation of the concave closure V +(a). We can find, in polynomial time, a policy for
the sender (with utility function V and persuasion profile a) that obtains revenue at least α
times the optimal.

Furthermore, for every ε > 0, there exists a polynomial-time reduction from the problem
of α approximating a sender’s revenue (with utility function V and persuasion profile a) to
the problem of computing an (α+ ε) approximation of the concave closure V +(a).

Proof. The forward direction is direct: by equation (2), an α approximation of
maxEθ∼F0V (θ) is also an α approximation of γV (N) + (1− γ)Eθ∼F0V (θ).

For the other direction, given function V and persuasion level profile a = (ai)i∈[n], we
can set the prior γ to be very small (e.g., γ = ε(V (N))2

1−α suffices) and we set receiver i utilities
to be

ui(ω0, 0) = 1, ui(ω0, 1) = ui(ω1, 0) = 0, ui(ω1, 1) = ai
1− γ
γ

.

Such a choice guarantees that indeed ai = min
{

γ
1−γ

ui(ω1,1)−ui(ω0,1)
ui(ω0,0)−ui(ω0,1) , 1

}
. It follows that for

such instances an α approximation of the sender’s revenue implies (α+ ε) approximation of
the concave closure of V . J

In subsequent sections we establish algorithmic and hardness results for the problem
of finding the optimal policy (and revenue) of the sender. We do so by using the above
mentioned lemma and, in particular, addressing the computation of the concave closure.

3 Anonymous Utility

This section considers the case wherein the sender’s utility function is anonymous i.e., it
satisfies V (S) = f(|S|) for some monotonically increasing function f : [n]→ R. Our main
result for anonymous utilities is as follows.

I Theorem 2. There exists a polynomial algorithm for computing the maximum revenue and
an optimal signaling policy for a sender that has a monotone, anonymous utility function.

3.1 Proof of Theorem 2
We show that the concave closure of anonymous function can be computed in polynomial
time.

ITCS 2017
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We use Sk to denote all the size-k subsets of [n], Sk := {S ⊆ [n] | |S| = k}. We denote
by marg(µ)i :=

∑
S⊂[n]:i∈S µ(S) the marginal probability of the ith coordinate to be equal 1.

Note that the constraints of the concave closure V +(a) can be written as marg(µ)i ≤ ai for
every i ∈ [n].

The following lemma from [4] characterizes the maximum probability mass that can be
assigned to subsets of size k under the constraints imposed by the profile b = (b1, ..., bn).

I Lemma 3 ([4]). Let 1 ≥ b1 ≥ b2 ≥ . . . ≥ bn ≥ 0 be a monotonic sequence. The optimal
value of the following maximization problem

max
∑
S∈Sk

ν(S)

s.t.
∑
S: i∈S

ν(S) ≤ bi ∀i ∈ [n]

νS ≥ 0

(5)

where ν is a positive measure (not necessarily a probability measure), is equal to

βk(b1, ..., bn) = min
0≤m<k

1
k −m

(bm+1 + . . .+ bn).

Moreover, a measure ν that maximizes (5) can be computed in polynomial time.

The key idea is to use this lemma to solve the LP corresponding to the concave closure –
which has exponential (in n) number of variables – by another LP that has a polynomial
number of variables. First, we assume, without loss of generality, that the point a (where
we want to evaluate the concave closure) satisfies a1 ≥ a2 ≥ ... ≥ an. We split the original
problem into n problems of finding a measure µk over Sk for every k = 1, ..., n (the final
measure is defined by µ = µ1 + ...+ µn). The new maximization problem has n2 variables
(aji )i,j∈[n], where (aj1, ..., ajn) represents the marginal constrain vector on subsets of size k. We
denote by αk the measure that is assigned to subsets of size k, then the original maximization
problem can be translated to the following

max α1f(1) + α2f(2) + ...+ αnf(n)

s.t.
∑
k∈[n]

αk = 1, 0 ≤ αk ≤ βk(ak1 , ak2 , ..., akn) for k ∈ [n], and
∑
j∈[n]

aji ≤ ai. (6)

where the first constraint corresponds to
∑
S⊂[n] µS = 1, the second follows from Lemma 3,

and the last constraint uses the fact that marginals preserve additivity, and thus correspond
to
∑
S⊂[n] µS1S ≤ a.

Note that the only nonlinear constraints in (6) are αk ≤ βk(ak1 , ak2 , ..., akn). Interesting,
these constraints are “almost linear" in the following sense: If ak1 ≥ ak2 ≥ ... ≥ akn then the
constraint αk ≤ βk(ak1 , ak2 , ..., akn) can be written as

αk ≤ 1
k (a1 + a2 + ...+ an)

αk ≤ 1
k−1 (a2 + a3...+ an)

...
αk ≤ 1

1 (ak + ak+1 + ...+ an)

So the only obstacle is that the marginal constraint vector, in principle, in not guaranteed to
satisfy the monotonicity constraint ak1 ≥ ak2 ≥ ... ≥ akn (for all k ∈ [n]). The following Lemma
4 proves that, in fact, there always exists an optimal solution that satisfies this monotonicity



Y. Babichenko and S. Barman 34:9

constraint (for all k ∈ [n]). Therefore we can impose this constraint in the optimization
problem (6), and then it becomes an LP maximization with poly(n) variables (and poly(n)
constraints).

We also note that the proof of Lemma 3 in [4] is constructive, and computationally
efficient. Thus, to compute an optimal policy (not only optimal revenue) after we have
computed the values of (aji )i,j∈[n] that maximize (6) we can use the constrictive algorithm of
the proof of Lemma 3 for all k ∈ [n]. This completes the proof of Theorem 2.

I Lemma 4. Assume that the point a satisfies a1 ≥ a2 ≥ ... ≥ an. For (µS)S⊂[n] we
denote by aki =

∑
S∈Sk: i∈S µ(S). There exists µ that maximizes (6) and satisfies in addition

ak1 ≥ ak2 ≥ ... ≥ akn for all k ∈ [n].

Proof. The proof builds upon ideas that were used in the proof of Lemma 3 in [4].
Let ν be a distribution that satisfies the constraints marg(ν)i ≤ ai, and let αk = ν(Sk)

be the weight of ν on subsets of size k. It is sufficient to construct another distribution
µ that satisfies µ(Sk) = αk (and thus µ has the same revenue as ν), and in addition
ak1 ≥ ak2 ≥ ... ≥ akn.

The construction is done in n steps, where the steps k = n, n − 1, ..., 1 are done in an
decreasing order. At step k we assign a measure of αk to subsets of size k, and we denote the
assigned measure by µk. Each step k is done in finite number of stages. Here we describe
the assignment of measure at stage k.m.

During the construction we “assign mass” and thus, we “spend marginal constraints.”
We take track of the remaining marginal constraints vector. At the beginning, we set the
constraints vector (an.01 , ..., an.0n ) = (a1, ..., an) to be the original constraints.

During the process we preserve the monotonicity of the marginal constraints vector and
therefore we can denote the marginal constraints vector at stage k.m by

(ak.m1 , ..., ak.mn ) = (b1, ..., bj , c, c, ..., c︸ ︷︷ ︸
l−j times

, bl+1, ..., bn)

where bj > c > bl+1 and j < k ≤ l. Note that if ak.jk = ak.jk+1 = ... = ak.jn then l = n and for
simplicity of notation we denote bn+1 = 0. Note that if ak.j1 = ak.j2 = ... = ak.jk then j = 0,
and for simplicity of notation we denote b0 > b1.

At stage k.m, the idea is to distribute mass equally over the subsets S of size k that
satisfy [j] ⊆ S ⊆ [l] (we have

(
l−j
k−j
)
such sets). If we do so, after we have distributed x units

of mass the remaining marginal constraints vector will be

b(x) = (b1 − x, ..., bj − x, c−
k − j
l − j

x, ..., c− k − j
l − j

x, bl+1, ..., bn) (7)

because every element i = j + 1, j + 2, ..., l appears in exactly k−j
l−j fraction of the above

subsets. Step k.m terminates at the moment when one of the following three happens:
(1) The total mass that has been assigned during step k reaches αk. In such a case we

proceed to step k − 1.
(2) The jth coordinate becomes equal to the (j+ 1)th coordinate. In such a case we proceed

to stage k.(m+ 1).
(3) The lth coordinate becomes equal to the (l+ 1)th coordinate. In such a case we proceed

to stage k.(m+ 1).

We denote by αk.m the amount of mass that has been assigned during step k.m. We
denote by b(αk.m) the marginal constraints vector after step k.m, where b(·) is defined in
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equation (7). This marginal constraints serves as the marginal constraint vector for the next
step (in case (1) happens) or the next stage (in case (2) or (3) happens).

We argue the following two statements, which will complete the proof.
1. The described process succeeds to complete all the n steps.
2. The described process at each step k assigns mass in a way that ak1 ≥ ak2 ≥ ... ≥ akn.

Statement (2) follows from the fact that at each stage k.m the marginals of the assigned
mass is of the form (x, ..., x︸ ︷︷ ︸

jm times

, cx, ..., cx︸ ︷︷ ︸
lm−jm times

, 0, ..., 0) for x = αk.m and c < 1. Moreover, during

step k the coordinate jm is monotonically decreasing, and the coordinate lm is monotonically
increasing. Therefore, the sum of those vectors, which is equal to the vector (ak1 , ak2 , ..., akn) is
monotonically increasing.

Assume by way of contradiction that statement (1) is false. The above process cannot
assign the required measure only if we are at step k and the marginal constraints vector
becomes (d1, d2, ..., dm, 0, ..., 0) for m < k. In such a case indeed the process cannot proceed,
because it will turn the m + 1 coordinate of the marginal constraint vector negative. We
denote by α′k the measure at step k that has been assigned up to the moment of termination.

We argue that this is impossible from the fact that αn, αn−1, ..., αk are feasible weights
for some distribution ν. The idea is that the described above process has minimal marginals
on the elements m+ 1, ..., n, thus if this process cannot proceed neither could some other
distribution ν. Formally, we denote ν = ν1 + ...+νn, where νj is a measure over Sj . Note that
|νj | = αj . We denote (dji )i∈[n] the marginals of νj . We argue that

∑n
i=m+1 d

j
i ≥ (j −m)αj ,

because every subset of size j contains at least j −m elements from the set {m+ 1, ..., n}.
Therefore we have

am+1 + ...+ an ≥
n∑
j=k

n∑
i=m+1

dji ≥
n∑
j=k

(j −m)αj (8)

On the other hand, the constructed measure µn with marginals (aji )i∈[n] satisfies∑n
i=m+1 a

j
i = (j − m)αj , because this process assigns positive probability only to sub-

sets that contain {1, ...,m} (because m < k ≤ j and ajm > ajm+1). Since the process spent
all the marginal constraints am+1, ..., an we have

am+1 + ...+ an =
n∑
j=k

n∑
i=m+1

aji = (k −m)α′k +
n∑

j=k+1
(j −m)αj <

n∑
j=k

(j −m)αj (9)

Inequalities (8) and (9) yield a contradiction. J

4 Submodular Utilities

This section considers private Bayesian persuasion settings in which the sender’s utility
function is submodular. In particular, we develop a tight (1 − 1/e) approximation of the
optimal signaling policy when the sender’s utility is a monotone submodular function.

It is relevant to note that our algorithmic results require only query access to the
submodular function, i.e., our results hold as long as we can access to V (S), for any subset
S ⊆ [n]. This, in particular, implies that we can address submodular functions that admit a
succinct representation.

We begin by noting that finding the concave closure of a submodular function is NP-hard:
Given a succinct, monotone, submodular function f : 2[n] → R and a vector a ∈ [0, 1]n, it is
NP-hard to compute the concave closure f+(a); see, e.g. [30] and [13].
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It is relevant to note that while the concave closure of submodular functions are known to
be computationally hard, approximation algorithms and inapproximability results for them
have not been directly addressed in prior work.

4.1 Approximation Algorithm for Submodular Utilities
This section provides a (1− 1/e)-approximation algorithm for computing the concave closure
of a monotone, submodular function V . We obtain the

(
1− 1

e

)
approximation by reducing

the computation of the concave closure to the problem of maximizing a submodular function
subject to a matroid constraint. The key implication of this approximation result is the
following theorem.

I Theorem 5. If in a private Bayesian persuasion problem the utility of the sender, V , is a
monotone, submodular function. Then, in polynomial time, we can compute a signaling policy
that achieves a revenue of at least (1− 1/e− ε) times the optimal; here, ε is an arbitrarily
small constant.

4.1.1 Proof of Theorem 5
We show that the concave closure of submodular function V at any given vector a =
(a1, a2, . . . , an) ∈ [0, 1]n can be approximated to within a factor of

(
1− 1

e − ε
)
, for an

arbitrarily small ε > 0, then Theorem 5 follows from Lemma 1.
We split the marginal values ai into two sets: {ai : ai ≥ 1

n2 } are the high values and
{ai : ai < 1

n2 } are the low values. Without loss of generality we assume that a1, ..., am are
the high values and am+1, ..., an are the low values, for m ≤ n.

Every distribution µ over subsets of [n] induces a distribution ν = ν(µ) over subsets of
[m] in the following natural way: the probability mass µS on S ⊂ [n] is moved to the set
S ∩ [m], formally for each subset T ⊆ [m] define νT :=

∑
S⊂[n]:S∩[m]=T µS . The following

lemma holds for distribution ν.

I Lemma 6. For every distribution µ that satisfies the marginal constraints (i.e.,∑
S⊆[n]:S3i µS ≤ ai) we have

∑
S⊂[n]

µSV (S) ≤
∑
T⊂[m]

νTV (T ) +
n∑

i=m+1
aiV ({i}).

Here a1, . . . , am ≥ 1
n2 and am, am+1, . . . , an ≤ 1

n2 .

Proof.

∑
S⊂[n]

µSV (S) ≤
∑
S⊂[n]

µS

V (S ∩ [m]) +
∑

i∈S,i>m
V ({i})


=
∑
T⊂[m]

νTV (T ) +
∑
S

∑
i∈S,i>m

µSV ({i})

=
∑
T⊂[m]

νTV (T ) +
∑
i>m

∑
S:i∈S

µSV ({i})

≤
∑
T⊂[m]

νTV (T ) +
∑
i>m

aiV ({i}).
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Here, the first inequality follows from subadditivity of V . The second equation follows from
the definition of ν = ν(µ). The third equation is obtained by changing the order of summation
and the last inequality follows from the fact that µ satisfies the marginal constraints. J

We can consider the optimization problem corresponding to the concave closure restricted
to the set [m]:

V +
m (a) := max

∑
T⊂[m]

νTV (T )

s.t.
∑

T⊆[m]:T3i

νT ≤ ai ∀i ∈ [m]

ν is a probability measure.

(10)

Given a distribution ν that α-approximates problem (10), we define distribution µ over
[n] as follows: For each subset T ⊆ [m], set µT := (1− 1

n )ν. In addition, for every i > m set
µ{i} := ai. Finally, to ensure that µ is a probability measure we assign a probability mass of
c = 1

n − am+1 − ...− an > 0 to the empty set, i.e., µφ := c.

I Lemma 7. If distribution ν α-approximates problem (10), then µ provides a (1 − 1
n )α-

approximation of the original concave closure problem (4).

Proof. Recall that V +(a) denotes the concave closure of function V evaluated at a and,
similarly, V +

m (a) is optimal value of (10).∑
S⊂[n]

µSV (S) = (1− 1
n

)
∑
T⊂[m]

νTV (T ) +
∑
i>m

aiV ({i})

≥ (1− 1
n

)αV +
m (a) +

∑
i>m

aiV ({i})

≥ (1− 1
n

)α[V +
m (a) +

∑
i>m

aiV ({i})]

≥ (1− 1
n

)αV +(a).

Here the first equation is implied by the definition of µ. The second inequality follows from
the fact that ν α-approximates the concave closure (on the set [m]). The third inequality is
trivial and the last one follows from Lemma 6. J

Lemma 7 reduces the original concave closure problem to the problem of computing the
concave closure over [m] where (unlike the original problem) we know that ai ≥ 1

n2 for each
i ∈ [m]. In the remainder of the proof, we consider the later problem. The idea is to translate
this problem into a discrete one. A natural way do to so is by rounding the underlying terms
to integer multiples of a parameter δ := 1

n4(n+1) and then working with the multiples, instead
of the fractional terms.

Since (10) is a linear program (over variables {νT }T⊆[m]) with at most n+ 1 non-trivial
constraints, without loss of generality we can restrict attention to solutions that have support
size of at most n+ 1.

As mentioned previously, we set a grid of size δ := 1
n4(n+1) , and we consider the max-

imization problem of V +
m where we restrict the probabilities {νS} to be integer multiples

of δ.



Y. Babichenko and S. Barman 34:13

max
∑
T⊂[m]

νTV (T )

s.t.
∑

T⊆[m]:T3i

νT ≤ ai ∀i ∈ [m]

ν is a probability measure.
νT ∈ {0, δ, 2δ, . . . , 1}.

(11)

I Lemma 8. If distribution ν̂ be an α-approximate solution of optimization problem (11)
with support size at most n+ 1. Then, ν̂ is a (1− 1

nα )α-approximate solution of the concave
closure V +

m (a) as well.
Proof. We prove that if we restrict our attention to probabilities in the set {0, δ, 2δ, . . . , 1},
then we incur at most a multiplicative loss of (1− 1

nα ). Given a distribution ν with support
size at most n+ 1 we round down the probabilities to integer multiples of δ (and put all the
remaining probability mass on the empty set), we denote the resulting distribution by ν′.
Formally ν′T = `δ where k = max{j ∈ Z : jδ ≤ νT }. Note that∑

T

νTV (T )−
∑
T

ν′TV (T ) =
∑
T

(νT − ν′T )V (T ) ≤
∑
T

δV (T )

≤
∑

T∈supp(ν)

1
n4(n+ 1)V ([m]) ≤ 1

n4V ([m])

≤ 1
n4

∑
i∈[m]

V ({i}) ≤ 1
n2

∑
i∈[m]

aiV ({i}),

(12)

where the first equality is trivial. The first and the second inequality is a consequence of the
rounding and the value of δ. The third inequality follows from the fact that the support size
is at most n+ 1. The subadditivity of V gives us the fourth inequality and the last inequality
follows from the fact that ai ≥ 1

n2 .
Note also that V +

m (a) ≥ 1
n

∑
i∈[m] aiV ({i}) because one feasible option is to put a mass

of ai

n on the singleton {i}, and the remaining probability mass to put on the empty set. This
is indeed feasible because

∑
i
ai

n ≤
∑
i

1
n ≤ 1.

Finally let ν be an α approximation for V +
m (a), and let ν′ be the corresponding rounding.

Then∑
T ν
′
TV (T )∑

T νTV (T ) = 1−
∑
T νTV (T )−

∑
T ν
′
TV (T )∑

T νTV (T )

≥ 1−
1
n2

∑
i∈[m] aiV ({i})∑
T νTV (T )

≥ 1−
1
n2

∑
i∈[m] aiV ({i})

α 1
n

∑
i∈[m] aiV ({i})

= 1− 1
nα

where the first inequality follows from (12), and the second one from the fact that V +
m (a) ≥

1
n

∑
i∈[m] aiV ({i}). J

By Lemma 8 we can restrict attention to the discrete problem (11). Note that the the
discrete problem (11) is equivalent to

max
S1,...,Sk⊆[m]

1
k

k∑
j=1

V (Sj)

subject to |{j ∈ [k] | i ∈ Sj}| ≤ ki ∀i ∈ [n]

(13)
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where k = n4(n+ 1) and ki = ain
4(n+ 1) for all i ∈ [n].

We complete the proof of the theorem by showing that (13) admits a (1− 1/e) approxim-
ation. We do so by showing that (13) corresponds to the problem of maximizing a monotone
submodular function subject to a matroid constraint.

Consider base set U = [m]× [k]. We get that the size of U is polynomially bounded. For
a subset R = {(i1, j1), (i2, j2), . . . , (il, jl)} of U and j ∈ [k], write Rj to denote the projected
subset {i′ ∈ [m] | (i′, j) ∈ R}.

With this notation in hand, define function F for each subset
R = {(i1, j1), (i2, j2), . . . , (il, jl)} ⊂ U as follows

F (R) := 1
k

k∑
j=1

V (Rj). (14)

We claim that F is submodular: consider subsets X ⊂ Y ⊂ U and element (i, j) ∈ U .
Note that F (X + (i, j)) − F (X) = 1

kV (Xj + i) − 1
kV (Xj) and F (Y + (i, j)) − F (Y ) =

1
kV (Y j + i)− 1

kV (Y j). Since Xj ⊂ Y j , the submodulartiy (monotonicity) of V implies the
submodularity (monotonicity) of F .

Next we consider a partition matroid M over U . Specifically, we say that a subset
R ⊂ U is independent (with respect to the matroid M) iff |{(i′, j′) ∈ R | i′ = i}| ≤ ki
for all i ∈ [n]. Note that this is a partition matroid where the disjoint partitions are
Bi := {(i, 1), (i, 2), . . . , (i, k)} and the cardinality bounds are kis. In other words, we obtain
M by defining R to be an independent subset iff |R ∩Bi| ≤ ki for all i.

Note that if a subset R ⊂ U is independent then R1, R2, . . . Rk satisfy the constraints of
the optimization problem (13), i.e., for an independent R we have |{j ∈ [k] | i ∈ Sj}| ≤ ki
for all i.

Overall, we get that optimization problem (13) is equivalent to the following problem:

max
R⊂U

F (R)

subject to R ∈M

Since this is a submodular maximization problem subject to a matroid constraint, it
admits a (1 − 1

e ) approximation; see [10]. This in turn implies that the original problem
admits a (1− 1

n )(1− 1
0.62n )(1− 1

e ) = (1− 1
e −O( 1

n )) approximation. We can set parameters
such that instead of a multiplicative factor of (1− 1

n )(1− 1
0.62n ) in the approximation we get

a term that is arbitrarily close one. Hence, we get the desired result.

4.2 Hardness of Approximating the Concave Closure
This section shows that the

(
1− 1

e

)
approximation guarantee obtained in Section 4.1.1 is

tight. In particular, applying the machinery developed by [24] leads us to the following
theorem. We note that [24] establish the hardness of approximating maximum social
welfare in combinatorial auctions and similar tools were developed in [17] for studying the
inapproximability of the domatic number.

I Theorem 9. Given a monotone, submodular fucntion V : 2[n] → R+ and vector a ∈ [0, 1]n,
for any ε > 0, it is NP-hard to approximate the concave closure, V +(a), by a factor better
than

(
1− 1

e − ε
)
.

Proof Sketch. [24] study the combinatorial auction problem where n goods have to be
partitioned among m agents whose utilities are submodular functions of the goods assigned
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to them. In this problem, the objective is to maximize social welfare, i.e., the sum of the
utilities of the receivers. It is shown in [24] that for this problem and any ε > 0 there
does not exist a polynomial time algorithm that obtains an approximation ratio better than(
1− 1

e − ε
)
, unless P = NP.

Specifically, [24] start with a label-cover problem where it is NP-hard to distinguish
whether the optimal value, OPT (L), is one or less than a particular constant, c < 1. From
the given label cover problem they construct a combinatorial auction instance, I, wherein the
maximum social welfare, OPT (I) is greater than a threshold, τ if the label cover problem
admits a solution of value one. Furthermore, if the optimal value of the label cover problem is
less than c – i.e., OPT (L) ≤ c – then it must be the case that OPT (I) ≤

(
1− 1

e − ε
)
τ . This,

overall, establishes a
(
1− 1

e − ε
)
hardness-of-approximation bound for the combinatorial

auction problem.
Interestingly, in the constructed instance I all of the m receivers have the same monotone,

submodular utility function, say, f : 2[n] → R+. We claim that approximating the concave
closure of constructed function f at marginal vector a := ( 1

m ,
1
m , . . . ,

1
m ) by a factor better

than
(
1− 1

e − ε
)
is NP-hard. In particular, if OPT (L) = 1 then f+(a) ≥ τ ′ and, moreover,

if OPT (L) ≤ c then f+(a) ≤
(
1− 1

e − ε
)
τ ′; here τ ′ is a fixed parameter.

The proof of this claim can be obtained by considering the subsets in the support of an
optimal solution, µ∗, of problem (4) defined for function f . Note that the proof given in [24]
proceeds by considering the subsets that constitute the partition of goods among receivers in
I, instead we can focus on subsets in the support of µ∗ to obtain the result for the concave
closure. In particular, the arguments presented in [24] go through if, instead of cardinalities,
we consider measure of sets and expected values of quantities with respected to µ∗.5 This,
overall, establishes the desired inapproximability result for the concave closure. J
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