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Abstract
We consider the algorithmic problem of community detection in networks. Given an undirected
friendship graph G = (V,E), a subset S ⊆ V is an (α, β)-community if:

Every member of the community is friends with an α-fraction of the community;
Every non-member is friends with at most a β-fraction of the community.

Arora et al [3] gave a quasi-polynomial time algorithm for enumerating all the (α, β)-communities
for any constants α > β.

Here, we prove that, assuming the Exponential Time Hypothesis (ETH), quasi-polynomial
time is in fact necessary - and even for a much weaker approximation desideratum. Namely,
distinguishing between:

G contains an (1, o (1))-community; and
G does not contain a (β + o (1) , β)-community for any β ∈ [0, 1].

We also prove that counting the number of (1, o (1))-communities requires quasi-polynomial time
assuming the weaker #ETH.
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1 Introduction

Identifying communities is a central graph-theoretic problem with important applications to
sociology and marketing (when applied to social networks), biology and bioinformatics (when
applied to protein interaction networks), and more (see e.g. Fortunato’s classic survey [21]).
Defining what exactly is a community remains an interesting problem on its own (see Arora et
al [3] and Borgs et al [11] for excellent treatment from a theoretical perspective). Ultimately,
there is no single “right” definition, and the precise meaning of community should be different
for social networks and protein interaction networks.

In this paper we focus on the algorithmic questions arising from one of the simplest
and most canonical definitions, which has been considered by several theoretical computer
scientists [30, 3, 5, 12] (see Subsection 1.1 for further discussion):

I Definition 1 ((α, β)-Community). Given an undirected graph G = (V,E) an (α, β)-
community is a subset S ⊆ V that satisfies:
Strong ties inside the community For every v ∈ S, |{v} × S| ∩ E ≥ α · |S|; and
Weak ties to nodes outside the community For every u /∈ S, |{u} × S| ∩ E ≤ β · |S|.
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42:2 Detecting Communities Is Hard (And Counting Them Is Even Harder)

Arora et al [3, Theorem 3.1] gave a simple quasi-polynomial (nO(logn)) time for detecting
(α, β)-communities whenever α − β is at least some positive constant. The algorithm
enumerates over O (logn)-tuples of vertices. For each tuple, consider the set of vertices that
are neighbors of an (α+ β) /2-fraction of the tuple; test whether this candidate set is indeed
a community.

Arora et al’s algorithm and analysis are very similar to related algorithms for approximate
Nash equilibrium [27], Densest k-Subgraph [8] and Dughmi’s Zero-Sum Signaling problem
[17]. Recently, matching quasi-polynomial hardness results have been proved for approximate
Nash equilibrium [13, 4, 35, 18], Densest k-Subgraph [12, 29], and Zero-Sum Signaling
[34, 10] using or inspired by the technique of “birthday repetition” [1]. A natural question,
made explicit in [12], is whether similar techniques can be shown to prove quasi-polynomial
time hardness, assuming the Exponential Time Hypothesis (ETH)1, for (α, β)-community
detection, for any constants α > β ∈ [0, 1].

Here we show that, for every constants α > β ∈ (0, 1], community detection requires
quasi-polynomial time (assuming ETH). For example, when α = 1 and β = 0.01, this means
that we can hide a clique C, such that every single vertex not in C is connected to at most
1% of C. Our main result is actually a much stronger inapproximability: even in the presence
of a (1, o (1))-community, finding any (β + o (1) , β)-community is hard.

I Theorem 2. For every n there exists an ε = ε (n) = o (1) such that, assuming ETH,
distinguishing between the following requires time nΩ̃(logn):
Completeness G contains an (1, ε)-community; and
Soundness G does not contain an (β + ε, β)-community for any β ∈ [0, 1].
Unlike all quasi-polynomial approximation schemes mentioned above, Arora et al’s algorithm
has the unique property that it can also exactly count all the (α, β)-communities. Our second
result is that counting even the number of (1, o (1))-communities requires quasi-polynomial
time. A nice feature of this result is that we can base it on the much weaker #ETH
assumption, which asserts that counting the satisfying assignment for a 3SAT instance
requires time 2Ω(n). (Note, for example, that #ETH is likely to be true even if P = NP.)

I Theorem 3. For every n there exists an ε = ε (n) = o (1) such that, assuming #ETH,
counting (1, ε)-communities requires time nlog1−o(1) n.

1.1 Related works
The most closely related work is a reduction by Balcan, Borgs, Braverman, Chayes, and
Teng [5, Theorem 5.3] from Planted Clique to finding (1, 1− γ)-communities, for some small
(unspecified) constant γ > 0. Note that our inapproximability in Theorem 2 is much stronger
in all parameters; furthermore, although formally incomparable, our ETH assumption is
preferable over the average-case hardness assumption of Planted Clique.

Algorithms for special cases

Mishra, Schreiber, Stanton, and Tarjan [30] gave a polynomial-time algorithm for finding
(α, β)-communities that contain a vertex with very few neighbors outside the community.

1 The Exponential Time Hypothesis (ETH) [25] asserts that solving 3SAT requires time 2Ω(n). Note
that (given our current understanding of complexity) this assumption is essentially necessary - an
NP-hardness result is very unlikely given [3]’s quasi-polynomial algorithm. Recall also that ETH is a
significantly weaker assumption than the related SETH [24, 14] and NSETH [15],
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Balcan et al [5] give a polynomial-time algorithm for enumerating (α, β)-communities in the
special case where the degree of every node is Ω (n).

Arora, Ge, Sachdeva, and Schoenebeck [3] consider several semi-random models where
the edges inside the community are generated at random, according to the expected degree
model. (In fact, their quasi-polynomial time algorithm is also stated in this setting, but only
their “Gap Assumption”, which is equivalent to α− β = Ω (1), is used in the analysis.)

Stochastic Block Model

Variants of the community detection problem on graphs generated by different stochastic
models are extremely popular (see e.g. [6, 7, 16, 20, 22, 28, 31, 33, 37] for papers in conference
proceedings from June 2016). Perhaps the most influential is the Stochastic Block Model [23]:
The graph is partitioned into two disjoint communities; the edges within each community
are present with probability α, independently, whereas edges between communities are
present with probability β. Hence this model can also be seen as a special case of the
(α, β)-Community Detection problem.

Stochastic models are extremely helpful in physics, for example, because atoms’ interac-
tions obey simple mathematical formulas with high precision. Unfortunately, for applications
such as social networks, existing models do not describe human behavior with atomic preci-
sion, hence casting a shadow over the applicability of algorithms that work on ideal stochastic
models. Recent works [31, 28] attempted to bridge the gap from ideal model to practice by
showing that certain SDP-based algorithms continue to work in a particular semi-random
model where a restricted adversary is allowed to modify the random input graph. These
success stories beg the question of how strong can one make the adversary? The current
paper illuminates some of the computational barriers.

Alternative approaches to modeling communities

As we mentioned above, there are many different definitions of “communities” in networks.
For in-depth discussion of different definitions see Arora et al [3] or Borgs et al [11]. As
pointed out by the latter, for some definitions even verifying that a candidate subset is a
community is intractable.

There is also an important literature on axiomatic approaches to the related problem
of clustering (e.g. [26, 9, 38]); note that while clustering typically aims to partition a set
of nodes, our main focus is on detecting just a single community; in particular, different
communities may intersect.

1.2 Overview of proofs
A good starting point for the technical discussion is a recent subexponential reduction from
3SAT to the related problem of Densest-k-Subgraph [12]. In Densest-k-Subgraph, we
seek a subgraph of size k of maximal density. The two ingredients in [12]’s reduction are
“birthday repetition” [1] and the “FGLSS graph” [19]:
“Birthday repetition” Starting with an instance of Label Cover (see definition in Section

2), the reduction considers a mega-variable for every ρ-tuple of variables, for ρ ≈
√
n.

By the birthday paradox, almost every pair of ρ-tuples of variables intersect, inducing a
consistency constraint on the two mega-assignments. Similarly, we expect to see some
Label Cover edges in the union of the two ρ-tuples, inducing an additional Label
Cover constraint between the two mega assignments. Notice that we have

(
n
ρ

)
≈ 2
√
n

ITCS 2017
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mega variables, and the alphabet size is also approximately N = 2
√
n. Therefore, assuming

ETH, finding an approximately satisfying assignment for the mega-variables requires time
2Ω(n) ≈ N logN .

FGLSS Similarly to the classic reduction by Feige et al. [19] for the Clique problem,
[12] construct a vertex for each mega assignment to each mega variable, and draw an
edge between two vertices if the induced assignments do not violate any consistency or
Label Cover constraints. Notice that if the Label Cover instance has a satisfying
assignment, then the graph contains a clique of size

(
n
ρ

)
where each mega variable receives

the mega assignment induced by the globally satisfying assignment. On the other hand,
any subgraph that corresponds to a consistent assignment which violates many constraints
must be missing most of its edges.

Now this simple reduction is still far from working for the Community Detection problem,
and indeed the latter was listed as an open problem in [13]. Below we describe some of the
obstacles and outline how we overcome them.

Completeness

Surprisingly, the main problem with using the same reduction for Community Detection
is the completeness: even if the Label Cover instance has a satisfying assignment, the
resulting graph has no (α, β)-communities, for any constants α > β! Observe, in particular,
that the clique that corresponds to the satisfying assignment does not satisfy the weak
ties condition. For any vertex v in that clique, consider any vertex v′ that corresponds
to changing the assignment to just one variable xi in v’s assignment. If v agrees with the
assignments of all other vertices in the clique, v′ agrees with almost all of them - except for
the negligible fraction that cover xi or its neighbors in the Label Cover graph.

To overcome this problem of vertices that are “just outside the community”, we use error
correcting codes. Namely, we encode each assignment as a low-degree bivariate polynomial
over finite field G of size |G| ≈

√
n. Now vertices correspond to low-degree assignments to

rows/columns of the polynomial. This guarantees that the assignments induced by every
two vertices are far. If v agrees with all other vertices in the community, then almost all of
those vertices disagree with v′.

Soundness

The main challenge for soundness is ruling out communities that do not correspond to a single,
globally consistent assignment to the Label Cover instance. The key idea is to introduce
auxiliary vertices that punish such communities by violating the weak ties desideratum.

Let us begin with the reduction to the counting variant (Theorem 3), which is easier,
mostly because we are not concerned with approximation (i.e. we only have to show that
subsets that are exactly (1, ε)-communities correspond to satisfying assignments). Here we
further simplify matters by sketching a construction with weighted edges. The full reduction
(Section 3) uses unweighted edges and is only slightly more involved. Consider, for every
g ∈ G, an auxiliary vertex that is ε-connected to all proper vertices that do not correspond
to assignments to the g-th row/column. Now if a (1, ε)-community C does not contain a
vertex with assignment to the g-th row/column, the auxiliary vertex must simultaneously:
(i) belong to C so as not to violate the weak ties desideratum; yet (ii) it cannot belong to C
because all its edges have weight ε (this would violate the strong ties desideratum). Therefore
every (1, ε)-community assigns values to every row/column in G2.
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The reduction we described above suffices to show that (assuming ETH) deciding whether
the graph contains a (1, ε)-community also requires quasi-polynomial time. To get the
stronger statement of Theorem 2 we must rule out even (β, β + ε)-communities in case the
Label Cover instance is far from satisfiable. In particular, we need to show that subsets
that do not correspond to unique, consistent assignments are never (β, β + ε)-communities.
Instead of a single column/row, we let each proper vertex correspond to a subset of t ≈ logn
columns/rows. Instead of a single g ∈ G, each auxiliary vertex corresponds to subset H ⊂ G
of size |H| = |G| /2. We draw an edge between an auxiliary vertex and a proper vertex if
the indices of all t columns/rows are contained in H; if they are picked randomly this only
happens with polynomially small probability. If, however, a β-fraction of the community is
restricted to a small subset R ⊂ G, then there are auxiliary vertices for H ⊇ R that connect
to all those nodes and violate the weak ties desideratum. Roughly, we show that at least a
(1− β)-fraction of the vertices have assignments that are “well spread” over G2, and among
those assignments there are many violations of the Label Cover constraints.

2 Preliminaries

2.1 Label Cover

I Definition 4 (Label Cover). Label Cover is a maximization problem. The input is a
bipartite graph G = (A,B,E), alphabets ΣA,ΣB , and a projection πe : ΣA → ΣB for every
e ∈ E.

The output is a labeling ϕA : A→ ΣA, ϕB : B → ΣB. Given a labeling, we say that a
constraint (or edge) (a, b) ∈ E is satisfied if π(a,b) (ϕA (a)) = ϕB (b). The value of a labeling
is the fraction of e ∈ E that are satisfied by the labeling. The value of the instance is the
maximum fraction of constraints satisfied by any assignment.

I Theorem 5 (Moshkovitz-Raz PCP [32, Theorem 11]). For every n and every ε > 0 (in
particular, ε may be a function of n), solving 3SAT on inputs of size n can be reduced to
distinguishing between the case that a (dA, dB)-bi-regular instance of Label Cover, with
parameters |A|+ |B| = n1+o(1) · poly (1/ε), |ΣA| = 2poly(1/ε), and dA, dB , |ΣB | = poly (1/ε),
is completely satisfiable, versus the case that it has value at most ε.

Counting the number of satisfying assignments is even harder. The following hardness is
well-known, and we sketch its proof only for completeness:

I Fact 1. There is a linear-time reduction from #3SAT to counting the number of satisfying
assignments of a Label Cover instance.

Proof. Construct a vertex in A for each variable and a vertex in B for each clause. Set
ΣA , {0, 1} and let ΣB , {0, 1}3 \ (000) (i.e. ΣB is the set of satisfying assignments for
a 3SAT clause, after applying negations). Now if variable x appears in clause C, add a
constraint that the assignments to x and C are consistent (taking into account the sign of
x in C). Notice that any assignment to A: (i) corresponds to a unique assignment to the
3SAT formula; and (ii) if the 3SAT formula is satisfied, this assignment uniquely defines a
satisfying assignment to B. Therefore there is a one-to-one correspondence between satisfying
assignments to the 3SAT formula and to the instance of Label Cover. J

ITCS 2017
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2.2 Finding a good partition
I Theorem 6 (k-wise independence Chernoff bound [36, Theorem 5.I]). Let x1 . . . xn ∈ [0, 1]
be k-wise independent random variables, and let µ , E [

∑n
i=1 xi] and δ ≤ 1. Then

Pr
[∣∣∣∣∣

n∑
i=1

xi − µ

∣∣∣∣∣ > δµ

]
≤ e−Ω(min{k,δ2µ}).

We use Chernoff bound with Θ (logn)-wise independent variables to deterministically partition
variables into subsets of cardinality ≈

√
n. Our (somewhat naive) deterministic algorithm

for finding a good partition takes quasi-polynomial time (nO(logn)), which is negligible with
respect to the sub-exponential size (N = 2Õ(√n)) of our reduction2.

I Lemma 7. Let G = (A,B,E) be a bipartite (dA, dB)-bi-regular graph, and let nA , |A|,
nB , |B|; set also n , nB + nA and ρ ,

√
n logn. Let T1, . . . , TnB/ρ be an arbitrary

partition of B into disjoint subsets of size ρ. There is a quasi-polynomial deterministic
algorithm (alternatively, linear-time randomized algorithm) that finds a partition of A into
S1, . . . , SnA/ρ, such that:

∀i
∣∣∣∣ |Si| − ρ∣∣∣∣ < ρ/2, (1)

and

∀i, j

∣∣∣∣∣ |(Si × Tj) ∩ E| − dAρ
2

nB

∣∣∣∣∣ < dAρ
2

2nB
. (2)

Proof. Suppose that we place each a ∈ A into a uniformly random Si. By Chernoff bound
and union bound, (1) and (2) hold with high probability. Now, by Chernoff Bound for
k-wise independent variables (Theorem 6), it suffices to partition A using a Θ (logn)-wise
independent distribution. Such distribution can be generated with a sample space of nO(logn)

(e.g. [2]). Therefore, we can enumerate over all possibilities in quasi-polynomial time. By
the probabilistic argument, we will find at least one partition that satisfies (1) and (2). J

3 Hardness of Counting Communities

I Theorem 8. There exists an ε (n) = o (1) such that, assuming #ETH, counting (1, ε)-
communities requires time nlog1−o(1) n.

Construction

Begin with an instance (A,B,E, π) of Label Cover of size n = nA + nB where nA , |A|
and nB , |B|. Let G be a finite field of size

√
n/ε3, and let F ⊂ G be an arbitrary subset

of size |F| =
√
n. We identify between A ∪ B and points in F2; we also identify between

a subset of G and ΣA ∪ ΣB. Thus there is a one-to-one correspondence between a subset
of assignments to PF : F2 → G and assignments to the Label Cover instance. We can
extend any such PF to an individual-degree-(|F| − 1) polynomial P : G2 → G. In the other

2 Do not confuse this with the quasi-polynomial lower bound (N Õ(log N)) we obtain for the running time
of the community detection problem.
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direction, we think of each low individual degrees polynomial P : G2 → G as a (possibly
invalid) assignment to the Label Cover instance.

For every g ∈ G, and degree-(|F| − 1) polynomials p1, p2 : G → G such that p1 (g) = p2 (g),
we construct 1/ε vertices {vg,p1,p2,i}

1/ε
i=1 ⊂ V in the communities graph. Each vertex naturally

induces an assignment (p1, p2) on (G × {g}) ∪ ({g} × G). We draw an edge between two
vertices in V if they agree on the intersection of their lines, and if their induced assignments
satisfy all the Label Cover constraints.

For every g ∈ G and i ∈ [1/ε], we also add two identical auxiliary vertices ug,i which are
connected to every vg′,p1,p2,i for g′ 6= g (but not to each other).

Completeness

For each assignment to the Label Cover instance, we construct a (1, ε)-community by
taking the induced assignment PF : F2 → G and extending it to an individual-degree-(|F| − 1)
polynomial P : G2 → G. Let C be all the vertices vg,p1,p2,i such that p1, p2 are the restrictions
of P to (G × {g}) , ({g} × G). This correspondence is one-to-one and we need to show that
the resulting C is actually a (1, ε)-community.

Because all the vertices correspond to a consistent satisfying assignment, C is a clique.
Let vg,q1,q2,i /∈ C; wlog q1 disagrees with the restriction of P to (G × {g}). Since both q1
and the restriction of P are degree-(|F| − 1) polynomials, they must disagree on all but at
most (|F| − 1) elements of G. For all other h ∈ G, the vertex vg,q1,q2,i does not share edges
with any vh,p1,p2,j ∈ C. Therefore, vg,q1,q2,i has edges to less than an (|F| / |G|)-fraction of
vertices in C. Finally, every auxiliary vertex ug,i has edges to a |G|−1

|G| · ε < ε-fraction of the
vertices in ε. Therefore, C is a (1, ε)-community.

3.1 Soundness
Structure of (1, ε)-communities

I Claim 1. Every (1, ε)-community C contains exactly 1/ε vertices {vg,p1,p2,i}
1/ε
i=1 for each g.

Proof. First, observe that C cannot contain any auxiliary vertices: if C contains one copy
of ug,i, it must also contain the other; but they don’t have an edge between them, so they
cannot both belong to a (1, ε)-community.

Now, assume by contradiction that for some g ∈ G, C does not contain any vertices with
assignments for (G × {g}) ∪ ({g} × G). Then every vertex in C is connected to (both copies
of) ug,i, for some i ∈ [1/ε]. Therefore there is at least one i ∈ [1/ε] such that ug,i is connected
to an ε-fraction of the vertices in C. But this is a contradiction since ug,i /∈ C.

If we ignore the auxiliary vertices (which, as we argued, C does not contain), the different
vertices vg,p1,p2,i that correspond to the same assignment to the same lines (i.e. if we only
change i) are indistinguishable. Therefore if C contains one of them, it must contain all of
them (hence, at least 1/ε vertices for each g).

Finally, since C is a clique, it cannot contain vertices that disagree on any assignments.
(In particular, it cannot contain more than 1/ε vertices for each g.) J

Completing the proof

Proof of Soundness. By Claim 1, every (1, ε)-community C contains exactly 1/ε vertices
{vg,p1,p2,i}

1/ε
i=1 for each g. Furthermore, since C is a clique, all the induced assignments

agree on all the intersections. So every (1, ε)-community corresponds to a unique consistent

ITCS 2017
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assignment to the Label Cover instance. Finally, appealing again to the fact that C is a
clique, this assignment must also satisfy all the Label Cover constraints. J

4 Hardness of Detecting Communities

I Theorem 9. There exists an ε (n) = o (1) such that, assuming ETH, distinguishing between
the following requires time nΩ̃(logn):
Completeness G contains an (1, ε)-community; and
Soundness G does not contain an (β + ε, β)-community for any β ∈ [0, 1].
The rest of this section is devoted to the proof of Theorem 9. Our starting point is the Label
Cover of Moshkovitz-Raz (Theorem 5). We compose the birthday repetition technique of [1]
with a bi-variate low-degree encoding. We then encode this as a graph a-la FGLSS [19]. We
add auxiliary vertices to ensure that any (β + ε, β)-community corresponds, approximately,
to a uniform distribution over the variables.

Construction

Begin with a (dA, dB)-bi-regular instance (A,B,E, π) of Label Cover of size n = nA + nB
where nA , |A| and nB , |B|. Let ρ ,

√
n logn; let G be a finite field of size ρ/ε3 = Õ (ρ),

and let F ⊂ G be an arbitrary subset of size |F| = 2ρ. Let FA,FB ⊂ F be disjoint subsets
of size nA/ρ, nB/ρ, respectively. By Lemma 7, we can partition A and B into subsets
X1, . . . , X|FA| and Y1, . . . , Y|FB | of size at most |F| such that between every two subsets there
are approximately dAρ

2

nB
= dBρ

2

nA
constraints. For i ∈ FA, we think of the points {i}×F ⊂ G2

as representing assignments to variables in Xi; for j ∈ FB, we think of F × {j} ⊂ G2 as
representing assignments to variables in Yj . Notice that each point in F2 may represent an
assignment to both a vertex from A and a vertex from B, to one of them, or to neither. In
particular, any assignment P : G2 → G induces an assignment for the Label Cover instance;
note that since |G| > |ΣA| |ΣB |, one value P (f1, f2) ∈ G suffices to describe assignments to
both a ∈ A and b ∈ B.

Let t , logn ·
(
|G|
|FA| + |G|

|FB |

)
= polylog (n). We say that a subset S ∈

(G
t

)
is balanced

if: |S ∩ FA| = |FA|
|G| · t and |S ∩ FB | = |FB |

|G| · t. For every balanced subset S, consider 2t
polynomials q` : G → G of degree at most |F| − 1, representing an assignment3 Q : (S × G) ∪
(G × S)→ G. For balanced S and 2t-tuple of polynomials (q`), we construct a corresponding
vertex vS,(q`) in the communities graph. Let V denote the set of vertices defined so far. For
g ∈ G we abuse notation and say that g ∈ vS,(q`) if g ∈ S. We construct an edge in the
communities graph between two vertices in V if their assignments agree on the variables
in their intersection, and their induced assignments to A ∪B satisfy all the Label Cover
constraints.

Additionally, for every H ⊂ G of size |H| = |G| /2, define |V |2 identical auxiliary vertices
uH in the communities graph. We draw an edge between auxiliary vertex uH and vertex
vS,(q`) if S ⊂ H. Similarly, for every HA ⊂ FA of size |HA| = |FA| /2, we define |V |2

identical auxiliary vertices uHA
with edges to every vertex vS,(q`) such that (S ∩ FA) ⊂ HA.

For HB ⊂ FB of size |HB | = |FB | /2, we draw edges between uHB
and vS,(q`) such that

(S ∩ FB) ⊂ HB .

3 We will only consider polynomials that correspond to a consistent assignment Q; i.e. for each point in
S × S we expect the two corresponding polynomials to agree with each other.
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Completeness

Suppose that the Label Cover instance has a satisfying assignment. Let Z ⊆ G2 denote the
subset of points that correspond to at least one variable in A or B. Let PZ : Z → G be the
induced function on Z that corresponds to the satisfying assignment, and let P : G2 → G be
the extension of PZ by setting P (f1, f2) = 0 for (f1, f2) ∈ F2 \ Z (this choice is arbitrary),
and then extending to an (|F| − 1)-individual-degree polynomial over all of G2.

Let C be the set of vertices that correspond to restrictions of P to balanced sets, i.e.

C =
{
vS,(P |S) : S is balanced

}
,

where P |S denotes the restriction of P to (S × G) ∪ (G × S). Since all those vertices
correspond to a consistent satisfying assignment, C is a clique.

For any vertex vS,(q`) /∈ C, at least one of the polynomials, q`∗ disagrees with the
restriction of P to the corresponding line. Since both q`∗ and the restriction of P to that line
are degree-(|F| − 1) polynomials, they must disagree on at least

(
1− |F||G|

)
-fraction of the

coordinates. The probability that a random balanced set S′ is contained in the O
(
ε3
)
-fraction

of coordinates where they do agree is smaller than ε (and in fact polynomially small in n).
Therefore vS,(q`) has inconsistency violations with all but (less than) an ε-fraction of the
vertices in C.

For any auxiliary vertex uHA
, the probability that a random vertex vS,(P |S) ∈ C is

connected to uHA
is 2−|S∩FA| < 1/n, and similarly for uHB

and uH . Therefore, every
auxiliary vertex is connected to less than a (1/n)-fraction of the vertices in C.

4.1 Soundness
I Lemma 10. If the Label Cover instance has value at most ε3, then there are no
(β + ε, β)-communities.

4.1.0.1 Auxiliary vertices

I Claim 2. Every (β + ε, β)-community does not contain any auxiliary vertices.

Proof. There are |V |2 identical copies of each auxiliary vertex. Since they are identical, any
community must either contain all of them, or none of them. If the community contains all
|V |2 copies, then it has a vast majority of auxiliary vertices, so none of them can have edges
to an ε-fraction of the community. J

4.1.0.2 List decoding

I Claim 3. The vertices in any (β + ε, β)-community C induce at most 4/ε different assign-
ments for each variable.

Proof. Suppose by contradiction that this is not the case. Then, wlog, there is a line {g1}×G
that receives at least 2/ε different assignments from vertices in C. Every two assignments
agree on at most |F| points (g1, g

′) on the line, so in total there are at most 2 |F| /ε2 points
where at least two assignments agree. Let R ⊆ G denote the set of g′ such that no two
assignments agree on (g1, g

′); we have that |R| ≥ |G| − 2 |F| /ε2 ≥ |G| /2. Therefore, by the
weak ties property, for at most a β-fraction of the vertices vS,(q`) ∈ C, S ∩R = ∅.

Consider the remaining (1− β)-fraction of vertices in C. Suppose that v assigns a value
to some (g1, g

′) for g′ ∈ R: this value can only agree with one of the 2/ε different assignments
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to (g1, g
′). Therefore, in expectation, each of the 2/ε vertices that assign different values

for (g1, g
′) is connected to at most a (β + ε/2)-fraction of the vertices in C. This is a

contradiction to C being a (β + ε, β)-community. J

4.1.0.3 Completing the proof

Proof of Lemma 10. Suppose that at most a ε3-fraction of the Label Cover constraints
can be satisfied by any single assignment, and assume by contradiction that C is a (β + ε, β)-
community. By Claim 3, C induces at most 4/ε assignments on each variable, so at most
O (ε)-fraction of the constraints are satisfied by any pair of assignments.

By Markov’s inequality, for at least half of the subsets Xi ⊂ A, only an O (ε)-fraction of
the constraints that depend on Xi are satisfied. By Claim 2 at least (1− β)-fraction of the
vertices in C assign values to at least one such Xi. Consider any such vertex vS,(q`) where
S 3 i. By construction of the partitions (Lemma 7), each Xi shares approximately the same
number of constraints with each Yj . Therefore, for all but an O (ε)-fraction of Yj ’s, Xi and
Yj observe a violation - for all the assignments given by vertices in C to the variables in
Yj . In other words, vS,(q`) cannot have edges to any vertex vT,(r`) such that T 3 j, for a
(1−O (ε))-fraction of j ∈ [nB/kB ]. Finally, applying Claim 2 again, at most a β fraction of
vertices in C do not contain any of those j’s. This is a contradiction to vS,(q`) having edges
to (β + ε)-fraction of the vertices in C. J
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