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Abstract
We study the problem of allocating m items to n agents subject to maximizing the Nash social
welfare (NSW) objective. We write a novel convex programming relaxation for this problem, and
we show that a simple randomized rounding algorithm gives a 1/e approximation factor of the
objective, breaking the 1/2e1/e approximation factor of Cole and Gkatzelis [8].

Our main technical contribution is an extension of Gurvits’s lower bound on the coefficient
of the square-free monomial of a degree m-homogeneous stable polynomial on m variables to
all homogeneous polynomials. We use this extension to analyze the expected welfare of the
allocation returned by our randomized rounding algorithm.

1998 ACM Subject Classification F.2.1 [Numerical Algorithms and Problems] Computations on
Polynomials, G.2.1 [Combinatorics] Counting Problems, G.1.6 [Optimization] Convex Program-
ming, G.3 [Probability and Statistics] Probabilistic Algorithms

Keywords and phrases Nash Welfare, Permanent, Matching, Stable Polynomial, Randomized
Algorithm, Saddle Point

Digital Object Identifier 10.4230/LIPIcs.ITCS.2017.36

1 Introduction

We study the problem of allocating a set of indivisible items to agents subject to maximizing
the Nash social welfare (NSW). We are given a set of m indivisible items and we want to
assign them to n agents. An allocation vector is a vector x ∈ {0, 1}n×m such that for each j,
exactly one xi,j is 1. We assume that agents have additive valuations. That is, each agent i
has nonnegative value vi,j for an item j and the value that i receives for an allocation x is

vi(x) =
m∑
j=1

xi,jvi,j .
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The NSW objective is to compute an allocation x that maximizes the geometric mean of
agents’ values,(

n∏
i=1

vi(x)
) 1

n

.

The above objective naturally encapsulates both fairness and efficiency and has been
extensively studied as a notion of fair division (see [14, 5] and references therein).

Recently, there have been a number of results that study the computational complexity
of the Nash social welfare objective. For additive valuations it is known that it is NP-hard
to approximate the NSW objective within (1 − c) [15, 13], for some constant c > 0. On
the positive side, Nguyen and Rothe [16] designed a

(
1

m−n+1

)
approximation algorithm

and Cole and Gkatzelis [8] gave the first constant factor,
( 1

2e1/e

)
-approximation. Recently,

independent of our work, Cole et al. [7] gave a 1
2 -approximation.

A closely related problem, that captures only fairness, is the Santa-Clause problem where
the goal is to find an allocation to maximize the minimum value among all agents, i.e.,
maxx mini vi(x) which has also been studied recently [1, 2, 3, 6].

1.1 Our Contributions
Our main contribution is to show an intricate connection between the Nash welfare maxi-
mization problem, the theory of real stable polynomials, and the problem of approximating
the permanent. We establish this connection in the following manner. We first give a new
mathematical programming relaxation for the problem; indeed the standard relaxation has
arbitrarily large integrality gap as shown by Cole and Gkatzelis [8]. Our relaxation is a
polynomial optimization problem1 which, despite not being convex in the standard form, can
be solved efficiently by a change of variables. We remark that a similar geometric program
was used in the context of maximum sub-determinant problem [17].

More precisely, we study a real stable polynomial p(y1, . . . , ym). We give a simple
randomized rounding algorithm such that the expected Nash welfare of the allocation
returned by the algorithm exactly equals the sum of square-free coefficients of p(y). Thus,
our program needs to maximize the sum of square-free coefficients of p(y). Unfortunately,
such an optimization problem in not convex. Instead, we maximize the following proxy

inf
y>0:∏

i∈S
yi≥1,∀S∈([m]

n )
p(y).

The main part of our analysis is to relate the sum of square-free coefficients of p(y) to the
above proxy. This desired inequality is a generalization of an elegant result of Gurvits [11]
relating the problem of approximating the permanent of a matrix with the theory of real stable
polynomials. We prove this generalization in theorem 1.2. The connection to permanents
allows us to use algorithmic results for approximating the permanent due to Jerrum, Sinclair
and Vigoda [12] and we obtain the following result.

I Theorem 1.1. There is a randomized polynomial time algorithm for the Nash welfare
maximization problem that, with high probability, returns a solution with objective at least
1/e fraction of the optimum.

1 It falls in the broad class of geometric programs, where the mathematical program is convex in logarithms
of the variables and not the variables itself.
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We emphasize that unlike the recent constant factor approximation algorithms by Cole
and Gkatzelis [8] and [7], our algorithm and its analysis are purely algebraic and completely
oblivious to the structure of the underlying market. In particular, unlike other approaches we
are not taking advantage of the combinatorial structure of “spending restricted assignments”
in our rounding algorithms (see [8] for more information). This generality makes our approach
potentially applicable to a variety of resource allocation problems.

The crucial ingredient of our analysis is the following general inequality about real stable
polynomials that generalizes the result of Gurvits [11] (see theorem 2.5) that provided an
elegant proof of the Van-der-Waerden conjecture.

I Theorem 1.2. Let p be a degree n-homogeneous real stable polynomial in y1, . . . , ym with
nonnegative coefficients. For any set S ⊆ [m], let cS denote the coefficient of monomial
yS :=

∏
i∈S yi. If

∑
S∈([m]

n ) cS > 0, then

∑
S∈([m]

n )
cS ≥ m! · (m− n)m−n

mm · (m− n)! inf
y>0:

yS≥1,∀S∈([m]
n )
p(y) (1)

≥ e−n inf
y>0:

yS≥1,∀S∈([m]
n )
p(y).

Note that second inequality follows by lemma 1.1, m!
mm · (m−k)m−k

(m−k)! ≥ e−k. By setting n = m

in the above statement, we obtain the result of Gurvits as described in theorem 2.5.
It is not hard to see that the above inequality is (almost) tight. For the stable n-

homogeneous polynomial p(y1, . . . , ym) = (y1 + · · · + yn)n, the LHS is n! and the RHS
is (n/e)n. This tight example was already studied by Friedland and Gurvits [9] to show
tightness of a lower bound for the number of matchings in regular bipartite graphs.

2 Preliminaries

For a vector y, we write y ≤ 1 to denote that all coordinates of y are at most 1. For an
integer n ≥ 1 we use [n] to denote the set of numbers {1, 2, . . . , n}. For any m,n, we let([m]
n

)
denote the collection of subsets of [m] of size n.

2.1 Stable Polynomials
Stable polynomials are natural multivariate generalizations of real-rooted univariate poly-
nomials. For a complex number z, let Im(z) denote the imaginary part of z. We say a
polynomial p(z1, . . . , zm) ∈ C[z1, . . . , zm] is stable if whenever Im(zi) > 0 for all 1 ≤ i ≤ m,
p(z1, . . . , zm) 6= 0. We say p(.) is real stable, if it is stable and all of its coefficients are real.
It is easy to see that any univariate polynomial is real stable if and only if it is real rooted.

We say a polynomial p(z1, . . . , zm) is degree n-homogeneous, or n-homogenous, if every
monomial of p has degree exactly n. Equivalently, p is n-homogeneous if for all a ∈ R, we
have

p(a · z1, . . . , a · zm) = anp(z1, . . . , zm).

We say a monomial zα1
1 . . . zαm

m is square-free if α1, . . . , αm ∈ {0, 1}. For a set S ⊂ 2[m]

we write

zS =
∏
i∈S

zi.

ITCS 2017
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Thus, we can represent a square-free monomial with the set of indices of variables in that
monomial.

I Fact 2.1. If p(z1, . . . , zm) and q(z1, . . . , zm) are stable then p · q is stable.

I Fact 2.2. The polynomial
∑
i aizi is stable if ai ≥ 0 for all i.

Polynomial optimization problems involving real stable polynomials with nonnegative
coefficients can often be turned into concave/convex programs. Such polynomials are log-
concave in the positive orthant:

I Theorem 2.3 ([10]). For any n-homogeneous stable polynomial p(x1, . . . , xn) with non-
negative coefficients, log p(x) is concave in the positive orthant, Rn++.

It is also an immediate corollary of Hölder’s inequality that a polynomial with nonnegative
coefficients is log-convex in terms of the log of its variables (for more details on log-convex
functions see [4]).

I Fact 2.4. For any polynomial p(y1, . . . , ym) with nonnegative coefficients, log p(y) is convex
in terms of log y. In other words, log p(ez1 , . . . , ezm) is convex in terms of z.

The following theorem is proved by Gurvits [11].

I Theorem 2.5 ([11]). For any degree m-homogeneous stable polynomial p(z1, . . . , zm) with
nonnegative coefficients, let c[m] denote the coefficient of the multilinear monomial z1 · · · zm.
If c[m] > 0, then

c[m] ≥
m!
mm

inf
z>0

p(z1, . . . , zm)
z1 . . . zm

.

2.2 Counting Matchings in Bipartite Graphs
Given a bipartite graph G = (X,Y,E) with weights w : E → R, the weight of a perfect
matching M is defined as follows:

w(M) =
∏
e∈M

we.

Jerrum, Sinclair, and Vigoda in their seminal work designed a FPRAS to count the sum of
(weighted) perfect matchings of an arbitrary bipartite graph with nonnegative weights. This
problem is also equivalent to the computation of the permanent of a nonnegative matrix.

I Theorem 2.6 ([12]). There exists a randomized polynomial time algorithm that for any
arbitrary bipartite graph G with n vertices and nonnegative weights and ε > 0 in time
polynomial in the size of G and 1/ε approximates the sum of weights of all perfect matchings
of G within a 1 + ε multiplicative error, with high probability.

A k-matching of a bipartite graph G = (X,Y,E) is a set M ⊆ E of size |M | = k such
that no two edges share an endpoint. The following corollary follows immediately from the
above theorem. For completeness, we prove it in the appendix.

I Corollary 2.7. There is a randomized polynomial time algorithm that for any arbitrary
bipartite graph G with nonnegative edge weights and for any given ε > 0 and integer k ≤ n
in time polynomial in the size of G and 1/ε approximates the sum of the weights of all
k-matchings of G within 1 + ε multiplicative error, with high probability.
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3 Approximation Algorithm for NSW Maximization

In this section, we give an approximation algorithm for the NSW maximization problem. We
begin by giving a mathematical programming relaxation that can be efficiently solved. For
convenience, we will aim to optimize(

n∏
i=1

vi(x)
)
,

which is the nth power of the NSW objective. Thus, it is enough to give an e−n-approximation
to the above objective. With a slight abuse of notation, we will also refer to problem of
maximizing the new objective as the Nash welfare problem. In section 3.2, we give a rounding
algorithm that proves the guarantee claimed in Theorem 1.1.

3.1 Mathematical Programming Relaxation
We use the following mathematical program.

max
x

inf
y>0:yS≥1,∀S∈([m]

n )

n∏
i=1

 m∑
j=1

xi,jvi,jyj

 ,

s.t.
n∑
i=1

xi,j ≤ 1 ∀1 ≤ j ≤ m,

xi,j ≥ 0 ∀i, j.

(2)

First, we show that (2) is a relaxation of the Nash welfare problem and can be optimized
in polynomial time to an arbitrary accuracy.

I Lemma 3.1. The mathematical program (2) is a relaxation of the Nash welfare problem
and can be optimized in polynomial time.

Proof. Let x∗ ∈ {0, 1}n×m be an optimal solution of the Nash welfare problem and let
σ : [m]→ [n] denote the assignment, i.e., σ(j) = i if and only if x∗ij = 1. We show that x∗
is a feasible solution (2) of objective

∏n
i=1 vi(x∗). Consider any y > 0 such that yS ≥ 1 for

each S ⊆
([m]
n

)
. Moreover let S = {S ∈

([m]
n

)
: ∀i ∈ [n],∃j ∈ S such that x∗ij = 1}. We have

n∏
i=1

 m∑
j=1

x∗i,jvi,jyj

 =
∑
S∈S y

S
∏
j∈S vσ(j),j

≥
∑
S∈S

∏
j∈S vσ(j),j

=
∏n
i=1

(∑m
j=1 x

∗
i,jvi,j

)
as required, where we use the fact that yS ≥ 1 for each S ∈ S. To show that the objective
of the mathematical program equals

∏n
i=1 vi(x∗), we consider the solution y∗j = 1 for each

j ∈ [m].
To solve the mathematical program, we observe that the function log

∏n
i=1
∑m
j=1 xi,jvi,jyj

is concave in x and convex in log y, where log y is the vector defined by taking logarithms of
the vector y coordinate-wise. These follow from theorem 2.3 and fact 2.4. Moreover, the
constraints on x and log y are linear. Thus the above program can be formulated as a convex
program and solved to an arbitrary accuracy. J

ITCS 2017
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Algorithm 1 An Algorithm for NSW Maximization.
Check whether the optimal solution has weight strictly more than zero using the bipartite
matching algorithm. Return zero if answer is false.
Find an optimal solution x∗ to the mathematical program (2).
Independently for each item j ∈ [m], assign item j to one agent where agent i ∈ [n] is
chosen with probability x∗ij .

3.2 Randomized Algorithm I
We now give a rounding algorithm that proves the required guarantee. Algorithm 1 will only
satisfy the guarantee in expectation. Later, we show how to give a randomized algorithm
that gives essentially the same guarantee with high probability.

The first step of the algorithm can be implemented by a bipartite matching problem.
Indeed consider the bipartite graph with one side as agents and other as items. We have an
edge (i, j) for agent i and item j if vij > 0. The optimal solution to the NSW maximization
problem is strictly positive if and only if this bipartite graph has a matching that includes
an edge at every agent. Thus, we can check in polynomial time whether the optimal solution
has weight zero. For the remainder of the section, we assume that the optimal solution is
strictly positive.

We say x ∈ Rn×m+ is a fractional allocation vector if for each j ∈ [m],
∑n
i=1 xi,j = 1.

Given any fractional allocation x, consider the following polynomial in variables y1, . . . , yn,

px(y1, . . . , yn) =
n∏
i=1

 m∑
j=1

xi,jvi,jyj

 .

Observe that px(y) is a degree n-homogenous polynomial in m variables for any x or the
identically 0 polynomial.

I Lemma 3.2. We have the following.
1. For S ⊆ [m] of size n, let cS denote the coefficient of yS in px∗(y). Then, the expected

value of algorithm 1 equals∑
S∈([m]

n )
cS .

2. The optimal value of the relaxation (2) is

inf
y:yS≥1,∀S∈([m]

n )
px∗(y).

Proof. Let Xi,j be the random variable indicating that j is assigned to i. Then, the value
that i receives is

∑m
j=1 Xi,jvi,j . So, the expected value of the algorithm is

E

 n∏
i=1

m∑
j=1

Xi,jvi,j

 =
∑

σ:[n]→[m]

E

[
n∏
i=1

Xi,σ(i)vi,σ(i)

]
=

∑
σ:[n]→[m]

P
[
∀i : Xi,σ(i) = 1

] n∏
i=1

vi,σ(i).
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where σ is summed over all functions from [n] to [m]. Observe that P
[
∀i : Xi,σ(i)=1

]
6= 0

only if σ is a one-to-one function. In such a case, we have P
[
∀i : Xi,σ(i) = 1

]
=
∏n
i=1 xi,σ(i)

where we use the fact that each item is assigned independently. Therefore,

E

 n∏
i=1

m∑
j=1

Xi,jvi,j

 =
∑

σ:[n] →
one-to-one

[m]

n∏
i=1

xi,σ(i)vi,σ(i).

The lemma follows by the fact that for any one-to-one σ, the term
∏n
i=1 xi,σ(i)vi,σ(i) on the

RHS appears in the coefficient of the (square-free) monomial
∏n
i=1 yσ(i) of px∗(y). For any

S ∈
([m]
n

)
the coefficient of yS in px∗(y) is the sum of all such terms where σ([n]) = S.

The proof of the second claim is immediate by definition. J

We are now ready to apply theorem 1.2 and obtain the following immediate corollary.

I Corollary 3.3. The expected objective of algorithm 1 is at least

e−n ·OPT

where OPT is the optimal NSW objective.

Proof. From fact 2.1 and fact 2.2, it follows that px∗(y) as defined above is real stable with
nonnegative coefficients. Moreover, it is anm-variate polynomial that is degree n-homogenous.
Let cS denote the coefficient of square-free monomial yS for any S ∈

([m]
n

)
. Since, we assume

that there is at least one assignment that has strictly positive NSW objective, the sum of
coefficients

∑
S∈([m]

n ) cS > 0. Thus, from theorem 1.2, we have∑
S∈([m]

n )
cS ≥ e−n min

y:yS≥1,∀S∈([m]
n )
px∗(y).

Now the proof is immediate using lemma 3.2. J

3.3 Randomized Algorithm II
From corollary 3.3, the expected NSW of the allocation returned by algorithm 1 is at least
1/en fraction of the optimum. Repeated applications of the algorithm to obtain a high
probability bound is not possible since the output of algorithm 1 may have an exponentially
large variance. In this section, we prove Theorem 1.1 by giving an algorithm that returns
the same guarantee as algorithm 1 with high probability.

Proof of theorem 1.1. We use the method of conditional expectations to prove the theorem.
We iteratively assign one item at a time, making sure that conditional expectation over
the random assignment of the remaining items does not decrease (substantially). We now
claim that for any assignment x, the expected value of the objective as given by randomized
algorithm 1 equals the number of weighted n-matchings of a bipartite graph. Consider
the weighted bipartite graph G = ([n], [m], E) where for any 1 ≤ i ≤ n and 1 ≤ j ≤ m,
wi,j = xi,jvi,j . Then, for one-to-one mapping σ : [n]→ [m], the coefficient of the monomial∏n
i=1 xi,σ(i)vi,σ(i) is equal to the weight of the n-matching {(1, σ(1)), (2, σ(2)), . . . , (n, σ(n))}.

Therefore, the sum of square-free monomials of px(y) is equal to the sum of the weights of
all n-matchings of G.

Now, pick any item j ∈ [m] and any fractional assignment x. Consider the following n
assignments, x1, . . . , xn. Assignment xi assigns item j to i and rest of the items identically

ITCS 2017
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to the fractional assignment x. Thus xiij = 1, xii′,j = 0 for all i 6= i′ and xii′j′ = xi′j′ for any
j′ 6= j. Let ALGi denote the objective value of the output of algorithm 1 on solution xi and
ALG on x. Since the objective value of the algorithm 1 is linear in {xij : i ∈ [n]} for fixed j,
we have

ALG =
n∑
i=1

xij ALGi

Thus ALG is the expected value of the conditional expected value of the output of the
algorithm 1 when we assign item j to one of the agents; it is assigned to agent i with
probability xij .

By corollary 2.7, we can estimate ALG and ALGi within a factor of 1 + 1/m3 factor in
polynomial time. Therefore, using the method of conditional expectations, we obtain an
allocation of NSW of value at least OPT

en · (1− 1/m3)m ≥ OPT
((1+ 1

n )e)n where OPT denotes the
objective of the optimal allocation. J

4 A Generalization of Gurvits’s Theorem

In this section we prove theorem 1.2. Let

q(y1, . . . , ym) = (y1 + · · ·+ ym)m−n

be a degree (m−n)-homogenous polynomial. It is straightforward to see that it is real stable.
Consider the polynomial p(y)q(y). Observe that this is a degree m-homogeneous stable
polynomial with nonnegative coefficients. Since from the assumption of theorem 1.2, at least
one of the square-free monomials in p(y) has a non-zero coefficient, the coefficient of the
square-free monomial in p(y)q(y) is non-zero. Let α[m] be the coefficient of the square-free
monomial y1 · · · ym in p(y)q(y). Thus, from theorem 2.5, we have

α[m] ≥
m!
mm

inf
y>0

p(y)q(y)
y1 . . . ym

. (3)

To prove theorem 1.2 it is enough to relate the LHS and the RHS of (3) to the two sides
of (1). This is done in lemma 4.1 and proposition 4.2.

I Lemma 4.1. We have

(m− n)!
∑

S∈([m]
n )
cS = α[m].

Proof. The RHS is the coefficient of the square-free monomial y1 . . . , ym in p(y)q(y). The
square-free monomial of p(y)q(y) is obtained whenever we multiply a square-free monomial
yS of p(y) with the square-free monomial yS of q(y) for some S ∈

([m]
n

)
. Lemma’s statement

follows by the fact that the coefficient of yS in q(y) is (m− n)! for every S ∈
([m]
n

)
and the

coefficient of yS in p(y) is cS . J

The proof of theorem 1.2 is now immediate from the following proposition which relates
the RHS of (3) and (1).

I Proposition 4.2.

inf
y>0

p(y)q(y)
y1 . . . ym

≥ (m− n)m−n inf
y>0:yS≥1,∀S∈([m]

n )
p(y).
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In the rest of this section we prove the above proposition. We do the proof in two steps.
First, we use convex duality to simplify the RHS, and then we prove the proposition.

I Lemma 4.3.

inf
y>0:yS≥1,∀S∈([m]

n )
p(y) = sup

0≤θ≤1:
∑m

j=1
θj=n

inf
y>0

p(y)
yθ1

1 . . . yθm
m

.

Proof. The proof follows by convex duality. By taking logarithm of p(y) and the change
of variable zj = eyj , we obtain the following equivalent convex program to the LHS of the
above inequality.

inf log p(ez1 , . . . , ezm)

s.t.
∑
i∈S

zi ≥ 0 ∀S ∈
(

[m]
n

)
.

(4)

Let λS be the Lagrange dual variable associated to the constraint corresponding to the set
S ∈

([m]
n

)
. The Lagrangian of the above convex program is defined as follows:

L(z, λ) = log p(ez1 , . . . , ezm)−
∑

S∈([m]
n )
λS
∑
i∈S

zi.

The Lagrange dual to (4) is

sup
λ≥0

inf
z
L(z, λ).

Since p(y) has a non-zero coefficient for at least one of the square-free monomials, the
objective of the convex program (4) is finite for any z and it is easy to see that the Slater
conditions are satisfied. Thus the optimum value of the Lagrange dual is exactly equal to
the optimum of (4).

Let z∗, λ∗ be an optimum of the above program. We claim that
∑
S λ
∗
S = 1. This simply

follows from first order optimality conditions. If
∑
S λ
∗
S < 1, then

L(z∗ − ε, λ∗) = log p(ez
∗
1−ε, . . . , ez

∗
m−ε)−

∑
S∈([m]

n )
λ∗S
∑
j∈S

(z∗j − ε)

= L(z∗, λ∗)− n · ε+
∑

S∈([m]
n )
nλ∗Sε < L(z∗, λ∗).

Similarly, if
∑
S∈([m]

n ) λS > 1, L(z∗ + ε, λ∗) < L(z∗, λ∗). So, λ∗ is a probability distribution
on sets of size n. We let L′(z, θ) = log p(ez)−

∑m
j=1 zjθj Thus, we obtain that

sup
0≤θ≤1:

∑m

j=1
θj=n

inf
z
L′(z, θ) ≥ sup

λ≥0
inf

z
L(z, λ).

by setting θ∗j =
∑
S∈([m]

n ):j∈S λ
∗
S to be the marginal probability of the element j.

We now claim that equality must hold in the above. This follows since given any
θ ∈ {0 ≤ θ ≤ 1 :

∑m
j=1 θj = n}, there exists a probability distribution over sets of size n

such that marginal of every element is exactly θj . Setting λ′S to be the probability of set
S ∈

([m]
n

)
, we obtain that for any z and θ, we have L′(z, θ) = L(z, λ′). Putting this together

we have

inf∑
j∈S

zj≥0,∀S∈([m]
n )

log p(ez) = sup
0≤θ≤1:

∑m

j=1
θj=n

inf
z

log p(ez)−
m∑
j=1

zjθj

 .

ITCS 2017
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Substituting ezj with yj and taking the exponential of the objective functions we have

inf
y>0:yS≥1,∀S∈([m]

n )
p(y) = sup

0≤θ≤1:
∑m

j=1
θj=n

inf
y>0

p(y)
yθ1

1 . . . yθm
m

as desired. J

Now we give the proof of proposition 4.2.

Proof of proposition 4.2. By lemma 4.3, it is enough to show that

inf
y>0

p(y)q(y)
y1 . . . ym

≥ (m− n)m−n sup
0≤θ≤1:

∑m

j=1
θj=n

inf
y>0

p(y)
yθ1

1 . . . yθm
m

.

Let θ be any vector such that 0 ≤ θ ≤ 1 and
∑
i θi = n. It is enough to show for any such θ,

inf
y>0

p(y)q(y)
y1 . . . ym

≥ (m− n)m−n inf
y>0

p(y)
yθ1

1 . . . yθm
m

.

We prove a stronger statement,

inf
y>0

p(y)
yθ1

1 . . . yθm
m

· inf
y>0

q(y)
y1−θ1

1 · y1−θm
m

≥ (m− n)m−n inf
y>0

p(y)
yθ1

1 . . . yθm
m

.

Equivalently, we show that

inf
y>0

q(y)
y1−θ1

1 . . . y1−θm
m

≥ (m− n)m−n

Taking (m− n)-th root of both sides it is enough to show that

inf
y>0

y1 + · · ·+ ym
yα1

1 . . . yαm
m

≥ m− n, (5)

where αj = 1−θj

m−n for all j ∈ [m]. Note that by the definition of θ, we have 0 ≤ αj ≤ 1
m−n

and that∑
i

αj =
m−

∑m
j=1 θj

m− n
= 1.

Therefore, the ratio on the LHS of (5) is homogeneous in y. Thus, to prove (5), it is enough
to prove the following

sup
y>0:

∑m

j=1
yj=1

yα1
1 . . . yαm

m ≤ 1
m− n

. (6)

Next, we use the weighted AM-GM inequality. We let α1, . . . , αm be the weights, and recall
that αj ’s sum to 1. Weighted AM-GM implies that

m∑
j=1

αj
yj
αj
≥

m∏
j=1

(
yj
αj

)αj

=
m∏
j=1

α
−αj

j

m∏
j=1

y
αj

j

Therefore,

sup
y>0:

∑m

j=1
yj=1

m∏
j=1

y
αj

j ≤
m∏
j=1

α
αj

j .
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To prove (6), it is enough to show that
m∏
j=1

α
αj

j ≤
1

m− n
.

Or equivalently,
m∑
j=1
−αj logαj ≥ log(m− n).

Since αj ≤ 1
m−n and that

∑m
j=1 αj = 1, we have

m∑
j=1
−αj logαj ≥

m∑
j=1
−αj log 1

m− n
= log (m− n)

m∑
j=1

αj = log (m− n),

as required. J
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A Miscellaneous Lemmas

I Lemma 1.1. For any k ≤ m, we have

m!
mm
· (m− k)m−k

(m− k)! ≥ e−k.

Proof. We prove by induction on k. The claim obviously holds for k = 0. For the induction
step, it is sufficient to show that

1
e
· m!
mm
· (m− k)m−k

(m− k)! ≤ m!
mm
· (m− (k + 1))m−(k+1)

(m− (k + 1))! .

Equivalently, it is enough to show that(
m− k

m− (k + 1)

)m−(k+1)
≤ e.

The above can be written as (1 + 1
m−k−1 )m−k−1 ≤ e. The latter follows by the fact that

1 + x ≤ ex. J

Proof of corollary 2.7. Suppose that we are given a bipartite graph G = (X,Y,E) where
X = {x1, . . . , xm} and Y = {y1, . . . , yn}. Note that m is not necessarily equal to n. We
construct another graph G′ = (X ′, Y ′, E′) such there is a one-to-(m− k)!(n− k)! and onto
mapping between the k-matchings of G and the perfect matchings of G′. That is each
k-matching of G is mapped to a unique set of (m− k)!(n− k)! perfect matchings of G′, and
for each perfect matching M ′ of G′ there is a k-matching of G that has M ′ in its image.

Let X ′ = X ∪ {xm+1, . . . , xm+n−k} and Y ′ = Y ∪ {yn+1, . . . , ym+n−k}. The set of edges
E′ is the union of E and the following edges: Connect all vertices of X ′ \X to all vertices
of Y with weight 1, and connect all vertices of Y ′ \ Y to all vertices of X with weight 1.
Observe that for any k-matching M of G there are exactly (m−k)!(n−k)! perfect matchings
in G′ that contain M ; for any such prefect matching M ′, we have M ′ \M ⊆ E′ \E. So, this
mapping is one-to-(m− k)!(n− k)!. Furthermore, any perfect matching M ′ of G′ has exactly
k edges in E, i.e., |M ′ ∩ E| = k. So, this mapping is onto.

It follows that a 1 + ε approximation to the sum of the weights of all perfect matchings
of G′ is a 1 + ε approximation to the sum of the weights of all k-matchings of G. J
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