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Abstract
We consider multiplayer games in which the players fall in two teams of size k, with payoffs equal
within, and of opposite sign across, the two teams. In the classical case of k = 1, such zero-sum
games possess a unique value, independent of order of play, due to the von Neumann minimax
theorem. However, this fails for all k > 1; we can measure this failure by a duality gap, which
quantifies the benefit of being the team to commit last to its strategy. In our main result we show
that the gap equals 2(1 − 21−k) for m = 2 and 2(1 −m−(1−o(1))k) for m > 2, with m being the
size of the action space of each player. At a finer level, the cost to a team of individual players
acting independently while the opposition employs joint randomness is 1 − 21−k for k = 2, and
1−m−(1−o(1))k for m > 2.

This class of multiplayer games, apart from being a natural bridge between two-player zero-
sum games and general multiplayer games, is motivated from Biology (the weak selection model
of evolution) and Economics (players with shared utility but poor coordination).
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1 Introduction

Games between teams of players are ubiquitous; in the economy this occurs most prominently
in competition between firms. Another case of significance is that in which a team is a
biological species and the players on the team are the genes of the species. What makes
a set of players a team, in our idealization, is that in any outcome the players in the set
receive identical payoffs.

Competition among firms or species need not be zero-sum; however, the zero-sum case
will be the focus of this paper, being the most basic form of competition, and often an
approximation to reality. Specifically, a two-team zero-sum game is a multiplayer game in
which the players are partitioned into two sets A and B, and a real-valued payoff tensor (of
dimension equal to the number of players) specifies the payoff conditional on player actions;
this payoff accrues positively to each player of Team B and negatively to each player of
Team A.

If perfect coordination within each team can be achieved, then a zero-sum interaction
between two teams is nothing but a zero-sum interaction between two "virtual" players. In
the biological setting, the opposite extreme is relevant: an important model in evolutionary
theory is the weak selection model (see [8, 1, 10, 9, 13, 14, 3, 7]), in which a species is a team,
the genes are the players, the alleles of the gene are the possible actions of a player, and the
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allele frequencies are independent across genes. Likewise, the difficulty of coordination has
long been treated in the economic literature as one of the forces limiting the size of firms [4].

This raises a natural question: does von Neumann’s minimax theorem for zero-sum
games continue to hold for a zero-sum team game where the individual members of the
team play independently, and if not can the deviation be bounded? Formally, this deviation
is expressed through the duality gap between the values of the game (always expressed as
the payoff to Team B) under two scenarios: when all members of Team A must first commit
to their randomized strategies, and then Team B gets to respond; and when all members of
Team B must commit, and then Team A gets to respond. Surprisingly, this natural question
does not seem to have been asked before.

In Section 3 we determine the range of this duality gap: for action spaces of size 2 we
give the exact answer for all k (the size of the teams); for action spaces of any size m > 2
we determine the asymptotics of the answer as a function of k.

The key lemma in the lower bound on the duality gap for m > 2 may be of independent
interest: fix a random set S of g(m) m-ary strings of any length k. Then with high prob-
ability, any product distribution may place probability more than m−k(1−o(1)) (i.e. much
more than the uniform distribution would) on at most O(log g(m)) strings in S.

Another interesting quantity is the defensive gap: the defensive gap of Team B is the
difference between the payoff to Team B if Team A must play a product strategy, and the
payoff to Team B if Team A can use a joint (but hidden from B) source of randomness. The
defensive gap quantifies the reduced effectiveness of a team when its members are constrained
to choose their actions from a product distribution. Note that the duality gap is the sum of
the two teams’ defensive gaps.

The defensive gap may be compared to two notions in the existing literature. Assume
Team A goes first, and think just of the multiplayer game being played by the k players of
Team A. (Since Team B can respond optimally, even deterministically, once the strategies of
Team A have been fixed, we may ignore the players of Team B and consider their response
merely part of the definition of the game being played by Team A.) Then, since the payoffs
to all players in Team A are identical, the defensive gap is the difference between the value
of the best correlated equilibrium [2] and the best Nash equilibrium [12]. It quantifies, if you
will, the penalty for not coordinating. Again, since the payoffs are identical within the team,
social welfare agrees with individual welfare, and so the defensive gap is, conceptually, a Price
of Stability [11] (although that "price" is normally defined as a ratio and not a difference).

Finally, in Section 4 we go on to investigate how the value of a game can be affected
by more incremental changes, specifically, by exchanging the order of play of two players of
opposing teams who were playing (committing to their randomized strategy) in immediate
succession. There are games with duality gap bounded away from 0, in which all these value
changes tend to 0 in k; whereas there are other games, including games symmetric within
each team, in which the largest such value change is bounded away from 0 as a function of
k.

2 Preliminaries

We consider two-team zero-sum games in which Team A has k players each with m choices
in its action space; likewise for Team B. The payoff (to Team B) is specified by a tensor
T in (Rm)⊗2k. (In the biological setting, each of A and B is a species with a genome of k
genes, each taking on one of m possible alleles.) More formally to each player Ai, i = 1, . . . k
of Team A corresponds a vector space Ui

∼= Rm, and to each player Bj , j = 1, . . . k of Team
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B, a vector space Vj
∼= Rm. Space Ui is spanned by a basis which we denote ui0, . . . , ui,m−1.

Similarly for Vj . In this setting T ∈ U∗1 ⊗ . . . ⊗ U∗k ⊗ V ∗1 ⊗ . . . ⊗ V ∗k . (With ∗ denoting
dualization.) Letting I = (i1, . . . , ik) ∈ {0, . . . ,m− 1}k represent an action of the players of
Team A, and J = (j1, . . . , jk) ∈ {0, . . . ,m− 1}k an action of the players of Team B, TJ

I is
the payoff to players of Team B (and minus the payoff to players of Team A).

In the case m = 2, the strategy of player Ai is specified by a parameter 0 ≤ pi ≤ 1
which is the probability with which he plays choice 0, i.e., vector ui0. Likewise player Bj

has a parameter 0 ≤ qj ≤ 1 which is the probability with which he plays choice 0, i.e.,
vector vj0. For m > 2, the strategy of player Ai is specified by a probability distribution
(pi0, . . . , pi,m−1) and the strategy of player Bj is specified by a probability distribution
(qj0, . . . , qj,m−1). (Thus for m = 2, (pi, 1− pi) is shorthand for (pi0, pi1).)

We let T q
p denote the expected payoff to Team B when the players of Team A use

distributions pi and those of Team B use distributions qj . This notation generalizes the
notation TJ

I , if one interprets I as the probability distribution on {0, . . . ,m−1}k supported
solely on I (and similarly for J). Equivalently, T q

p equals the scalar given by contracting T
with the tensor product of the vectors (pi0, . . . , pi,m−1) (ranging over i) and (qj0, . . . , qj,m−1)
(ranging over j).

By a standard argument, minp maxq T
q
p ≥ maxq minp T

q
p . (We write everywhere min or

max rather than inf or sup since the spaces are compact.) However, apart from the linear
(k = 1) case, the gap minp maxq T

q
p −maxq minp T

q
p can be positive.

Our purpose is to quantify this gap relative to the uniform norm ‖T‖∞ = maxI,J |TJ
I |.

We define the duality gap of tensor T :

gap(T ) =
minp maxq T

q
p −maxq minp T

q
p

‖T‖∞
=

minp maxJ T
J
p −maxq minI T

q
I

‖T‖∞
(2.1)

where as above, I or J represent the pure strategy choosing that action.
The principal quantity of interest is

gapm,k = max
T

gap(T ) (2.2)

ranging over games T for teams of size k and action spaces of size m. It is trivial that
gapm,k ≤ 2. Moreover gapm,k is nondecreasing in k (because one may ignore the actions
of players after the k’th player on each team), and in m (because one may map all actions
≥ m− 1 to action m− 1).

Here and throughout the paper, upper-case P and Q denote mixed strategies of virtual
players; that is to say, each is a general probability tensor (a tensor with nonnegative entries
summing to 1), P ∈ U1⊗ . . .⊗Uk and Q ∈ V1⊗ . . .⊗Vk. Lower-case p and q denote product
distributions, i.e., rank-one probability tensors.

Extending the existing notation, TQ
P is the expected payoff to B when A (as a virtual

player) uses distribution P and B uses distribution Q. It is also useful to employ the
standard convention that a repeated index indicates tensor contraction over that index, so
P ITJ

I = TJ
P ∈ V ∗1 ⊗ . . .⊗ V ∗k and QJT

J
I = TQ

I ∈ U∗1 ⊗ . . .⊗ U∗k .
By strong LP duality we can define the value of the virtual player game by

ValT = min
P

max
J
{P ITJ

I } = max
Q

min
I
{QJT

J
I }. (2.3)

Let P and Q be strategies achieving equality in (2.3). We can usefully refine the study
of gap(T ) by defining the defensive gap of Team A in tensor T as

gapA(T ) = minp maxJ{pITJ
I } −maxJ{P ITJ

I }
‖T‖∞

= minp maxJ{pITJ
I } −ValT

‖T‖∞
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where, of course, p ranges over product distributions. Likewise the defensive gap of Team
B is

gapB(T ) = minI{QJT
J
I } −maxq minI{qJT

J
I }

‖T‖∞
= ValT −maxq minI{qJT

J
I }

‖T‖∞

The defensive gap quantifies the reduced effectiveness of a team of players (when forced to
commit to a mixed strategy to which the other team has a chance to respond), as compared
with a virtual player (in the same situation).

3 The Defensive Gaps and the Duality Gap

I Theorem 1. gap2,k = 2(1− 21−k), and for every m > 2, 2(1−m−(1−o(1))k) ≤ gapm,k ≤
2(1−m1−k). (The “o(1)” being w.r.t. k.) More specifically:
1. Upper bound on the defensive gaps and duality gap:

For any m ≥ 2, and for any T having action spaces of size m, gapA(T ) ≤ (1 −
ValT/‖T‖∞)(1−m1−k) and gapB(T ) ≤ (1 + ValT/‖T‖∞)(1−m1−k).

2. Lower bound on the duality gap:
(a) gap2,k ≥ 2(1− 21−k).
(b) For every m > 2 there is a function ε(k) tending to 0 as k →∞, such that gapm,k ≥

2(1−m−(1−ε(k))k).

Henceforth scale any T 6= 0 so that ‖T‖∞ = 1.

Proof.
Part (1): Upper Bounds on gapA(T ), gapB(T ) and gapm,k.

It suffices to show the claim for gapA. The claim for gapB follows by negating all entries
of T , reversing the roles of the teams and applying the claim for gapA. The claim for
the duality gap follows because gap(T ) = gapA(T ) + gapB(T ).
We start with the casem = 2. Given an arbitrary coordinated mixed strategy P for team
A, we wish to "round" it to a rank-one probability tensor (a product distribution) that
does no worse than the claimed defensive gap. The natural candidate for rounding would
be the approximation by independent random variables having the same marginals as
P . That is, set

p1 =
∑

i2,...,ik

P 0,i2,...,ik , p2 =
∑

i1,i3,...,ik

P i1,0,i3,...,ik , etc. (3.1)

and, letting

p = (p1, 1− p1)⊗ . . .⊗ (pk, 1− pk), (3.2)

use p as the rank-one strategy replacing P , and use it to bound the defensive gap. It
turns out that this approach cannot be used to prove any bound on the defensive gap.
Surprisingly, there is a less obvious rank-one strategy which can be obtained from P and
which provides a tight bound on the defensive gap.
For 0 ≤ x ≤ 1/2 set

β(x) = (2x)1/k

2 (3.3)

and for 1/2 < x ≤ 1 set β(x) = 1− β(1− x). (Observe that β is increasing.)
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Then use the rank-one strategy:

p̃ = (β(p1), β(1− p1))⊗ . . .⊗ (β(pk), β(1− pk)) (3.4)

We now claim that for every I, p̃I ≥ 21−kP I . We show this for I = 0; all other I follow
by the same argument. First note that for every 1 ≤ i ≤ k, pi ≥ P 0, and therefore
β(pi) ≥ β(P 0). So p̃0 = β(p1) · · ·β(pk) ≥ β(P 0)k. Now there are two cases. If P 0 ≤ 1/2
then β(P 0)k = 21−kP 0 as desired. If P 0 > 1/2 then β(P 0)k = (1 − 1

2 (2 − 2P 0)1/k)k.
Showing this is ≥ 21−kP 0 is equivalent to showing that

(2− (2P 0)1/k)k ≥ 2− 2P 0. (3.5)

Let ε = (2P 0)1/k−1 and note 0 ≤ ε ≤ 1. Then (3.5) is equivalent to (1−ε)k +(1+ε)k ≥ 2
which holds by the power-mean inequality (for k vs. 1).
From p̃I ≥ 21−kP I for every I and from ‖T‖∞ ≤ 1, we have that for every J :

p̃ITJ
I ≤ 1− 21−k + 21−kP ITJ

I (3.6)

which (upper bounding P ITJ
I by ValT , and subtracting ValT from each side) completes

the proof for m = 2.
The same proof technique works form > 2, only there is more flexibility in the function β.
Given that in an optimal virtual-player distribution P for Team A, the marginal distribu-
tion of player i is pi(0), . . . , pi(m−1), we require a new distribution βi(0), . . . , βi(m−1) for
player i such that for every `, βi(`)k ≥ m1−kpi(`), which is to say, βi(`) ≥ (mpi(`)1/k)/m.
Such a distribution exists due to the inequality

∑
`(mpi(`))1/k/m ≤ 1, which holds be-

cause by the power-mean inequality (
∑

`(mpi(`))1/k/m)k ≤
∑

`(mpi(`))/m = 1. The
rest of the details are as for m = 2.

Part (2a): Lower Bound on gap2,k.
Write 0 = (0, . . . 0) and 1 = (1, . . . 1).
Consider the following tensor.
I Example 2.

G0
I =

{
−1 if I = 0
1 otherwise

G1
I =

{
−1 if I = 1
1 otherwise

GJ
0 =

{
1 if J = 1
−1 otherwise

GJ
1 =

{
1 if J = 0
−1 otherwise

GJ
I = 0 for all other I,J

(3.7)

An informal description of this game is that if both Team A and Team B choose actions
in {0,1}, then the outcome is as it would be in the "matching pennies" game. If just one
of the teams chooses an action in {0,1}, then that team wins. If neither team chooses
an action in {0,1}, then the game is a tie.
(We incidentally note that the proof of Part (2a) does not depend on setting entries to
0 in the last line of 3.7; the argument will go through with each entry taking any value
in [−1, 1].)

ITCS 2017
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Now consider any strategy p = (p1, . . . , pk) for Team A (recall these are the probabilities
of action 0). The expected payoff for action J = 0 of Team B is

G0
p = 1− 2p1 · · · pk

The expected payoff for J = 1 is

G1
p = 1− 2(1− p1) · · · (1− pk)

By the arithmetic-geometric mean inequality, G0
p ≥ 1 − 2( 1

k

∑
pi)k and G1

p ≥ 1 −
2( 1

k

∑
(1− pi))k. So

1−max{G0
p , G

1
p}

2 ≤ min{( 1
k

∑
pi)k, ( 1

k

∑
(1− pi))k}

equivalently(
1−max{G0

p , G
1
p}

2

)1/k

≤ min{1
k

∑
pi,

1
k

∑
(1− pi)}

The RHS is at most 1/2. So minp max{G0
p , G

1
p} ≥ 1− 21−k.

A similar argument applied to the strategy q of Team B establishes that
maxq min{Gq

0, G
q
1} ≤ −1+21−k. Adding the two contributions, Part (2a) of the theorem

follows.
Part (2b): Lower Bound on gapm,k, m > 2.

Proof: We non-constructively exhibit a game establishing the lower bound. We start
by selecting, for a function g(m) to be specified, g(m) strings S = (s1, . . . , sg(m)), each
sj chosen independently and uniformly in {0, . . . ,m− 1}k (Think of m as arbitrary but
fixed while k →∞). The first idea of the proof lies in the interesting fact that with high
probability, this set (whose size is independent of k) has the property that any product
distribution may place probability more than m−k(1−o(1)) on at most ∼ log g(m) strings
in S.
To describe the second idea, we start by associating the strings of S with players in a
tournament. (A tournament is a digraph in which there is one directed edge between
every pair of distinct vertices.) The game is then as follows. Associate the strings of S
with the vertices of the tournament in an arbitrary way. If neither team chooses a string
in S, the game is a tie. If one team chooses a string in S and the other does not, the first
team wins. If both teams choose strings in S, the winning vertex is that which points
toward the other (with a tie for identical strings). In all cases a win means a payoff of 1
and a tie a payoff of 0.
Key to the second idea is that by a result of Erdös [5] (later constructively in [6]) it is
possible to choose the tournament so that it has no dominating set of size ∼ log g(m).
(A set of vertices is dominating if every vertex outside the set is pointed to by at least
one vertex in the set.)
Now we claim that whichever team goes second can achieve payoff 1−m−(1−o(1))k. The
argument is the same for both teams, so say Team A goes first and let p be its product
strategy. Let R be the ∼ log g(m) strings in S accorded highest probability in p; all
other strings of S have probability less than m−(1−o(1))k. Team B responds to p with an
s ∈ S which dominates all of R. Team B wins unless Team A selects an s′ ∈ S −R (and
sometimes even then). The payoff to Team B is therefore at least 1 − g(m)m−(1−o(1))k

which is at least 1−m−(1−o(1))k. J
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4 Order Refinements

It is natural to consider a more general scenario in which players of the two teams commit
to their strategies in some (not necessarily strict) alternation. That is to say, let π be any
bijection from {1, . . . , 2k} to {A1, . . . , Ak, B1, . . . , Bk}. If π(`) = Ai for some i then letM(`)
be the quantifier minpi ; if π(`) = Bj for some j then let M(`) = maxqj . Then the value of
game T with respect to order π is defined to be

V (T, π) = M(1) . . .M(2k)T q
p .

In particular, let πAB be an order in which all the members of Team A go first, that
is, πAB(`) = A` for ` ≤ k, and πAB(`) = B`−k for ` > k. (Note that V is invariant under
exchange of same-team players with adjacent quantifiers.) Likewise let πBA be an order in
which Team B goes first. Then the duality gap of game T is

gap(T ) = V (T, πAB)− V (T, πBA).

We now ask how much V may change when we change π by a single adjacent transposition.
A natural place to study this question is in symmetric games, by which we mean games

invariant under permutation of the actions taken by members of a team. Even in this
restrictive setting, a wide range of behaviors can occur.

For one extreme, we return to the game G of Example 2. We show that for any k, the
order of the first three players can affect the outcome decisively.

I Lemma 3. If ` ≥ 3 is the first time that Team B plays in π, then V (G, π) ≥ 1/2. Likewise
if ` ≥ 3 is the first time that Team A plays in π, then V (G, π) ≤ −1/2.

For the other extreme, we have:

I Theorem 4. There exist symmetric team games with any k ≥ 1 players per team, with
duality gap bounded away from 0 (as a function of k), but in which any adjacent transposition
in the order of play changes the value of the game only by O(1/k).

Proofs of the lemma and theorem will be provided in the journal version of the paper.

5 Discussion

We have characterized the possible range of the duality gap. The examples which achieved
large gap were highly structured. It would be interesting to find natural conditions on a
game (particularly a symmetric game) that ensure small duality gap.

It would be interesting to extend our inquiry to teams (possibly more than two) com-
peting in non-zero-sum games.
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