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Abstract
Research on the expressiveness of coalgebraic modal logics with respect to semantic equivalence
notions has so far focused mainly on finding logics that are able to distinguish states that are
not behaviourally equivalent (such logics are said to be expressive). In other words, the notion
of behavioural equivalence is taken as the starting point, and the expressiveness of the logic is
evaluated against it. However, for some applications, modal logics that are not expressive are
of independent interest. Such an example is given by contingency logic. We can now turn the
question of expressiveness around and ask, given a modal logic, what is a suitable notion of
semantic equivalence? In this paper, we propose a notion of Λ-bisimulation which is parametric
in a collection Λ of predicate liftings. We study the basic properties of Λ-bisimilarity, and prove
as our main result a Hennessy-Milner style theorem, which shows that (for finitary functors)
Λ-bisimilarity exactly matches the expressiveness of the coalgebraic modal logic arising from Λ.
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1 Introduction

Coalgebraic modal logic, as in [21, 13], is a framework in which modal logics for specifying
coalgebras can be developed parametric in the signature of the modal language and the
coalgebra type functor T . Given a base logic (usually classical propositional logic), modalities
are interpreted via so-called predicate liftings for the functor T . These are natural transform-
ations that turn a predicate over the state space X into a predicate over TX. Given that
T -coalgebras come with general notions of T -bisimilarity [23] and behavioral equivalence
[14], coalgebraic modal logics are designed to respect those. In particular, if two states are
behaviourally equivalent then they satisfy the same formulas. If the converse holds, then the
logic is said to be expressive. and we have a generalisation of the classic Hennessy-Milner
theorem [9] which states that over the class of image-finite Kripke models, two states are
Kripke bisimilar if and only if they satisfy the same formulas in Hennessy-Milner logic.

General conditions for when an expressive coalgebraic modal logic for T -coalgebras exists
have been identified in [22, 3, 24]. A condition that ensures that a coalgebraic logic is
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4:2 Bisimulation for weakly expressive coalgebraic modal logics

expressive is when the set of predicate liftings chosen to interpret the modalities is separating
[22]. Informally, a collection of predicate liftings is separating if they are able to distinguish
non-identical elements from TX. This line of research in coalgebraic modal logic has thus
taken as starting point the semantic equivalence notion of behavioral equivalence (or T -
bisimilarity), and provided results for how to obtain an expressive logic. However, for some
applications, modal logics that are not expressive are of independent interest. Such an
example is given by contingency logic (see e.g. [6, 19]). We can now turn the question of
expressiveness around and ask, given a modal language, what is a suitable notion of semantic
equivalence?

In this paper, we propose a notion of Λ-bisimulation which is parametric in a collection Λ
of predicate liftings, and therefore tailored to the expressiveness of a given coalgebraic modal
logic. The definition relies on the notion of Z-coherent pairs, where Z is a relation between the
state spaces of the relevant coalgebras. Coherent pairs were introduced in [8] when studying
coalgebraic semantic equivalence notions in neighbourhood frames. In particular, we see that
if T is the neighbourhood functor and Λ consists of the usual neighbourhood modality, then
Λ-bisimulation amounts to the notion of precocongruence for neighbourhood frames from
[8]. We observe that coherent pairs have an abstract characterisation in terms of pullbacks
and pushouts which makes it possible to prove most of our results using general category
theoretical arguments. This suggests to us that Λ-bisimulations are a natural concept, which
may be useful when considering coalgebraic modal logics over other categories than Sets.
Moreover, we show that Λ-bisimulations, like T -bisimulations, form a complete lattice, and
we show how they relate to T -bisimulations, behavioural equivalences and precocongruences.
We also discuss their relationship to similar notions proposed by Gorin & Schröder [7] and
Enqvist [4]. Our main result is a finitary Hennessy-Milner theorem (which does not assume
Λ is separating): If T is finitary, then two states are Λ-bisimilar if and only if they satisfy
the same modal Λ-formulas.

Overview. In Section 2 we fix notation and introduce the notion of coherent sets. In
Section 3 we define our notion of Λ-bisimulation, study its properties, and relate it to other
existing equivalence notions. Our Hennessy-Milner theorem is proved in Section 4. The
paper concludes with a discussion of future and related work in Section 5.

2 Preliminaries

We will work in the category Sets of sets and functions. The contravariant powerset functor
Q : Sets→ Setsop sends a set X to the powerset of X and a function f : X → Y to the inverse
image map Qf = f−1 : QY → QX. We assume familiarity with basic coalgebraic concepts
and only provide the basic definitions. For an introduction, we refer to [23]. Given a functor
T : Sets → Sets, a T -coalgebra is a pair (X, γ : X → TX). A T -coalgebra morphism from
(X, γ) to (Y, δ) is a function f : X → Y such that Tf ◦ γ = δ ◦ f .

2.1 Coalgebraic modal logic
Coalgebraic modal logic [21] is a uniform framework in which modal logics for coalgebras
can be developed parametric in the type functor T and a choice of predicate lifting.

Syntax. Given a similarity type Λ, which is a set of modal operators with finite arities, we
define the syntax of coalgebraic modal logic as follows.
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I Definition 1. The set LΛ of Λ-formulas is generated by the following grammar:

LΛ 3 ϕ ::= > | ¬ϕ | ϕ ∧ ϕ | ♥(ϕ, . . . , ϕ︸ ︷︷ ︸
n times

) (♥ ∈ Λ, n-ary)

We use the standard definitions of the Boolean operators ⊥,∨ and →.

A T -coalgebraic semantics of LΛ-formulas is given by providing a Λ-structure
(T, ([[♥]])♥∈Λ) where T is a functor on Sets, and for each n-ary ♥ ∈ Λ, [[♥]] is an n-ary
predicate lifting, i.e., [[♥]] : Qn ⇒ QT is a natural transformation. Different choices of
predicate liftings yield different Λ-structures and consequently different logics.

Semantics. Given a Λ-structure (T, ([[♥]])♥∈Λ), the truth of LΛ-formulas in a T -coalgebra
X = (X, γ : X → TX) is defined as follows:

X, x |= > always
X, x |= ¬ϕ iff X,x 6|= ϕ

X, x |= ϕ ∧ ψ iff X, x |= ϕ and X, x |= ψ

X, x |= ♥(ϕ1, . . . , ϕn) iff γ(x) ∈ [[♥]]X([[ϕ1]]X, . . . , [[ϕn]]X).

where [[ϕ]]X = {x ∈ X | X, x |= ϕ} for all ϕ ∈ LΛ. Two states x in X and y in Y are modally
equivalent (notation: X, x ≡Λ Y, y), if they satisfy the same LΛ-formulas, i.e., X, x ≡Λ Y, y
if for all ϕ ∈ LΛ, X, x |= ϕ iff Y, y |= ϕ.

Pattinson in [22] introduced the notion of a separating set of predicate liftings when
studying expressive logics.

I Definition 2. A set ([[♥]])♥∈Λ of predicate liftings for a functor T is separating (for T )
if every t ∈ TX is uniquely determined by the set {((A1, ..., An),♥) ∈ (PX)n × Λ | t ∈
[[♥]]X(A1, ..., An)}. That is, if t1, t2 ∈ TX and t1 6= t2 then there is an n-ary ♥ ∈ Λ and
A1, . . . , An ∈ PX such that t1 ∈ [[♥]](A1, . . . , An) and t2 /∈ [[♥]](A1, . . . , An), or vice versa.

We provide some examples of modal languages and their coalgebraic semantics.

I Example 3. Coalgebras for the covariant powerset functor P are Kripke frames. The
similarity type Λ = {�} for the basic modal language (without proposition letters) is given
the usual Kripke semantics by interpreting � via the predicate lifting [[�]]X(A) = {B ∈ PX |
B ⊆ A}, which is separating for P, cf. [22].

Proposition letters can be included in the language by interpreting them as nullary
predicate liftings. More precisely, given a set AtProp of proposition letters, the basic modal
language over AtProp is obtained from the similarity type Λ = {�} ∪ AtProp, This language
is given its usual semantics in Kripke models which are coalgebras for the functor TX =
P(X) × P(AtProp) by taking the Λ-structure (T, ([[♥]])♥∈Λ) where [[�]]X(A) = {(B,P ) ∈
P(X)× P(AtProp) | B ⊆ A} and [[p]]X(A) = {(B,P ) ∈ P(X)× P(AtProp) | p ∈ P}.

I Example 4. The language of contingency logic [6] corresponds to the modal similarity
type Λ = {∆} and it is interpreted over Kripke frames (i.e. P-coalgebras) via the predicate
lifting [[∆]]X(A) = {B ∈ PX | B ⊆ A or B ⊆ Ac}. It is straightforward to check that [[∆]] is
not separating for P.

I Example 5. Neighbourhood frames are coalgebras for the functor N = QopQ. We obtain
the neighbourhood semantics of the basic modal language, where Λ = {�}, by taking
[[�]]X(A) = {B ∈ NX | A ∈ B}, which is separating for N .

CALCO 2017



4:4 Bisimulation for weakly expressive coalgebraic modal logics

I Example 6. Neighbourhood semantics of contingency logic [5] is obtained by taking T = N ,
Λ = {∆}, and [[∆]]X(X) = {B ∈ NX | A ∈ B or Ac ∈ B}. As in the Kripke case, [[∆]] is not
separating for N .

I Example 7. The language of instantial neighbourhood logic (INL) [25] arises from the
similarity type Λ = {�n | n ∈ N} where �n is n + 1-ary for all n ∈ N. The semantics of
instantial neighbourhood logic is obtained by taking T = PP and [[�n]]X(A1, ..., An, B) =
{N ∈ PPX | ∃U ∈ N : U ⊆ B and for all i = 1, . . . , n : U ∩ Ai 6= ∅}. The collection
{[[�n]] | n ∈ N} is separating for PPω, where Pω(X) are all finite subsets of X: Suppose
N,N ′ ∈ P(Pω(X)) and B ∈ N \N ′ with B = {x1, . . . , xn}. Then [[�n]]({x1}, . . . , {xn}, B)
contains N , but not N ′. It is not hard to see that any finite subset of {[[�n]] | n ∈ N} is not
separating for PPω.

2.2 Relations and Coherence
Let R ⊆ X × Y be a relation. The converse of R is written R−1 ⊆ Y ×X. The R-image
of U ⊆ X is the set R[U ] = {y ∈ Y | ∃x ∈ U : (x, y) ∈ R}. If R ⊆ X ×X is an equivalence
relation, then we write [x]R (or simply [x]) for the equivalence class of x. The composition
of R ⊆ X × Y and S ⊆ Y × Z is R;S ⊆ X × Z.

We will use pullbacks and pushouts in what follows. We recall the concrete constructions in
Sets, and refer to [17] for the general definitions. In Sets, a pullback (B, gl : B → X, gr : B →
Y ) of two functions fl : X → Z and fr : Y → Z can be concretely constructed by taking
B = pb(fl, fr) = {(x, y) ∈ X × Y | fl(x) = fr(y)} and gl = π′l : B → X and gr = π′r : B → Y

to be the projections. Pushouts are the dual notion of pullbacks. Given a relation R ⊆ X×Y
the pushout of the projections πl : R→ X and πr : R→ Y , is obtained concretely as follows.

The relation R can be seen as a relation RX+Y on the coproduct X + Y by composing
the projections with the coproduct injections inl : X → X + Y and inr : Y → X + Y . More
precisely, RX+Y = (inl × inr)(R) = {(inl(x), inr(y)) | (x, y) ∈ R}. Let R be the smallest
equivalence relation on X + Y that contains RX+Y . Then we take P = (X + Y )/R to be
the set of R-equivalence classes with associated quotient map q : X + Y → P , and we take
pl = q ◦ inl : X → P , pr = q ◦ inr : Y → P . Then (P, pl, pr) is a pushout of πl and πr. The
situation is illustrated with the diagram below.

Rπl

��

πr

��

X
inl //

pl ,,

X + Y

q

��

Y
inroo

prrrP

Our definition of Λ-bisimulation relies on the notion of coherent pairs, which was intro-
duced in [8]. We recall the definition and some basic facts.

I Definition 8 (R-coherent pairs). Let R ⊆ X ×Y be a relation with projections πl : R→ X

and πr : R→ Y , and let U ⊆ X and V ⊆ Y . The pair (U, V ) is R-coherent if R[U ] ⊆ V and
R−1[V ] ⊆ U . In case R ⊆ X ×X and U ⊆ X, then we say that U is R-coherent if (U,U) is
R-coherent.

Note that if R is an equivalence relation on a set X and U ⊆ X, then U is R-coherent iff
U is R-closed, i.e., U is a union of R-equivalence classes. We make some easy, but useful
observations. Further properties of coherent sets may be found in Lemma 2.2 and 2.3 of [8].
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I Lemma 9.
1. Let R ⊆ X ×Y be a relation with projections πl : R→ X and πr : R→ Y , and let U ⊆ X

and V ⊆ Y . The following are equivalent:
(a) (U, V ) is R-coherent.
(b) π−1

l [U ] = π−1
r [V ].

(c) (U, V ) is in the pullback of Qπl and Qπr.
(d) for all (x, y) ∈ R, x ∈ U iff y ∈ V .
(e) U + V is RX+Y -coherent.

2. If R ⊆ X ×X is reflexive and (U, V ) is R-coherent, then U = V .

Due to Lemma 9(1.c), we will refer to the concrete pullback (pb(Qπl, Qπr), π′l, π′r) as the
pullback of R-coherent pairs.

The following lemma shows that there is a fundamental connection between coherent
pairs and pushouts of relations. It is also key in proving Propositions 20 and 21 later.

I Lemma 10. Let R ⊆ X × Y be a relation, and let (P, pl, pr) be the pushout of R. The
triple (QP,Qpl, Qpr) is also pullback of (QR,Qπl, Qπr), and hence it is isomorphic to
(pb(Qπl, Qπr), π′l, π′r), the pullback of R-coherent pairs.

Proof. This lemma holds for the general reason that the contravariant powerset functor
Q : Sets → Setsop is a left adjoint of itself, more precisely of Qop : Setsop → Sets, and that
left adjoints preserve colimts. Hence Q turns the pushout into a pullback. Since pullbacks
are unique up to isomorphism, the result follows. The isomorphism is given concretely by
the map h : QP → pb(Qπl, Qπr) defined for all A ∈ QP by h(A) = (Qpl(A), Qpr(A)). We
verify that (Qpl(A), Qpr(A)) is R-coherent. So let (x, y) ∈ R. It follows that pl(x) = pr(y),
and hence x ∈ Qpl(A) iff pl(x) ∈ A iff pr(y) ∈ A iff y ∈ Qpr(A). To see that h is injective,
suppose A,A′ ⊆ P and a ∈ A \A′. The maps pl and pr are jointly surjective. If a ∈ pl[X],
then there is a x ∈ Qpl(A) such that pl(x) = a. If also x ∈ Qpl(A′), then pl(x) = a ∈ A′, a
contradiction. Similarly, if a ∈ pr[Y ], then there is a y ∈ Qpr(A) such that pr(y) = a, and
it must be the case that y /∈ Qpr(A′). Hence h(A) 6= h(A′). To see why h is surjective, it
can be verified that if (U, V ) is R-coherent, and we take A ⊆ P to be A = pl[U ] ∪ pr[V ],
then h(A) = (U, V ). For example, to see why Qpl(pl[U ]) = U , first note that the inclusion ⊇
always holds. Equality follows from the fact that (U, V ) is R-coherent. Finally, we remark
that (QP,Qpl, Qpr) is a competitor to the pullback of R-coherent pairs precisely because
(Qpl(A), Qpr(A)) is R-coherent for all A ⊆ P . J

3 Λ-bisimulation

In this section, we introduce the notion of Λ-bisimulation between T -coalgebras, and investig-
ate its properties. This notion is parametric in the choice of a signature Λ and a Λ-structure
(T, ([[♥]])♥∈Λ). In the remaining part of the paper, we therefore assume that we have fixed
a functor T : Sets → Sets, and for each ♥ ∈ Λ, a predicate lifting [[♥]] of appropriate arity.
From now on, by abuse of language, we will also refer to Λ as the set of these predicate
liftings. Moreover, we let X = (X, γ) and Y = (Y, δ) denote arbitrary T -coalgebras.

3.1 Definition and Basic Properties

Our definition of Λ-bisimulations is as follows.

CALCO 2017



4:6 Bisimulation for weakly expressive coalgebraic modal logics

I Definition 11 (Λ-bisimulation ). Let Z ⊆ X×Y be a relation and let (pb(Qπl, Qπr), πl, πr)
be the associated pullback of Z-coherent pairs. The relation Z is a Λ-bisimulation between
X and Y, if for all ♥ ∈ Λ, with ♥ n-ary:

Qπl ◦Qγ ◦ [[♥]]X ◦ π
n
l = Qπr ◦Qδ ◦ [[♥]]Y ◦ π

n
r (1)

where πnl : pb(Qπl, Qπr)n → (QX)n and πnr : pb(Qπl, Qπr)n → (QY )n are the pointwise
projections, for example, πl((U1, V1), . . . , (Un, Vn)) = (U1, . . . , Un). In other words, the
relation Z is a Λ-bisimulation if whenever (x, y) ∈ Z, then for all ♥ ∈ Λ, n-ary, and all
Z-coherent pairs (U1, V1), . . . , (Un, Vn), we have that

γ(x) ∈ [[♥]]X(U1, . . . , Un) iff δ(y) ∈ [[♥]]Y (V1, . . . , Vn). (Coherence)

We write X, x ∼Λ Y, y, if there is a Λ-bisimulation between X and Y that contains (x, y).
A Λ-bisimulation on a T -coalgebra X is a Λ-bisimulation between X and X.

The next lemma provides an easy observation about dual modal operators that we will
use further in the examples.

I Lemma 12. Let ♥,♥′ ∈ Λ be two n-ary dual modalities, that is ♥ = ¬♥′¬. A relation Z
is a ♥-bisimulation between X and Y iff Z is a ♥′-bisimulation between X and Y.

Proof. First, ♥ = ¬♥′¬ means that for all sets W , and all A1, . . . , An ⊆ W , we have that
[[♥]]W (A1, . . . , An) = ([[♥′]]W (Ac1, . . . , Acn))c. We note that if Z ⊆ X×Y , U ⊆ X and V ⊆ Y ,
then the pair (U, V ) is Z-coherent iff (U c, V c) is Z-coherent. Hence, γ(x) ∈ [[♥]]X(U1, ..., Un)
iff γ(x) /∈ [[♥′]]X(U c1 , ..., U cn) iff δ(y) /∈ [[♥′]]Y (V c1 , ..., V cn ) iff δ(y) ∈ [[♥]]Y (V1, ..., Vn). J

We provide some examples of our notion of Λ-bisimulation.

I Example 13. Taking T = P (i.e. T -coalgebras are Kripke frames) and Λ = {�} (or
Λ = {♦}), then a relation Z between Kripke frames X = (X, γ) and Y = (Y, δ) is a �-
bisimulation if for all (x, y) ∈ Z and all Z-coherent pairs (U, V ): γ(x) ⊆ U iff δ(y) ⊆ V . An
easy proof shows that if Z is a Kripke bisimulation then Z is a �-bisimulation. However,
a Λ-bisimulation may not be a Kripke bisimulation. Consider the following Kripke frames:
X = (X, γ) and Y = (Y, δ), where X = {x, x1, x2}, γ(x) = {x1}, Y = {y, y1, y2} and δ(y) =
{y1, y2}. It can be easily checked that the relation Z = {(x, y), (x1, y1), (x2, y1), (x2, y2)}
is a �-bisimulation, but it is not a Kripke bisimulation, since the successor y2 of y is not
related to a successor of x. The situation is depicted below on the left, where Z is indicated
by dashed lines. Still, when considering the associated bisimilarity notions, we find that
Λ-bisimilarity coincides with Kripke bisimilarity. This follows from our Proposition 22, using
that � (and ♦) is separating and P preserves weak pullbacks.

This choice of T and Λ demonstrates that, in general, Λ-bisimulations are not closed
under relational composition. To see this, let X = (X, γ), Y = (Y, δ) and W = (W,α) be the
three Kripke frames depicted below on the right together with the two relations Z1 ⊆ X × Y
and Z2 ⊆ Y ×W (indicated by dashed lines): It is straightforward to check that Z1 and Z2
are Λ-bisimulations, but the composition Z1;Z2 = {(x,w)} is not, because ({x, x1}, {w}) is
Z1;Z2-coherent and γ(x) 6⊆ {x, x1} and γ(x) 6⊆ {x2}, whereas α(w) ⊆ {w}.

x

x1x2

X Y
y

y1 y2

x y w

x1 x2 y1

X Y W

Z1 Z2

Z1

Z1
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I Example 14. Taking T = N (i.e. neighbourhood frames) and Λ = {�}, where � is the
neighbourhood modality from Example 5, we find that a relation Z is a �-bisimulation
between neighbourhood frames X = (X, γ) and Y = (Y, δ) if for all (x, y) ∈ Z and all
Z-coherent (U, V ): U ∈ γ(x) iff V ∈ δ(y). This shows that Λ-bisimulations are the same as
precocongruences which were introduced in [8], due to [8, Proposition 3.16]. We will discuss
the relation between precocongruences and Λ-bisimulations further in subsection 3.2.

I Example 15. Taking T = P and Λ = {∆}, where ∆ is the contingency modality from
Example 4, then a Z is ∆-bisimulation between Kripke frames X = (X, γ) and Y = (Y, δ) if for
all (x, y) ∈ Z and all Z-coherent (U, V ): γ(x) ⊆ U or γ(x) ⊆ U c iff δ(y) ⊆ V or δ(y) ⊆ V c.
This is exactly the definition of a rel-∆-bisimulation which was introduced in [2]. Prop. 3.4
in [6] tells us that ∆-bisimilarity does not imply �-bisimilarity. Note that in [2] the relation
∼Λ is denoted ∼betw

∆ .

I Example 16. Taking T = N and Λ = {∆}, where ∆ is the neighbourhood contingency
modality from Example 6, then by instantiating (Coherence) for ∆, we have that Z is a
∆-bisimulation between neighbourhood frames X = (X, γ) and Y = (Y, δ) if for all (x, y) ∈ Z
and all Z-coherent (U, V ): U ∈ γ(x) or U c ∈ γ(x) iff V ∈ δ(y) or V c ∈ δ(y). This is exactly
the definition of a nbh-∆-bisimulation which was introduced in [2].

The following proposition shows that Λ-bisimulations enjoy many of the properties known
to hold for Kripke bisimulations. In particular, even though Λ-bisimulations do not need to
be closed under composition (cf. Example 13), we can still show that on a single T -coalgebra,
∼Λ is an equivalence relation.

I Proposition 17. Let X = (X, γ) and Y = (Y, δ) be T -coalgebras.
1. The identity relation Id ⊆ X ×X is a Λ-bisimulation on X.
2. If Z ⊆ X×Y is a Λ-bisimulation between X and Y then Z−1 ⊆ Y ×X is a Λ-bisimulation

between Y and X.
3. Λ-bisimulations are closed under arbitrary unions: If Zi ⊆ X × Y , i ∈ I, are Λ-

bisimulations, then so is
⋃
i∈I Zi.

4. The relation ∼Λ is the largest Λ-bisimulation between X and Y.
5. The relation ∼Λ on X is an equivalence relation.

Proof.
Item 1-2: are straightforward to check. We omit the details.
Item 3: Let Zi ⊆ X × Y , i ∈ I, be Λ-bisimulations, and let Z =

⋃
i∈I Zi. To show that Z is

a Λ-bisimulation, assume that (x, y) ∈ Z, ♥ ∈ Λ, and (U, V ) is a Z-coherent pair. From
(x, y) ∈ Z it follows that (x, y) ∈ Zi for some i ∈ I, and since Zi ⊆ Z we also have that
(U, V ) is Zi-coherent. Hence γ(x) ∈ J♥KX(U) ⇐⇒ δ(y) ∈ J♥KX(V ). Which implies
that Z is a Λ-bisimulation.

Item 4: Follows immediately from item 3.
Item 5: We show that if Z is a Λ-bisimulation on X, then the equivalence closure of Z is

again a Λ-bisimulation on X, which suffices due to item 4. So let Z be a Λ-bisimulation
on X. By items 1 and 2, we may assume that Z is reflexive and symmetric. The result
follows by showing that the transitive closure Z+ =

⋃
n≥1 Z

n is a Λ-bisimulation. Due
to item 3 it suffices to show that for all n ≥ 1, Zn is a ∆-bisimulation. The proof is
by induction on n. The base case (n = 1) holds by assumption on Z. Assume it holds
for n. Induction step (n + 1): First note that if (U,U ′′) is Zn+1-coherent, then since
Zn+1 is reflexive, it follows that U = U ′′. Now suppose (x, x′) ∈ Zn, (x′, x′′) ∈ Z and
(U,U) is Zn+1-coherent. Since Z and Zn are reflexive and Zn+1 = Zn;Z, it follows that

CALCO 2017
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Z ⊆ Zn+1 and Zn ⊆ Zn+1, and hence (U,U) is Z-coherent as well as Zn-coherent. We
then have

γ(x) ∈ [[♥]]X(U) ⇐⇒ γ(x′) ∈ [[♥]]X(U) (by induction hypothesis)
⇐⇒ γ(x′′) ∈ [[♥]]X(U) (since Z is a Λ-bisimulation).

Hence Zn+1 is a Λ-bisimulation which concludes the proof. J

Λ-bisimulations were designed to match the expressiveness of the modal language. In the
next proposition we show that indeed, Λ-bisimilar states satisfy the same LΛ-formulas.

I Proposition 18. If X, x ∼Λ Y, y then X, x ≡Λ Y, y.

Proof. Let X, x ∼Λ Y, y, so there exists a Λ-bisimulation Z ⊆ X × Y such that (x, y) ∈ Z.
The proof is by induction on ϕ. The only interesting part is the modal case of the inductive
step. Assume that ϕ is of the form ♥ψ. By induction hypothesis, ([[ψ]]X, [[ψ]]Y) is Z-coherent.
Since Z is a Λ-bisimulation, we have γ(x) ∈ [[♥]]X([[ψ]]X) iff δ(y) ∈ [[♥]]Y ([[ψ]]Y), which means
that X, x |= ♥ψ iff Y, y |= ♥ψ. J

3.2 Comparison with other notions
In this part, we compare our notion of Λ-bisimulation to the established notions of T -
bisimulations and behavioural equivalence. It turns out that Λ-bisimulations are closest to
the notion called precocongruences in [8]. Finally, we also compare our notion to other similar
proposals by Gorín and Schröder [7].

First we recall the definitions of behavioural equivalence, T -bisimulations and precocon-
gruences.

I Definition 19. Let X = (X, γ) and Y = (Y, δ) be T -coalgebras.
Behavioural equivalence. Two states x ∈ X and y ∈ Y are behaviourally equivalent
(notation: X, x ∼bh Y, y), if there is a T -coalgebra E = (E, ε) and a pair of T -coalgebra
morphisms f : X→ E and g : Y→ E such that f(x) = g(y).
T -bisimulation. A relation Z ⊆ X × Y is a T -bisimulation between X and Y , if there
exists a function ζ : Z → TZ such that the projections πl : Z → X and πr : Z → Y are
T -coalgebra morphisms, i.e., the diagram in Figure 1a commutes. Two states x ∈ X and
y ∈ Y are T -bisimilar (notation: X, x ∼T Y, y) if there is a T -bisimulation between X
and Y linking x and y.
Precocongruence. Let Z ⊆ X × Y be a relation with pushout (P, pl, pr). Z is a precocon-
gruence between X and Y if there exists a function ρ : P → TP such that the pushout
morphisms pl : X → P and pr : Y → P are T -coalgebra morphisms, i.e., if the diagram in
Figure 1b commutes. If two states x ∈ X and y ∈ Y are related by some precocongruence,
we write X, x ∼p Y, y.

In the following proposition we give the first comparison between precocongruences,
T -bisimulations and Λ-bisimulations.

I Proposition 20. Let X = (X, γ) and Y = (Y, δ) be T -coalgebras, and Z be a relation
between X and Y .
1. If Z is a T -bisimulation then Z is a Λ-bisimulation.
2. If Z is a precocongruence then Z is a Λ-bisimulation.
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(a) Z is a T -bisimulation.
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(b) Z is a precocongruence.

Figure 1
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QX QZ QY

QTZ

Qζ

[[♥]]Z
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Qγ Qδ
Qπl Qπr
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(a) T -bisimulations are Λ-bisimulations.

QZ

QP
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QY

pb(Qπl, Qπr)n

(QX)n (QP )n (QY )n

QTP
QTpl QTpr

Qρ

[[♥]]P

Qpl

Qπl Qπr

Qpr

Qγ Qδ

[[♥]]X [[♥]]Y
(Qpl)n (Qpr)n

πnl πnr

gn

(b) Precocongruences are Λ-bisimulations.

Figure 2

Proof.
Item 1: Apply Q to the diagram of T -bisimulation (Figure 1a), and take the pullback of

Qπl and Qπr. Then, by naturality of [[♥]], and the fact that πl and πr are coalgebra
morphisms, the diagram in Figure 2a commutes and hence, Z is a Λ-bisimulation.

Item 2: Let Z ⊆ X × Y be a precocongruence relation with pushout (P, pl, pr), and let
(U, V ) be Z-coherent. By Lemma 10, there is a map g : pb(Qπl, Qπr) → QP such that
Qpl ◦ g = πl and Qpr ◦ g = πr. Then, by naturality of [[♥]] and the fact that pl and pr
are T -coalgebra morphisms, it follows that the outer part of the diagram in Figure 2b
commutes. Hence, Z is a Λ-bisimulation. J

The next proposition shows that, if Λ is separating, then we have the converse of
Proposition 20(2).

I Proposition 21. If Λ is separating and Z ⊆ X × Y is a Λ-bisimulation between X and Y,
then Z is a precocongruence between X and Y.

Proof. Let Z ⊆ X × Y be a Λ-bisimulation with projections πl : Z → X and πr : Z →
Y , and pushout (P, pl, pr) We need to define ρ : P → TP such that ρ ◦ pl = Tpl ◦ γ
and ρ ◦ pr = Tpr ◦ δ. We obtain such a ρ from the universal property of the pushout,
if we can show that for all (x, y) ∈ Z: Tpl(γ(x)) = Tpr(δ(y)). To prove this, since Λ
is separating, it suffices to show that for arbitrary ♥ ∈ Λ, n-ary, and A1, . . . , An ⊆ P ,
Tpl(γ(x)) ∈ [[♥]]P (A1, . . . , An) iff Tpr(δ(y)) ∈ [[♥]]P (A1, . . . , An), which is equivalent to,
Qπl ◦Qγ ◦QTpl ◦ [[♥]]P = Qπr ◦Qδ ◦QTpr ◦ [[♥]]P . This holds because of the commutativity
of the diagram in Figure 21, where the map h is obtained from Lemma 10. J

CALCO 2017



4:10 Bisimulation for weakly expressive coalgebraic modal logics

QZ
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QX

QTY
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pb(Qπl, Qπr)n
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Qπl Qπr

Qγ Qδ

[[♥]]X [[♥]]Y
(Qpl)n (Qpr)n

πnl πnr

hn

Figure 3 Proof of Proposition 21.

It was shown in [8, Proposition 3.10] that, in general, T -bisimilarity implies precocon-
gruence equivalence which in turn implies behavioural equivalence. This fact together with
Proposition 21 tells us that Λ-bisimilarity implies behavioural equivalence, whenever Λ is sep-
arating. Moreover, it is well known [23] that if T preserves weak pulbacks, then T -bisimilarity
coincides with behavioural equivalence. Hence in this case, by Proposition 21, it follows
that Λ-bisimilarity coincides with T -bisimilarity and behavioural equivalence. The following
proposition summarises our discussion so far.

I Proposition 22. Let Λ be a set of predicate liftings for T .
1. X, x ∼T Y, y =⇒ X, x ∼p Y, y =⇒ X, x ∼Λ Y, y.
2. If Λ is separating, then

X, x ∼p Y, y ⇐⇒ X, x ∼Λ Y, y =⇒ X, x ∼bh Y, y.
3. If Λ is separating and T preserves weak pullbacks, then all four notions coincide:

X, x ∼T Y, y ⇐⇒ X, x ∼p Y, y ⇐⇒ X, x ∼Λ Y, y ⇐⇒ X, x ∼bh Y, y.

The next lemma states that similar to the fact that T -coalgebra morphisms preserve and
reflect behavioural equivalence, one can show that they preserve and reflect Λ-bisimilarity as
well. We will use this fact to prove the Hennessy-Milner theorem in Section 4.

I Proposition 23. If f : X→ Y is a T -coalgebra morphism, then for all x, x′ ∈ X:

X, x ∼Λ X, x′ iff Y, f(x) ∼Λ Y, f(x′).

Proof. For the direction from left to right, assume X, x ∼Λ X, x′. Then, there exists a
Λ-bisimulation Z on X such that (x, x′) ∈ Z. We show that (f × f)(Z) = {(f(x), f(x′)) ∈
Y × Y | (x, x′) ∈ Z} is a Λ-bisimulation. Let (f(x), f(x′)) ∈ (f × f)(Z) and ♥ ∈ Λ.
Note that if (U, V ) is (f × f)(Z)-coherent, then the pair (f−1[U ], f−1[V ]) is Z-coherent.
By naturality and the fact that f is a coalgebra morphism, we have δ(f(x)) ∈ [[♥]]Y (U)
iff γ(x) ∈ [[♥]]X(f−1[U ]), and δ(f(x′)) ∈ [[♥]]Y (V ) iff γ(x′) ∈ [[♥]]X(f−1[V ]). Since Z
is a Λ-bisimulation and (f−1[U ], f−1[V ]) is Z-coherent, we obtain δ(f(x)) ∈ [[♥]]Y (U) iff
δ(f(x′)) ∈ [[♥]]Y [V ]. A similar argument shows that if Z is a Λ-bisimulation on Y then
(f−1 × f−1)(Z) = {(x, x′) ∈ X ×X | (f(x), f(x′)) ∈ Z} is a Λ-bisimulation on X. J

3.2.1 Λ-bisimulations: a different approach
Gorín and Schröder introduced in [7] a similar notion of Λ-bisimulation. To distinguish their
notion from the one presented here, we refer to it as GS-Λ-bisimulation. One difference with
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our work is that Gorín and Schröder assume that Λ is a set of monotone predicate liftings.
For convenience, we recall their definition here, which can be stated without the assumption
of monotonicity. A relation Z ⊆ X × Y is a GS-Λ-bisimulation if whenever (x, y) ∈ Z then
for all ♥ ∈ Λ and for all A ⊆ X and B ⊆ Y

γ(x) ∈ [[♥]]X(A)⇒ δ(y) ∈ [[♥]]Y (Z[A]) and δ(y) ∈ [[♥]]Y (B)⇒ γ(x) ∈ [[♥]]X(Z−1[B]).

Under the assumption that all ♥ ∈ Λ are monotone, it is straightforward to show that a
GS-Λ-bisimulation is also Λ-bisimulation. Example 13 demonstrates that there exists a choice
of T and monotone Λ such that the two notions differs at the level of relations. Namely, the
relation Z given there is a Λ-bisimulation, but not a GS-Λ-bisimulation. To see this, take
A = {x1, x2}. We have that γ(x) = {x1} ⊆ A, but δ(y) = {y1, y2} 6⊆ Z[A] = {y1}. However,
one can show that under the assumption that Λ is monotone, difunctional (also called zig-zag
closed) Λ-bisimulations are GS-Λ-bisimulations, and that the relation ∼Λ between any two
T -coalgebras is difunctional. Hence the two bisimilarity notions coincide. In [7, Theorem
26] it was shown that when Λ is separating and monotone, then GS-Λ-bisimilarity coincides
with behavioural equivalence, and hence under these assumptions, Λ-bisimilarity coincides
both with GS-Λ-bisimilarity and with behavioural equivalence.

I Proposition 24. If Λ is separating and monotone, then

X, x ∼GS-Λ Y, y ⇐⇒ X, x ∼Λ Y, y ⇐⇒ X, x ∼bh Y, y.

We point out that our results on Λ-bisimulation do not require Λ to be monotone.
Furthermore, our aims and results differ from those of [7] where the starting point was to
investigate simulations between T -coalgebras. In this context, GS-Λ-bisimulations arose
naturally as two-way simulations. The results in [7] focus on identifying conditions that
ensure that GS-Λ-bisimilarity coincides with behavioural equivalence and/or T -bisimilarity.
Our approach is to accept that the language is not expressive, and show that Λ-bisimilarity
allows us to generalise several results that are known to hold for expressive languages.

I Example 25. Consider INL from Example 7 (i.e. T = PP). Since [[�n]] is monotone [25],
it follows that �n-bisimilarity coincides with GS-�n-bisimilarity. Note that [[�0]]X(A) =
{N ∈ PP(X) | ∃U ∈ N : U ⊆ A} is like the monotone neighbourhood modality (which is
usually interpreted in N -coalgebras). It is straightforward to prove that GS-�0-bisimulations
coincide with monotonic bisimulations (see e.g. [25]). For n ≥ 1, one can show that Z is a
GS-�n-bisimulation iff for all (x, y) ∈ Z: (Here A ⊆n B means that A ⊆ B and |A| ≤ n.)
(forth)n ∀U 6= ∅ : U ∈ γ(x) =⇒ ∀U ′ ⊆n U.∃V 6= ∅ : V ∈ δ(y), V ⊆ Z[U ] and U ′ ⊆ Z−1[V ].
(back)n ∀V 6= ∅ : V ∈ δ(y) =⇒ ∀V ′ ⊆n V.∃U 6= ∅ : U ∈ γ(x), U ⊆ Z−1[V ] and V ′ ⊆ Z[U ].
The proof uses the fact that if {x1, . . . , xn} ⊆ A ∈ N then N ∈ �n({x1}, . . . , {xn}, A).

3.3 Λ-morphisms
Given the fact that the graph of a T -coalgebra morphism is a T -bisimulation (cf. [23, Theorem
2.5.]), it is it is natural to define a Λ-morphism from X to Y to be a a function f : X → Y

for which the graph Gr(f) = {(x, f(x)) | x ∈ X} is a Λ-bisimulation. It then follows from
Proposition 20(1) that T -coalgebra morphisms are also Λ-morphisms. Moreover, one can show
that Λ-homomorphism are closed under composition (unlike Λ-bisimulations). Therefore,
T -coalgebras together with Λ-morphisms form a category.

In Enqvist [4], a weak notion of morphism for T -coalgebras was proposed which, like ours,
is parametric in a set Λ of predicate liftings. To distinguish this notion from ours, we refer
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to it as E-Λ-morphism. We briefly recall the definition (which we state only for unary ♥, as
is the case in [4]). A function f : X → Y is an E-Λ-morphism from X to Y if for all B ⊆ Y ,
x ∈ X, and ♥ ∈ Λ: δ(f(x)) ∈ [[♥]]Y (B) implies γ(x) ∈ [[♥]]X(f−1[B]). Taking Z = Gr(f),
it can easily be seen that a pair (U, V ) is Z-coherent iff U = f−1[V ] = Q(V ). It then
follows that Λ-morphisms are E-Λ-morphisms. Since only one direction of the (Coherence)
condition needs to hold for E-Λ-morphisms, it is straightforward to construct an example of
a E-Λ-morphism which is not a Λ-morphism.

We do not investigate our notion of Λ-morphisms further in the present paper. Several
interesting questions could be asked, though. We discuss those in Section 5.

4 Hennessy-Milner Theorem

This section is devoted to proving the main technical result of the paper: a coalgebraic
Hennessy-Milner theorem for our notion of Λ-bisimilarity.

As we saw in Proposition 18, LΛ-formulas are invariant under Λ-bisimulation. Given
that our modal language has only finite conjunctions, we will need to assume our coalgebra
functor is finitary. This is the analogue of restricting to image-finite Kripke frames, as is
done in the classic Hennessy-Milner theorem. However, there is another issue. As shown in
[2, Example 1(4)], even between finite P-coalgebras, it is possible for two states to fail to
be Λ-bisimilar while still satisfying the same modal LΛ-formulas. We recall this example
here for convenience. We are in the setting of contingency logic over Kripke frames from
Example 4, i.e. Λ = {∆}. Let X = (X, γ) and Y = (Y, δ) be two P-coalgebras, where
X = {x, x1, x2}, γ(x) = {x1, x2}, γ(xi) = ∅ for i = 1, 2, Y = {y} and δ(y) = ∅. The relation
Z = {(x, y), (x1, x2), (x2, x2)} is a Λ-bisimulation on the coproduct of X and Y (we omit
injection maps for readability). Since the coproduct injections are T -coalgebra morphisms,
they are also Λ-morphisms, and hence X, x ≡Λ Y, y. However, it is not hard to show that
there is no Λ-bisimulation between X and Y linking x and y. The solution in [2] was to
define a notion of bisimilarity via the coproduct of Kripke/neighbourhood frames. We take a
similar approach here.

I Definition 26. Two states x in X and y in Y are Λ+-bisimilar (notation: X, x ∼Λ+ Y, y)
if X + Y, inl(x) ∼Λ X + Y, inr(y).

On a single T -coalgebra, the relations ∼Λ and ∼Λ+ coincide, but in general they differ.

I Proposition 27. For all x, x′ ∈ X and y ∈ Y ,
1. X, x ∼Λ Y, y implies X, x ∼Λ+ Y, y. The implication is strict.
2. X, x ∼Λ X, x′ iff X, x ∼Λ+ X, x′.

Proof.
Item 1. Let Z ⊆ X × Y be a Λ-bisimulation between X and Y. We show that the relation

X + Y Z
inl◦πloo

inr◦πr //X + Y is a Λ-bisimulation on X + Y = (X + Y, ζ). The proof
follows from the commutativity of the diagram below in which ♥ ∈ Λ is arbitrary. The
commutativity follows from observing that pb(Q(inl ◦ πl), Q(inr ◦ πr)) with π̂l ◦Qinl and
π̂r ◦Qinr is a competitor to the pullback (pb(Qπl, Qπr), πl, πr). This yields a mediating
map (dashed arrow) such that the upper part of the diagram commutes. The lower, outer
parts commute due to naturality of [[♥]] and the inclusions being T -coalgebra morphisms.
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(QZ)n

QTX

(QX)n

QTY

(QY )n

pb(Qπl, Qπr)n

QX QZ QY
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Q(X + Y )n Q(X + Y )n

QT (X + Y ) QT (X + Y )

Q(X + Y ) Q(X + Y )

(Qπl)n (Qπl)n
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Qγ Qδ
Qπl Qπr
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(Qinl)n (Qinr)n

QT inl QT inr

Qinl Qinr

[[♥]]X+Y [[♥]]X+Y

Qζ Qζ

π̂nl π̂nr

Item 2. (⇒) follows from item 1. For (⇐), assume that Z is a Λ-bisimulation on X + X =
(X +X, ζ). We show that Z ′ = {(w,w′) ∈ X ×X | ∃i, j ∈ {r, l} : (ini(w), inj(w′)) ∈ Z}
is a Λ-bisimulation on X. First, note that is (U, V ) if Z ′-coherent, then (U +U, V + V ) is
Z-coherent. Let (x, x′) ∈ Z ′, then (ini(x), inj(x′)) ∈ Z, for some i, j ∈ {l, r}. Since Z is a
Λ-bisimulation, it follows that:

ζ(ini(x)) ∈ [[♥]]X+X(U + U) ⇐⇒ ζ(inj(x′)) ∈ [[♥]]X+X(V + V ) (2)

To complete the proof, it remains to show that for very U ⊆ X

γ(x) ∈ [[♥]]X [U ] ⇐⇒ ζ(ini(x)) ∈ [[♥]]X+X(U + U) (i = l, r) (3)

But this follows from naturality and the fact that inclusion maps are T -coalgebra morphism.
Item 2 then follows from (2) and (3). J

Due to Proposition 27(1), we define Hennessy-Milner classes of T -coalgebras with respect
to ∼Λ+ .

I Definition 28. A class C of T -coalgebras is a Hennessy-Milner class, if for every X and Y
in C, we have X, x ≡Λ Y, y iff X, x ∼Λ+ Y, y.

As a first step towards our main result, we show that the class of finite T -coalgebras
is a Hennessy-Milner class. We will use the following terminology. Given a T -coalgebra
X = (X, γ), a subset U ⊆ X is modally coherent if U is ≡Λ-closed. (Recall that ≡Λ denotes
the modal equivalence relation.) The next lemma provides us with a characterisation of
modally coherent sets.

I Lemma 29. Let X be a finite T -coalgebra. For all U ⊆ X, U is modally coherent iff U is
definable by a modal LΛ-formula.

Proof. It can be proved using the same line of argumentation as in the proof of [8, Lemma
4.5]. If U = [[ϕ]]X for some ϕ ∈ LΛ, then clearly U is modally coherent. For the converse
implication, assume U is modally coherent, i.e., U is a union of modal equivalence classes:
U =

⋃
i∈I [xi]≡Λ . Since X is finite, we may assume that I is finite. For i, j ∈ I and

i 6= j, there is a modal LΛ-formula δi,j such that xi |= δi,j and xj |= ¬δi,j , so by taking
Di = {δi,j | i, j ∈ I, i 6= j}, we have [xi]≡Λ =

⋂
i∈I [[Di]] ⊆ X. Since I is finite, Di is finite.

Defining δi =
∧
Di for each i ∈ I, we then have U =

⋃
i∈I [[δi]]X. Therefore, U is definable by

the formula δ =
∨
δi. J

Now, we have the finite version of Hennessy-Milner theorem for Λ-bisimulation.
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I Theorem 30. Let X = (X, γ) and Y = (Y, δ) be finite T -coalgebras, and let Λ be a set of
predicate liftings for T .
1. For all states x, x′ ∈ X: X, x ≡Λ X, x′ iff X, x ∼Λ X, x′.
2. For all states x ∈ X and y ∈ Y : X, x ≡Λ Y, y iff X, x ∼Λ+ Y, y.

Proof.
Item 1: The direction from right to left has been shown in Proposition 18. For the other

direction, we show that ≡Λ is a Λ-bisimulation. Let x, x′ ∈ X be such that X, x ≡Λ X, x′,
and let ♥ ∈ Λ. For simplicity, we just give the argument for unary [[♥]]. The n-ary
generalisation is straightforward. Let U ⊆ X be modally coherent. By Lemma 29, U is
definable by a LΛ-formula ψ. We therefore have x ∈ [[♥ψ]]X iff x′ ∈ [[♥ψ]]X because x and
x′ are modally equivalent. It follows that γ(x) ∈ [[♥]]X(U) iff γ(x′) ∈ [[♥]]X(U). Hence,
≡Λ is a Λ-bisimulation on X.

Item 2: Follows from item 1 and the fact that the inclusion maps preserve truth of modal
formulas: X, x ∼Λ+ Y, y iff X + Y, inl(x) ∼Λ X + Y, inr(y) iff X + Y, inl(x) ≡Λ iff X, x ≡Λ
Y, y. J

We leverage the result for finite T -coalgebras to coalgebras for finitary functors.

I Theorem 31 (Finitary Hennessy-Milner theorem). Suppose T is a finitary functor, and
X = (X, γ), Y = (Y, δ) are T -coalgebras.
1. For all states x, x′ ∈ X: X, x ≡Λ X, x′ iff X, x ∼Λ X, x.′
2. For every x ∈ X and y ∈ Y : X, x ≡Λ Y, y iff X, x ∼Λ+ Y, y.

Proof.
Item 1: Let x, x′ ∈ X be such that X, x ≡Λ X, x′. By [1, Theorem 4.1] there exists a finite sub-

coalgebra X0 = (X0, γ0) of X with x, x′ ∈ X0. Since, the inclusion inX0 : X0 → X is a T -
coalgebra morphism and hence preserves truth of formulas, it follows that X0, x ≡Λ X0, x

′.
By Theorem 30(1) we obtain X0, x ∼Λ X0, x

′, and from Proposition 23, using again that
inX0 is a T -coalgebra morphism that X, x ∼Λ X, x′.

Item 2: can be proved using item 1 in a similar way as item 2 of Theorem 30. J

5 Discussion and Future Work

We have shown that our notion of Λ-bisimulation gives rise to a Hennessy-Milner theorem,
and thus it fits exactly the expressiveness of the modal language. The coherence condition
in the definition of Λ-bisimulation is, however, a non-local property as one would need
to compute all coherent pairs over the state space in order to verify that two states are
Λ-bisimilar. For concrete instances of Λ-bisimulations, it would be desirable to have a local
back-and-forth style characterisation, similar to, e.g., the usual ones for Kripke frames, and
the zig-zag conditions for ∆-bisimulations over Kripke frames in [6]. Such a local condition
would obtain if Λ-bisimilarity could be charaterised in terms of relation liftings. In the case
that Λ is separating, respectively monotone, Λ-bisimilarity coincides with precocongruences,
respectively GS-Λ-bisimilarity, both of which have a relation lifting characterisation, cf. [8, 7].
We would like to investigate whether approaches such as those of [15, 18] can be used to
obtain a relation lifting characterisation of Λ-bisimilarity under weaker conditions.

In [2], a Van Benthem characterisation theorem was proved for contingency logic over
neighbourhood frames, that is, over neighbourhood frames, contingency logic is the fragment
of first order logic which is invariant under Λ-bisimilarity, where Λ = {∆}. We would
like to generalise this result and show a coalgebraic version for Λ-bisimilarity, using as
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correspondence language coalgebraic predicate logic (CPL), which was introduced in [16] as a
first order correspondence language of coalgebraic modal logic.

We hardly explored the notion of Λ-morphisms in the present paper. It would be
interesting to know which constructions are possible in the category of T -coalgebras and
Λ-morphisms. For example, in [2] it was shown that for T = N and Λ = {∆}, one can
construct Λ-quotients, i.e., quotients of T -coalgebras with respect to Λ-bisimilarity. We would
like to know whether this is possible, in general. That would mean that we can minimise
T -coalgebras with respect to Λ-bisimilarity. Finally, we would also like to know if a final
object can be constructed from satisfied theories using techniques along the lines of [12, 20],
and whether the Hennessy-Milner theorem for Λ-bisimilarity fits into the more abstract
picture where a coalgebraic modal logic is obtained via a dual adjunctions, as in e.g. [11, 10].
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