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Abstract
We present positive coalgebraic logic in full generality, and show how to obtain a positive coal-
gebraic logic from a boolean one. On the model side this involves canonically computing a
endofunctor T ′ : Pos → Pos from an endofunctor T : Set → Set, in a procedure previously
defined by the second author et alii called posetification. On the syntax side, it involves ca-
nonically computing a syntax-building functor L′ : DL → DL from a syntax-building functor
L : BA→ BA, in a dual procedure which we call positivication. These operations are interesting
in their own right and we explicitly compute posetifications and positivications in the case of sev-
eral modal logics. We show how the semantics of a boolean coalgebraic logic can be canonically
lifted to define a semantics for its positive fragment, and that weak completeness transfers from
the boolean case to the positive case.
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1 Introduction

Partially ordered structures are ubiquitous in theoretical computer science. From knowledge
representation to abstract interpretation in static analysis, from resource modelling to protocol
or access rights formalization in formal security, the list of applications is enormous. Being
able to formally reason about transition systems over posets therefore seems important, but
has not been systematically developed. The natural formalism to reason about transition
systems is undoubtedly the class of modal logics. However, most are tailored to transition
structures over sets. This is a direct consequence of the fact that most modal logics are
boolean. Positive modal logic is the exception, and is most naturally interpreted in partially
ordered Kripke structures (see for example [6, 9]).

Arguably, the most natural and powerful framework to study boolean modal logics in a
uniform and systematic way, is the theory of Boolean Coalgebraic Logics (henceforth BCL,
see e.g. [7]). In its ‘abstract’ ([19]) presentation, it is parametrised by an endofunctor
L : BA → BA which builds modal algebras of modal terms over a boolean structure, an
endofunctor T : Set→ Set which builds the transition structures over which the modal terms
are to be interpreted, and a natural transformation δ : LP→ PT op (where P : Setop → BA
is the powerset functor) which implements the interpretation by associating sets of acceptable
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9:2 The Positivication of Coalgebraic Logics

successors states to each modal term over a predicate (see [17, 18, 12, 21]). This data, and the
dual adjunction between Set and BA, is traditionally summarized in the following diagram

BA

S
))

L

,,
⊥ Setop

P

ii T op
gg

δ : LP⇒ PT op (1)

where S is the functor sending a boolean algebra to the set of its ultrafilters.
To develop an equally powerful framework for reasoning about transition structures over

posets, it seems natural to study Positive Coalgebraic Logics (henceforth PCL). In fact, work
in this direction has already started, see for example [14, 3]. We pursue this work further and
present PCL in full generality, i.e. at the same level of generality as its boolean counterpart.
Moreover, given the close kinship between the two theories, we will show that the wheel
needn’t be re-invented every time, and that many BCLs have a canonical positive fragment
which inherits useful properties from its boolean parent. The data defining a PCL will be

DL

S′

**
L′
++

⊥ Posop

P′

hh (T ′)op
cc

δ′ : L′P′ ⇒ P′(T ′)op (2)

where S′ is the functor sending a distributive lattice to the poset of its prime filters, and P′ is
the functor sending a poset to the distributive lattice of its upsets. The following observation
will be of fundamental importance in what follows: the adjunction S′ a P′ : Posop → DL
which is the backbone of diagram (2) is in fact Pos-enriched; that is to say DL and Pos
are Pos-enriched categories and S′,P′ are Pos-enriched functors ([16]). Clearly, it would
be a shame not to use this extra structure which comes for free. But more seriously, this
enriched structure is not simply a mathematical quirk, it suggests that ‘doing logic’ positively
is quite different from ‘doing logic’ in a boolean setting, in particular it is more than simply
dropping negations. In fact inequations become the standard relation between terms on
the syntax side, just as it is between elements on the model side. This is borne out by the
existing axiomatization of positive modal logic originally proposed in [8] which is entirely
given by inequations. For these reasons, and following [14, 3], this paper will present positive
coalgebraic logic as a Pos-enriched coalgebraic logic. In a slogan: “in positive coalgebraic
logic we remove negations but we add order”.

Working in a Pos-enriched setting means that the syntax-building functor L′ : DL→ DL
and the coalgebra-building functor T ′ : Pos → Pos will also need to be Pos-enriched.
The first main contributions of this paper is to show how well-known ordinary functors
from BCL can be turned into Pos-enriched functors performing analogous roles in PCL.
On the semantics side this means turning an ordinary functor T : Set → Set into a Pos-
enriched functor T ′ : Pos→ Pos by a process called posetification first developed in [3], for
which we develop a practical understanding in Section 3 by computing the posetification of
several well-known functors from modal logic: the neighbourhood, monotone neighbourhood,
powerset and multiset functors. On the syntax side this means turning an ordinary functor
L : BA → BA into a Pos-enriched functor L′ : DL → DL, a process which we call
positivication and which is detailed in Section 4. We show how positivication can be applied
to the functor defining normal modal logic, but also to functors which define non-monotone
modal logics. In this case, the positivication procedure may not yield a logic at all, at least
not in the usual meaning of the word. The second main contribution of this paper is to
show how a semantic natural transformation δ : LP → PT can also be lifted to define a
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Pos-enriched semantic natural transformation δ′ : L′P′ → P′T ′, where T ′ is the posetification
of T , and L′ is the positivication of L. This is done in Section 5, where we also prove that
by construction of δ′, if δ defines a weakly complete logic, then so does δ′.

Related work. As mentioned above several aspects of positive coalgebraic logics have been
studied in [14, 3], the concept of posetification and the idea of working in an enriched setting
in particular. The key contribution of this work is to dissociate the syntax from the semantics.
This reflects the practise of modal logics, where the syntax-building functor L is usually not
defined directly from the semantics-building functor, but rather from a grammar which is
convenient to express certain properties. Graded modal logic for example relies on a syntax
which is not obviously related to its semantics. This justifies going beyond the techniques of
[3]. As a consequence, one must also be able to define a semantic natural transformation
L′P′ → P′T ′, which we do be adapting the boolean semantics. We are also indebted to work
on monotone modal logic for the monotone neighbourhood functor, see eg [11, 23], and on
non-monotone modal logic for the (unrestricted) neighbourhood functor as these two cases
highlight many of the peculiar features of our approach.

2 A maths toolkit

2.1 Ordinary vs Pos-enriched category theory
The central tool of this paper is to work in categories enriched over Pos. For a general
reference to enriched categories we refer to [16]. But the special case of Pos-categories is
much simpler than the general case and we believe that most of this paper can be read
without special knowledge in enriched category theory. The purpose of this section is to
review what will be required.

A Pos-category is a category in which homsets are posets and composition is monotone
in each argument. A Pos-functor is a functor that is locally monotone, that is, it preserves
the order on homsets. Pos-natural transformations are just natural transformations.

Monotonicity permeates all aspects of Pos-enriched categories. For example, Pos-enriched
algebra, or ordered algebra, is characterised by all operations of an ordered algebra being
monotone. This is important for our application of ordered algebra to positive coalgebraic
logic, that is, to coalgebraic logic with monotone operations.

The basic features of ordered universal algebra can be developed in much the same way
as ordinary universal algebra [5]. Following the Pos-enriched approach of [22], the most
important change to make is to replace coequalisers by so-called coinserters.

One of the most important features of the Pos-enriched setting is that with the so-called
weighted limits and colimits additional universal constructions become available. For example,

A

g //

f

↑ // B
c // C

is a coinserter if c◦f ≤ c◦g and for all h with h◦f ≤ h◦g there is a unique k such that k◦c = h.
This is almost like a coequaliser, but C is a quotient of B w.r.t. inequations. For example,
in Pos, the coinserter C is obtained by adding to B the inequations {fa ≤ ga | a ∈ A} and
then quotienting by anti-symmetry. We will encounter two special kinds of coinserters (we
sometimes drop now the ↑ notation in the interest of typesetting):

A
π1 //
π0

//s
&&

B

i
��
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9:4 The Positivication of Coalgebraic Logics

A pair of arrows, and also its coinserter, is called reflexive if there is i : B → A such that
π0 ◦ i = π1 ◦ i = id and it is called symmetric if there is s : A → A such that π0 ◦ s = π1
and π1 ◦ s = π0. Note that an arrow is a coinserter of a symmetric pair, or a symmetric
coinserter for short, iff it is a coequaliser of the same pair.

The dual notion is that of an inserter

E
e // B

g //

f

↑ // A.

In Pos, as well as in categories of ordered algebras, the inserter E is {b ∈ B | fa ≤ gb}.
Another important limit not available in ordinary categories is the power or cotensor

with a poset. For example, in Pos we have X2 = {(x, x′) | x ≤ x′} where 2 is {0 < 1}.
We will also encounter the dual notion, the tensor or copower X • A. Here we say that a
category A has tensors if for all A ∈ A and all posets X, there is an object X •A such that

A(X •A,A′) ∼= [X,A(A,A′)]

where [X,Y ] denotes exponentiation (aka internal hom) in Pos. The tensor 2 • A can be
understood as an ordered coproduct of A with itself in which “each a on the left is smaller
than the a on the right”.

In order to treat ordinary categories and Pos-enriched categories in the same framework,
we consider an ordinary category as a Pos-category with discrete homsets. For each Pos-
category A there is a corresponding ordinary category Ao. For example, we have Set = Seto
and BA = BAo, but Pos and Poso are different. In particular, there is no (enriched)
forgetful functor Pos → Set, only an (ordinary) forgetful functor Poso → Seto. Note
that using “o” allows us to drop the qualifications enriched and ordinary without creating
ambiguity. For example, the inclusion D : Set → Pos has a left adjoint C : Pos → Set
mapping a poset to its connected components and the inclusion Do : Seto → Poso has as
a right adjoint the forgetful functor V : Poso → Seto, but D : Set→ Pos does not have a
right adjoint.1

C a D : Set→ Pos Do a V : Poso → Seto (3)

Accordingly, D preserves all (weighted) limits and Do preserves all (ordinary) colimits. But
D does not preserve all (Pos-enriched) colimits and indeed we will see later that D does not
preserve all coinserters.

We will also need the corresponding results on the algebraic side. The inclusion W :
BA → DL has a right adjoint K (mapping a DL to the largest Boolean subalgebra it
contains) and Wo : BAo → DLo has a left-adjoint G : DLo → BAo (mapping a distributive
lattice to the free BA over it).

K `W : BA→ DL Wo ` G : DLo → BAo (4)

Note that (3) and (4) are dually equivalent when restricted to finite structures.

2.2 The ordered variety of Boolean algebras
The category BA of Boolean algebras has discrete homsets, giving rise to a forgetful functor
BA → Set. This functor is a Pos-enriched, or ordered, variety [22]. At the heart of this

1 L : A → B is a Pos-enriched left-adjoint of R : B → A if there is a natural isomorphism of posets
B(LA, B) ∼= A(A, RB). We have Poso(DA, B) ∼= Seto(A, VB) but not Pos(DA, B) ∼= Set(A, VB).
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observation is the fact that reflexive coinserters in BA are symmetric, a fact that we prove
in detail as it will be important later.

I Proposition 1. Every reflexive pair A1
π1 //
π0

// A0

i
��

in BA is symmetric.

Proof. Let (a, b) ∈ A1. Here, (a, b) is a shorthand for an element inA1 such that π0((a, b)) = a

and π1((a, b)) = b. We write (a, a) for i(a). Consider the Boolean algebra morphism
φ : A1 → A1 defined by

φ(a, b) =
(

(a, b) ∧ (b, b)→ (a, a)
)
∧
(

(a, b) ∧ (a, a)→ (b, b)
)
∧
(

(a, a) ∨ (a, b) ∨ (b, b)
)

Since the projections are BA-morphisms, we obtain π0(φ(a, b)) = (a→ b) ∧ (a ∨ b) = b and
π1(φ(a, b)) = (b→ a) ∧ (a ∨ b) = a, showing (b, a) ∈ A1. J

(The argument also works for Heyting algebras.) Note that we can equip BA with a forgetful
functor BA W−→ DL → Pos mapping each BA to its carrier in its natural order, but this
functor is not an ordered variety since BA is not closed under weighted limits in DL.

2.3 Density and Kan extensions
Much of our technical work revolves around the result that D : Set → Pos is dense, see
[3], and that W : BA→ DL is codense, see Theorem 12. This in turn allows us to extend
functors on Set to functors on Pos via left Kan extension and to extend functors on BA to
functors on DL via right Kan extensions, as we will review now.

A functor K : A → C is dense if colimit preserving functors C → B are determined by
their restriction along K, or, more formally, if the functor [K, IdB] : [C,B]→ [A,B] restricting
along K is fully faithful [16, Thm 5.1]. If, moreover, K itself is fully faithful, then a colimit
preserving functor C → B is the left Kan extension of its restriction along K [16, Thm
5.29]. Furthermore, we may be able to compute left Kan extensions explicitely with the
help of a so-called density presentation [16, Thm 5.19]. For example, we know (see [3]) that
D : Set → Pos is dense and has a density presentation given by reflexive coinserters of
‘nerves of posets’. Explicitly, every poset X is the reflexive coinserter2

DVX2
Dπ1 //
Dπ0

// DVX //

i
||

X (5)

where VX2 = {(x, x′) | x ≤X x′}. That the coinserter is reflexive means that Dπ0 ◦ i =
Dπ1 ◦ i = id, which is true for i(x) = (x, x). The fact that these coinserters provide a density
presentation means that the left Kan extension of a functor F : Set→ Pos along D can be
computed as the coinserter

FVX2
Fπ1 //
Fπ0

// FVX // (LanDF )X (6)

and we will see examples of this in the next section. If one happens to extend along an
adjoint functor K, Kan-extensions are easier:

K a V =⇒ LanKF = FV G a K =⇒ RanKF = FG (7)

2 The coinserter of V X2 //// V X in Set provides an example of weighted colimit that is not
preserved by D, showing that D cannot have an (enriched) right adjoint.

CALCO 2017



9:6 The Positivication of Coalgebraic Logics

This implies that to compute (ordinary) Kan extensions along Do or Wo we can use (3) or
(4), and (7). To better understand the difference with extending along D or W, we can see
the computation of the Kan extensions in two steps:

C H′
// C

Co

OO

H̃ // Co

OO

Ao

Jo

OOJ

@@

H
// Ao

Jo

OO J

^^ Pos H′
// Pos

Poso

OO

H̃ // Poso

OO

Seto

Doa

FF

��
V

H
//

D

@@

Seto

Do

OO D

^^ DL H′
// DL

DLo

OO

H̃ // DLo

OO

BAo

Wo`

FF

��
G

H
//

W

@@

BAo

Wo

OO W

^^ (8)

(i) Since Co → C preserves all ordinary (co)limits we can use [16, Thm 4.47] to break down
the extension of JH along J into first extending JoH along Jo to H̃ and then extending H̃ to
H ′. (ii) If a functor Co → Co is locally monotone then this functor is its own extension (both
left and right) to C → C. This means that for locally monotone functors H̃ the upper square
is trivial. (iii) To compute H̃ we can use (3) or (4), and (7). — While this is sometimes a
good approach, the downside is that H̃ is typically not locally monotone (so we cannot use
(i)) and the inclusion Co → C is not fully faithful (so we loose the good properties of Kan
extensions along fully faithful functors). To summarise, to compute Kan extensions along D
we use (6) and for W we will develop a similar presentation in Theorem 12.

3 Posetification

We define the posetification T ′ of a Set-functor T as LanDDT , the left Kan-extension of
DT along D, together with a natural isomorphism α : DT ⇒ T ′D. In concrete examples we
will typically define T ′ so that α is the identity. In particular, T ′ is the universal locally
monotone extension of T , that is, for all S : Pos→ Pos and β : DT ⇒ SD, there is a unique
γ : T ′ → S such that γ ◦ α = β. The coinserter (6) now becomes

DTVX2

DTπ1 //
DTπ0

// DTVX eX // T ′X. (9)

It is computed for any poset X in the following way:
(i) consider the (reflexive) relation RT ⊆ TVX × TVX given by

(a, b) ∈ RT ⇔ ∃c ∈ TVX2. Tπ0(c) = a & Tπ1(c) = b

(ii) compute its transitive closure ≤T
(iii) quotient TVX by the equivalence relation ≡T = ≤T ∩ ≥T ,
(iv) the coinserter is given by (TVX/ ≡T ,≤T ).

Note that by definition, VX2 ⊆ VX × VX is precisely the graph of the partial order on
X. It follows that RT is simply the lifting of the partial order on X by the functor T (see [3,
Remark 4.8]), often denoted T≤. In the rest of this section we will see examples where RT is
transitive, where RT is transitive and antisymmetric, and where RT is not even transitive.

3.1 Posetification of the covariant powerset functor P
We recall this case here from [3] because it illustrates the steps (ii)-(iv) of the posetification
procedure very clearly. We start by defining the relation RP ⊆ PVX × PVX by

(a, b) ∈ RP ⇔ ∃c ∈ PVX2. π0[c] = a & π1[c] = b
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which means that

(a, b) ∈ RP ⇐⇒ (∀x ∈ a)(∃y ∈ b) . x ≤ y and (∀y ∈ b)(∃x ∈ a) . x ≤ y

It is well-known that P preserves weak-pullbacks, and that this guarantees the transitivity of
RP . We can thus skip step (i) of the posetification procedure since RP =≤P . The relation
RP = P≤ is known as the Egli-Milner (pre-)order associated with ≤. It is not hard to check
that a ≡P b, i.e. a ≤P b and b ≤P a, iff Conv(a) = Conv(b) where Conv(a) is the convex
closure of a, i.e. the set {x ∈ X | ∃y1, y2 ∈ a, y1 ≤ x ≤ y2}, and that a ≡P Conv(a). It
follows that P ′X = (PVX/ ≡P , RP) = ({Conv(a) | a ⊆ X}, RP).

3.2 Posetification of analytic functors
Consider first a polynomial functor HΣ : Set→ Set given by a signature ar : Σ→ N and a
collection of set (Aσ)σ∈Σ{

HΣX =
∐
σ∈ΣAσ ×Xar(σ)

HΣf =
∐
σ∈Σ idAσ × far(σ)

By definition of HΣ on morphisms, the relation RH ⊆ HΣVX × HΣVX is given by(
(a, x1, . . . , xar(σ)), (b, y1, . . . , yar(σ′))

)
∈ RH ⇔ a = b, σ = σ′, xi ≤ yi, 1 ≤ i ≤ ar(σ)

Since polynomial functors preserve weak-pullbacks we have RH = HΣ≤=≤H . Moreover, it
is easy to see from the definition above that ≤H is anti-symmetric (since ≤ is). It follows
that H′ΣX is simply given by (HΣVX,RH).

We can now compute the posetification of analytic functors ([13]), i.e. functors of the
shape

GΣX =
∐
σ∈Σ

Aσ × (Xar(σ)/Gσ)

where each quotient Xar(σ)/Gσ is taken with respect to the obvious action of a subgroup
of the permutation group Gσ ⊆ Perm(ar(σ)) on the tuples of Xar(σ). The most well-known
example is the ‘bag’ or ‘multiset’ functor which is given by the choice Σ = N, ar = idN and
Gn = Perm(n), n ∈ N. Analytical functors preserve weak-pullbacks (in fact wide pullbacks,
see [1]), and thus RG =≤G .

I Proposition 2. The posetification of an analytic functor GΣ : Set → Set is given by
G′ΣX = (GΣVX,GΣ≤).

Proof. To simplify the notation we assume that each Aσ = 1, fix an element σ with arity
ar(σ) = n, and denote by [(x1, . . . , xn)] the equivalence class of the tuple (x1, . . . , xn) under
the action of Gσ. Note that by definition of GΣ, two elements of GΣVX can only be
related by ≤G if they belong to the same σ-component of the coproduct. Moreover, if
[(x1, . . . , xn)] ≤G [(y1, . . . , yn)], then by definition there exists a permutation π ∈ Gσ such
that (x1, . . . , xn) ≤ (yπ(1), . . . , yπ(n)) (where ≤ here is component-pointwise). Similarly, if
[(y1, . . . , yn)] ≤G [(x1, . . . , xn)], there exists a permutation ρ ∈ Gσ such that (y1, . . . , yn) ≤
(xρ(1), . . . , xρ(n)). It follows that (x1, . . . , xn) ≤ (xπ(ρ(1)), . . . , xπ(ρ(n))), and since πρ is of finite
order we easily get by iterating at most n times that (x1, . . . , xn) = (xπ(ρ(1)), . . . , xπ(ρ(n))).
This in turn implies that (yπ(1), . . . , yπ(n)) ≤ (x1, . . . , xn), from which we can conclude that
[(x1, . . . , xn)] = [(y1, . . . , yn)]. Thus ≤G= GΣ≤ is anti-symmetric. J

In particular the posetification of the bag functor B is given by B′(X,≤) = (BVX,B≤).

CALCO 2017



9:8 The Positivication of Coalgebraic Logics

3.3 Posetification of the monotone neighbourhood functor M
Recall that the monotone neighbourhood functor M : Set→ Set if defined on sets by

MX = {A ⊆ PX | U ∈ A,U ⊆ V ⇒ V ∈ A}

and on functions f : X → Y by taking the double inverse image (f−1)−1 : MX → MY . It is
not hard to check that Mf can be described more simply as Mf(A) =↑f [A], where ↑f [A] is
the upward closure (under inclusion) of the direct image of A by f . With this in place we
can compute the coinserter (9)

DMVX2

↑π1[−] //
↑π0[−]

// DMVX eX // M′X.

This time we need to consider the relation RM ⊆ MVX ×MVX defined by

(A,B) ∈ RM ⇔ ∃C ∈ MVX2. ↑π0[C] = A & ↑π1[C] = B

It is known (see [11]) that M does not preserve weak pullbacks, and in particular we cannot
assume that the relation RM is transitive. The proof of the following result can essentially
be found in Theorem 8.25 of [10]3

I Proposition 3. (A,B) ∈ ≤M iff ∀a ∈ A.∃b ∈ B. ↑b ⊆↑a and ∀b ∈ B.∃a ∈ A. ↓a ⊆↓b.

For any A ∈ MVX and a ∈ A, we write ↑a for the upward closure of a under the order
of X, and ↓ (↑ (A)) for the set ↓{↑a | a ∈ A}, where the downward closure is taken with
respect to the inclusion. The following corollaries are then easy to check.

I Corollary 4. A ≡M B iff ↓(↑(A)) =↓(↑(B)), and moreover A ≡M ↓(↑(A)).

I Corollary 5. The posetification M is given by M′X = (Down(Up(X)),≤M).

3.4 Posetification of the neighbourhood functor N
Consider the adjunctions FBA a UBA : BA → Set and FCABA a UCABA : CABA → Set.
The monad UBAFBA is naturally isomorphic to the finitary version Nf of the neighbourhood
functor N. A natural isomorphism is given by the natural transformation α : Nf → UBAFBA
given at each X by

αX(A) =
∨
{
∧
a ∧

∧
(a)c | a ∈ A}

which is indeed a boolean term since A and each a ∈ A are finite. The inverse of α is built
as follows: given a boolean term over X in conjunctive normal form, check for each clause∧
p∈a1

p∧
∧
q∈a2
¬q if a1 ∪a2 = X, if not rewrite the clause as the equivalent CNF expression∨

{
∧

p∈a1∪a3

p ∧
∧

q∈a2∪(a3)c
¬q | a3 ⊆ X \ (a1 ∪ a2)}

This yields a finite disjunction
∨
{
∧
p∈ai p ∧

∧
q/∈ai ¬q | i ∈ I}, which we associate with

{ai}i∈I ∈ NfX. Similarly, the monad UCABAFCABA is naturally isomorphic to the full
neighbourhood functor N. We can use the special properties of the adjunctions above to
compute the posetification of Nf and N indirectly, but relatively straightforwardly.

3 We thank Clemens Kupke for pointing out this reference.
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I Proposition 6. Let X be a poset presented by the coinserter DVX2 ⇒ DVX c′

−→ X and
let F a U denote either of the adjunctions FBA a UBA or FCABA a UCABA, then the coinserter
of FVX2 ⇒ FVX is Fc : FVX → FCX, where c : VX → CX is the adjoint of c′.

Proof. Note first that c coequalizes π0, π1 : VX2 ⇒ VX; indeed two elements x, y lie in the
same connected component precisely when x ≤ y or y ≤ x. It follows that Fc coequalizes
FVX2 ⇒ FVX, and in particular Fc ◦ π0 ≤ Fc ◦ π1. We need to show that it is in fact
a coinserter for which, due to Prop.1, it is enough to show that it is a coequaliser. Let
d : FVX → Y with d ◦ Fπ0 = d ◦ Fπ1. Let d′ : VX → UY be the adjoint transpose of d. We
have that d′ factors through c. Writing η : Id→ UF for the unit of the adjunction, it follows
that there is a unique f : FCX → Y such that Uf ◦ ηCX ◦ c = d′, or, equivalently, that
f ◦ Fc = d. We have shown that Fc is the coequaliser (and coinserter) of FVX2 ⇒ FVX. J

I Lemma 7. UBA and UCABA preserve reflexive coequalisers.

Proof. Being a variety of finitary algebras, UBA preserves sifted colimits and, in particular,
reflexive coequalisers [2]. In the case of UCABA we use that CABA is equivalent to Setop

and that [−, 2] : Setop → Set preserves reflexive coequalisers, see [4, 5.1.5 Lemma]. J

I Theorem 8. The posetification of Nf is DNfC and the posetification of N is DNC.

Proof. We use the notation of Proposition 6. It follows from (3) that D preserves all ordinary
colimits and, in particular, reflexive coequalizers. Due to the lemma U preserves reflexive
coequalizers. Like all functors, D and U preserve the symmetry of coinserters. It follows from
Proposition 6 that

DUFVX2

DUFπ0

//
DUFπ1 // DUFVX2 // DUFCX

is a coequalizer and coinserter. Thus DUFC is the posetification of UF. J

I Remark 9. This result is curious at first sight. Due to (3) and (7), DNfC and DNC are
also the right Kan-extensions of Nf and N, respectively. To better understand the situation
let us recall that we need the posetification to be locally monotone, which means that it must
be an enriched left Kan extension. Now, working in the ordered setting (ie Pos-enriched),
Prop.1 enforces that Boolean algebras cannot be quotiented by a partial order in BA without
quotienting by its symmetric closure.

For example, let X = {p < q}, so that VX = {p, q} and VX2 = {(p, p), (p, q), (q, q)}.
Then dividing FVX by p ≤ q ‘equationally’ gives the Boolean algebra 23 whereas the
coinserter gives F1 = 22. In more detail: Dividing FVX by p ≤ q (or p∧ q = p or p∧¬q = 0)
gives the Boolean algebra 23 because FVX = 24 and p ≤ q kills one of the 4 atoms, namely
p ∧ ¬q. On the other hand, the coinserter divides FVX by a larger theory, namely by one
in which negation is monotone. (Recall that in the Pos-enriched setting all operations
are monotone. Of course, one can still have algebras with “non-monotone” operations like
negation in BA, but then the Pos-enriched order must be discrete. Which does not prevent
us from recovering the natural order of BAs by considering BA as a subcategory of DL.)

4 Positivication

As mentioned in the introduction, a boolean coalgebraic logic is given by an endofunctor
T : Set → Set determining the type of coalgebraic semantics, and an endofunctor L :
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9:10 The Positivication of Coalgebraic Logics

BA → BA constructing general ‘modal algebras’. We have just seen how to extend a
functor T : Set → Set to a functor T ′ : Pos → Pos to extend a type of coalgebraic
semantics to posets. Now we want to extend a boolean syntax-building functor to a positive
syntax-building functor L′ : DL→ DL.

An obvious idea is to work dually to the posetification procedure and define the posit-
ivication of L : BA → BA as the right Kan extension L′ = RanW(WL), where W is the
inclusion BA → DL.4 Note that this gives us what we would expect: (i) an isomorph-
ism β : L′W ∼= WL, saying that L′ is the same as L on boolean algebras and (ii) for all
H : DL → DL and all α : HW → WL there is a unique γ : H → L′ such that β ◦ γ = α,
saying that L′ is the optimal (or co-universal) extension with (i).

It is also worth emphasising that β : L′W ∼= WL will be doing some real work once the
abstract framework is instantiated with concrete examples. In particular, β−1 will translate
a boolean formula φ in LB into a positive formula β−1

B (φ) where negation is eliminated from
the modal part and pushed “onto the atoms in B”.

In order to capture this process of eliminating negation in the abstract categorical
framework, we need to understand, once again, the Kan extension in the Pos-enriched way.
To compute these right Kan extensions we use a presentation of distributive lattices which
will play the same role in the computation of positivications as (6) played in the case of
posetifications.

I Proposition 10. Every A ∈ DL is the inserter of a diagram of boolean algebras (where
in1, in2 are the canonical embeddings and e is the unit at A of the adjunction G aWo):

A
e // WGA

WGin2 //

WGin1

↑ // WG(2 •A) (10)

I Remark 11. 1. The tensor 2 •A is isomorphic to A+A modulo inequations in1a ≤ in2a.
If a ∈ A has a complement then in1a = in2a. If all elements of A are complemented,
that is, if the distributive lattice A happens to be a boolean algebra, then 2 •A ∼= A.

2. Equivalently, 2•A can be represented as the distributive lattice generated by {�1a | a ∈ A}
and {�2a | a ∈ A} modulo equations specifying that �1,�2 preserve all DL-operations
and modulo inequations �1a ≤ �2a.

3. Let A∂ be the Priestley space dual to A ∈ DL, that is, the space of prime filters on A.
Then 2 •A is dual to (A∂)2. 5

4. The inserters (10) are reflexive. This follows easily from the definition of tensor with 2 as
A(2•A,A′) ∼= [2,A(A,A′)] giving us a half-inverse 2•A→ A of both in1, in2 : A→ 2•A
as the transpose of the map 2→ A(A,A) which maps both truth values to idA.

Proof of Prop.10. Let (−)∂ be the functor that dualises DLs to Priestley spaces. Its
composition with the forgetful functor to posets we denote by S′ : DL→ Pos. Applying it
to (10) yields a reflexive coinserter in Pos

S′A oo DV(S′A)
oo
oo ↑ DV(S′A)2 (11)

as in (5). Now it only remains to check that it is also a coinserter in Priestley spaces, from
which the result follows by duality. J

4 W is fully faithful. Moreover, whereas B ∈ BA is discrete (see Section 2.2), WB ∈ DL is equipped with
its natural order. So while W ‘forgets negation’ it also ‘adds the order’.

5 Cotensors in Priestley spaces are computed as cotensors in Pos, since the forgetful functor from Priestely
spaces to posets preserves and creates all Pos-enriched limits.
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The following theorem requires some knowledge of enriched category theory. Even though
the theorem is one of the main contributions, we encourage the reader so inclined to skip
directly ahead to its corollary, which is all that is needed to follow the rest of the paper.

I Theorem 12. W : BA → DL is co-dense and the inserters (10) form a co-density
presentation in the sense of [16, Thm 5.19].

Together with [16, Thm 5.30] we obtain

I Corollary 13. Every BA-endofunctor L has a positivication L′ which can be computed
explicitly at any distributive lattice A as the inserter

L′A // WLGA
WLGin2 //

WLGin1

↑ // WLG(2 •A) (12)

Moreover, a functor is a positivication iff it preserves Boolean algebras and the inserters (10).

I Proposition 14. If L : BA→ BA is finitary, then so is its positivication L′ : DL→ DL.

Proof. All operations involved in (12), that is, W, L, G, 2 • −, preserve filtered colimits.
And filtered colimits commute with finite weighted limits, see [15, Prop.4.9].6 J

4.1 Positivication of normal modal logic
Of course, the positivication of Kripke’s normal modal logic with one meet-preserving �
should turn out to be Dunn’s positive modal logic [8]. We show this in a roundabout way
which has the advantage of making precise the relationship of our notion of positivication
with the procedure employed in [3].

To summarise, going back to Diagrams (1) and (2), [3] starts with T and then, on the
one hand define L via LB = PTSB on finite BAs and, on the other hand, define L′ via
L′A = P′T ′S′A on finite DLs with T ′ the posetification of T .

I Theorem 15. Let T : Set→ Set preserve finite sets and let L be given on finite B ∈ BA
by LB = PTSB. Let T ′ be the posetification of T and let L′ be given on finite A ∈ DL by
L′A = P′T ′S′A. Then L′ is the positivication of L.

Proof. We have to show that L′ = RanWWL. By duality and definition of T ′ as LanDDT ,
we know that L′ and RanWWL agree on finite DLs. Now the claim follows from Prop.14. J

I Remark 16.

1. The conditions of the theorem are not strong enough to guarantee that L′ is strongly
finitary and thus has a presentation by operations and equations. As shown in [3, Thm
6.20], this is the case if T preserves weak pullbacks.

2. In the case of graded modal logic, L is different from PTS even on finite BAs. Therefore,
the approach of [3] cannot be applied. We leave a description of the positivication of
graded modal logic for a sequel.

Now, if, in the notation of the theorem, we start with T as the powerset functor, it is well
known that L is Kripke’s normal modal logic and [3] shows that L′ is Dunn’s positive modal
logic. It follows from Theorem 15, that the latter is indeed the positivication of the former.

6 We are grateful to John Power for pointing out this reference.
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4.2 Positivication of non-monotone modal logics
The basic idea of positivication is the following. Given a modal logic with monotone
modalities, add the duals and find the axioms so that boolean negation can be pushed to
the atoms. But our abstract definition of positivication is powerful enough to also apply to
logics which have modalities that are not monotone.

We will study what happens in such a situation through the example of the modal logic
with one � that does not obey any equations, not even monotonicity. In our functorial
setting, this logic is given by L = FBAUBA : BA→ BA. Recall the functors W,K,G from (4).

I Theorem 17. The positivication of FBAUBA : BA→ BA is WFBAUBAK : DL→ DL.

Proof. We know from Theorem 8 that LanDDUBAFBA = DUBAFBAC. By duality, on finite
DLs, RanWWFBAUBA = WFBAUBAK. Now the result follows from Prop.14 since all of
W,FBA,UBA,K are finitary. J

I Remark. From a logical point of view, the appearance of K : DL→ BA in Thm 17 tells
us that, given A ∈ DL, we are only allowed to build a formula �a, a ∈ A, if a lies in a
boolean subalgebra (ie a has a complement). This side condition takes us out of the realm of
equational logic and, hence, of modal logics given by axioms. This is related to the fact that
K is not strongly finitary [3, Example 6.6] and, therefore, functors involving K cannot be
expected to have a presentation by operations and equations.

To give another example of an extension by non-monotone modalities, the logic WoG :
DLo → DLo is a modal logic over distributive lattices with one unary modality obeying
the axioms of negation. In other words, WoG-algebras over DLo are just boolean algebras.
Clearly, WoG is not locally monotone and negation, considered as a unary modality, cannot
be ‘positivised’. Nevertheless, writing I for the inclusion DLo → DL, the right Kan extension
RanIIWoG does exist and is the identity.

I Proposition 18. RanIIWoG = Id.

Proof. Going back to (8), we have H̃ = WoG, which means that we can take H = Id. But
then, by Thm 12 and [16, Thm 5.1], we have H ′ = Id. J

To summarise, we have seen two examples of positivication of modal extensions by
non-monotone modalities. In the first case, the non-monotone modality was made monotone
by adding a side-condition restricting its use. In the second case, the non-monotone modality
was eliminated.

5 Positive coalgebraic logic

5.1 Semantics
Recall from the introduction that we wish to move from an ordinary BCL given by the
diagram (1) to a Pos-enriched PCL given by diagram (2). In Sections 3 and 4 we have shown
how to build T ′ from T and L′ from L respectively. The missing element is the construction
of δ′ from δ. Let us first remind the reader of how δ defines the interpretation, this will also
be the occasion to fix some notation.

I Theorem 19 ([21]). An endofunctor L on a variety A has a finitary presentation by
operations and equations iff it preserves sifted colimits, in which case Alg(L) is a variety.
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For L strongly finitary on either BA or DL and A an object of the corresponding category,
let FL(A) denote the free L-algebra over A. In particular, if V denotes a countable set of
propositional variables and FV is the freely generated object over V in BA or DL, then the
free L-algebra FL(FV ) is the algebra of L-modal formulas for the syntax defined by L, which
we denote more succinctly by L. Now, let γ : X → TX be a T -coalgebra and assume that
it comes equipped with a valuation v : FV → PX, the interpretation map J−K(γ,v) is the
unique map given by initiality of L amongst L(−) + FV -algebras.

LL+ FV '
//

LJ−K(γ,v)+idFV ��

L
J−K(γ,v)��

LPX + FV δX+idFV // PTX + FV Pγ+v // PX

We can now turn to defining δ′ from δ. To avoid unsightly (−)op symbols appearing
everywhere we simply consider P,P′, S,S′ to be contravariant functors throughout (as opposed
to covariant functors from/to an (−)op category). The following definition was given in [3].

I Definition 20. A logic (L′, δ′) for T ′ is a positive fragment of the logic (L, δ) for T , if there
exist natural transformations α : T ′D→ DT and β : L′W→ WL such that Wδ◦βS = S′α◦δ′D.

Clearly, we have natural transformations α : T ′D → DT and β : L′W → WL by
construction of the posetification T ′ and of the positivication L′. We can construct a natural
transformation δ′ as follows. First, it is not hard to check that W ◦ P = P′ ◦D. Thus, given a
natural transformation δ : LP→ PT we get a natural transformation

L′P′D = L′WP βP=⇒WLP Wδ=⇒WPT = P′DT

I Lemma 21. For any poset X, the following diagram is an inserter:

P′T ′X // P′DTVX
P′DTπ1//

P′DTπ0

// P′DTVX2

Proof. DTX0 ⇒ DTX1 → T ′X is a coinserter and since P′ is the enriched hom functor
hom(−,2) it turns coinserters into inserters. J

By naturality of β and δ, the two right-hand side squares of the following diagram
commute, and this defines a Pos-enriched natural transformation δ′ : L′P′ → P′(T ′).

L′P′X
δ′
X
��

// L′P′DVX
L′P′Dπ1//

L′P′Dπ0

//

WδVX◦βPVX
��

L′P′DVX2

WδVX2◦βPVX2
��

P′T ′X // P′DTVX
P′DTπ1//

P′DTπ0

// P′DTVX2

(13)

I Theorem 22. With δ′ defined as above, the logic (L′, δ′) for T ′ is a positive fragment of
the logic (L, δ) for L′.

Proof. We need to check that Wδ ◦ βS = S′α ◦ δ′D. Given a set X, the poset DX has a
completely trivial coinserter presentation given by DX ⇒ DX → DX, and in particular
T ′DX = DTX, i.e. αX = idX , and the result follows from the diagram (13). J
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5.2 Completeness
We say that a BCL or a PCL (L, δ) is weakly complete for T -coalgebras if for any formulas
φ, ψ ∈ L such that φ � ψ, there exists a T -coalgebra γ : X → TX and a valuation
v : FBAV → PX (v : FDLV → P′X for posets) and an element x ∈ X such that x ∈ JφK(γ,v)
but x /∈ JψK(γ,v). The following theorem gives a sufficient condition for weak completeness.

I Theorem 23 ([17]). A BCL or a PCL (L, δ) for a functor T is weakly complete if δ is
component-wise injective.

Weak completeness transfers from a boolean logic to its positive fragment.

I Theorem 24. For a BCL (L, δ) defined by a strongly finitary functor L : BA→ BA, if δ
is component-wise injective, then so is δ′. In particular (L′, δ′) is then weakly complete.

Proof. Recall first that finitary (and thus strongly finitary) functors L : BA→ BA preserve
injective maps ([20, Lemma 6.14]). Since the natural transformation β : L′W→WL is an
isomorphism, it follows that the vertical legs of (13) are injective. Since P′ = (−,2) turns
coinserters into inserters and L′ preserves inserters by construction, the top row of (13) is an
inserter as well, and hence injective. It follows that δ′X must be injective. J

The case of normal modal logic. Let L : BA → BA be the syntax-building functor for
normal modal logic:

LA = (FBAUBAA)/{♦(a ∨ b) = ♦a ∨ ♦b,♦⊥ = ⊥}

and let δ : LP→ PP be the semantic transformation for normal modal logic, i.e.

δX(♦U) = {V ⊆ X | V ∩ U 6= ∅}

We have computed the posetification P′ or P in Section 3 and shown that the positivication
L′ of L is given by Dunn’s syntax ([8]) in Section 4. The following result is well-known, and
can be shown directly.

I Theorem 25. The natural transformation δ : LP→ PP is component-wise injective.

I Corollary 26. If L′ is the positivication of the syntax functor for normal modal logic, P ′
the posetification of the powerset functor, and δ′ : L′P′ → P′P ′ the semantics generated from
δ : LP→ PP by diagram (13), then the PCL (L′, δ′) is weakly complete for P ′-coalgebras.

6 Conclusion and future work

We have presented positive coalgebraic logic at the same level of generality as boolean coal-
gebraic logic, and developed a method by which boolean coalgebraic logics can systematically
be turned into positive coalgebraic logics. We have also shown that completeness follows
automatically from the boolean case in this setup. More broadly, we have also presented a
practical application of enriched category theory in logic by showing that positive modal
logic amounts to a type of Pos-enriched coalgebraic logic. We believe that this perspective
offers a deep insight into the fundamental difference between boolean and positive logics.

Much remains to be investigated. First, we do not yet have much practical experience
and tools to compute positivications. As Section 4 illustrates, our calculations are all indirect.
In particular we would like to compute the positivication of graded modal logic. On the logic
side, we have good reasons to believe that strong completeness transfers from the boolean to
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the positive case for a large class of functors. On the other hand, we believe that expressivity
does not transfer in general. All this will be investigated in a future companion publication
to this work.
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