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Abstract
We present the concept of a disjunctive basis as a generic framework for normal forms in modal
logic based on coalgebra. Disjunctive bases were defined in previous work on completeness for
modal fixpoint logics, where they played a central role in the proof of a generic completeness
theorem for coalgebraic mu-calculi. Believing the concept has a much wider significance, here
we investigate it more thoroughly in its own right. We show that the presence of a disjunctive
basis at the “one-step” level entails a number of good properties for a coalgebraic mu-calculus, in
particular, a simulation theorem showing that every alternating automaton can be transformed
into an equivalent nondeterministic one. Based on this, we prove a Lyndon theorem for the full
fixpoint logic, its fixpoint-free fragment and its one-step fragment, and a Uniform Interpolation
result, for both the full mu-calculus and its fixpoint-free fragment.

We also raise the questions, when a disjunctive basis exists, and how disjunctive bases are
related to Moss’ coalgebraic “nabla” modalities. Nabla formulas provide disjunctive bases for
many coalgebraic modal logics, but there are cases where disjunctive bases give useful normal
forms even when nabla formulas fail to do so, our prime example being graded modal logic.

Finally, we consider the problem of giving a category-theoretic formulation of disjunctive
bases, and provide a partial solution.
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1 Introduction

The topic of this paper connects modal µ-calculi, coalgebra and automata. The connection
between the modal µ-calculus, as introduced by Kozen [13], and automata running on infinite
objects, is standard [9]. Many of the most fundamental results about the modal µ-calculus
have been proved by making use of this connection, including completeness of Kozen’s
axiom system [23], and model theoretic results like expressive completeness [12], uniform
interpolation and a Lyndon theorem [3].

∗ For a full version of this paper, containing proofs of all statements, see [6], http://www.illc.uva.nl/
Research/Publications/Reports/PP-2017-05.text.pdf.
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11:2 Disjunctive Bases

The standard modal µ-calculus was generalized to a generic, coalgebraic modal µ-
calculi [21], of which the modal basis was provided by Moss’ original coalgebraic modality [17],
now known as the nabla modality. From a meta-logical perspective, Moss’ nabla logics and
their fixpoint extensions are wonderfully well-behaved. For example, a generic completeness
theorem for nabla logics by a uniform system of axioms was established [14], and this was
recently extended to the fixpoint extension of the finitary Moss logic [4]. Most importantly,
the automata corresponding to the fixpoint extension of Moss’ finitary nabla logic always
enjoy a simulation theorem, allowing arbitrary coalgebraic automata to be simulated by
non-deterministic ones; this goes back to the work of Janin & Walukiewicz on µ-automata [11].
The simulation theorem provides a very strong normal form for these logics, and plays an
important role in the proofs of several results for coalgebraic fixpoint logics.

The downside of this approach is that the nabla modality is rather non-standard, and
understanding what concrete formulas actually say is not always easy. For this reason,
another approach to coalgebraic modal logic has become popular, based on so called predicate
liftings. This approach, going back to the work of Pattinson [19], provides a much more
familiar syntax in concrete applications, but can still be elegantly formulated at the level of
generality and abstraction that makes the coalgebraic approach to modal logic attractive
in the first place. (For a comparison between the two approaches, see [15].) Coalgebraic
µ-calculi have also been developed as extensions of the predicate liftings based languages [2],
and the resulting logics are very well behaved: for example, good complexity results were
obtained in op. cit. Again, the connection between formulas and automata can be formulated
in this setting [7], but a central piece is now missing: so far, no simulation theorem has been
established for logics based on predicate liftings. In fact, it is not trivial even to define what
a non-deterministic automaton is in this setting.

This problem turned up in recent work [5], by ourselves together with Seifan, where we
extended our earlier completeness result for Moss-style fixpoint logics [4] to the predicate
liftings setting. Our solution was to introduce the concept of a disjunctive basis, which
formalizes in a compact way the minimal requirements that a collection of predicate liftings Λ
must meet in order for the class of corresponding Λ-automata to admit a simulation theorem.
Our aim in the present paper is to follow up on this conceptual contribution, which we
believe is of much wider significance besides providing a tool to prove completeness results.

Exemplifying this, we shall explore some of the applications of our coalgebraic simulation
theorem. Some of these transfer known results for nabla based fixpoint logics to the predicate
liftings setting; for example, we show that a linear-size model property holds for our non-
deterministic automata (or “disjunctive” automata as we will call them), following [21].
We also show that uniform interpolation results hold for coalgebraic fixpoint logics in the
presence of a disjunctive basis, which was proved for the Moss-style languages in [16]. Finally,
we prove a Lyndon theorem for coalgebraic fixpoint logics, generalizing a result for the
standard modal µ-calculus proved in [3]: a formula is monotone in one of its variables if and
only if it is equivalent to one in which the variable appears positively. We also prove an
explicitly one-step version of this last result, which we believe has some practical interest
for modal fixpoint logics: It is used to show that, given an expressively complete set of
monotone predicate liftings, its associated µ-calculus has the same expressive power as the
full µ-calculus based on the collection of all monotone predicate liftings.

Next to proving these results, we compare the notion of a disjunctive basis to the nabla
based approach to coalgebraic fixpoint logics. The connection will be highlighted in Section
7 where we discuss disjunctive predicate liftings via the Yoneda lemma: here the Barr lifting
of the ambient functor (on which the semantics of nabla modalities are based) comes into
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the picture naturally. This is not to say that disjunctive bases are just “nablas in disguise”:
it is a fundamental concept, and in some cases it is the right concept as opposed to nabla
formulas. As a clear example of this, we consider graded modal logic, which adds counting
modalities to modal logic. While we will see that this language has a disjunctive basis, at
the same time we will prove that no such basis can be based on the nabla modalities.

2 Preliminaries

We assume that the reader is familiar with coalgebra, coalgebraic modal logic and the basic
theory of automata operating on infinite objects. The aim of this section is to fix some
definitions and notations.

First of all, throughout this paper we will use the letter T to denote an arbitrary set
functor, that is, a covariant endofunctor on the category Set having sets as objects and
functions as arrows. For notational convenience we sometimes assume that T preserves
inclusions; our arguments can easily be adapted to the more general case. Functors of
coalgebraic interest include the identity functor Id, the powerset functor P, the monotone
neighborhood functor M and the (finitary) bag functor B (where BS is the collection of weight
functions σ : S → ω with finite support). We also need the contravariant powerset functor P̆.

A T-coalgebra is a pair S = (S, σ) where S is a set of objects called states or points and
σ : S → TS is the transition or coalgebra map of S. A pointed T-coalgebra is a pair (S, s)
consisting of a T-coalgebra and a state s ∈ S. We call a function f : S′ → S a coalgebra
homomorphism from (S′, σ′) to (S, σ) if σ ◦ f = Tf ◦ σ′, and write (S′, s′)→ (S, s) if there is
such a coalgebra morphism mapping s′ to s.

With X a set of proposition letters, a T-model over X is a pair (S, V ) consisting of a T-
coalgebra S = (S, σ) and a X-valuation V on S, that is, a function V : X→ PS. The marking
associated with V is the transpose map V [ : S → PX given by V [(s) := {p ∈ X | s ∈ V (p)}.
Thus the pair (S, V ) induces a TX-coalgebra (S, (V [, σ)), where TX is the set functor PX× T.

We will mainly follow the approach in coalgebraic modal logic where modalities are
associated (or even identified) with finitary predicate liftings. A predicate lifting of arity n is
a natural transformation λ : P̆n ⇒ P̆T. Such a predicate lifting is monotone if for every set
S, the map λS : (PS)n → PTS preserves the subset order in each coordinate. The induced
predicate lifting λ∂ : Pn ⇒ PT, given by λ∂S(X1, . . . , Xn) := TS \ λS(S \X1, . . . , S \X1), is
called the (Boolean) dual of λ. A monotone modal signature, or briefly: signature for T is a
set Λ of monotone predicate liftings for T, which is closed under taking boolean duals.

Given a signature Λ, the formulas of the coalgebraic µ-calculus µMLΛ are given by the
following grammar:

ϕ ::= p | ⊥ | ¬ϕ | ϕ0 ∨ ϕ1 | ♥λ(ϕ1, . . . , ϕn) | µx.ϕ′

where p and x are propositional variables, λ ∈ Λ has arity n, and the application of the
fixpoint operator µx is under the proviso that all occurrences of x in ϕ′ are positive (i.e.,
under an even number of negations). We let MLΛ and µMLΛ(X) denote, respectively, the
fixpoint-free fragment of µMLΛ and the set of µMLΛ-formulas taking free variables from X.

Formulas of such coalgebraic µ-calculi are interpreted in coalgebraic models, as follows.
Let S = (S, σ, V ) be a T-model over a set X of proposition letters. By induction on the
complexity of formulas, we define a meaning function [[·]]S : µMLΛ(X)→ PS, together with an
associated satisfaction relation  ⊆ S × µMLΛ(X) given by S, s  ϕ iff s ∈ [[ϕ]]S. All clauses
of this definition are standard; for instance, the one for the modality ♥λ is given by

S, s  ♥λ(ϕ1, . . . , ϕn) if σ(s) ∈ λS([[ϕ1]]S, . . . , [[ϕn]]S). (1)

CALCO 2017
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For the least fixpoint operator we apply the standard description of least fixpoints of monotone
maps from the Knaster-Tarski theorem and take

[[µx.ϕ]]S :=
⋂{

U ∈ PS | [[ϕ]](S,σ,V [x 7→U ]) ⊆ U
}
,

where V [x 7→ U ] is given by V [x 7→ U ](x) := U while V [x 7→ U ](p) := V (p) for p 6= x. A
formula ϕ is said to be monotone in a variable p if, for every T-model S = (S, σ, V ) and all
sets Z1 ⊆ Z2 ⊆ S, we have [[ϕ]](S,σ,V [p 7→Z1]) ⊆ [[ϕ]](S,σ,V [p 7→Z2]).

Well-known examples of coalgebraic modalities include the next-time operator © of linear
time temporal logic, the standard Kripkean modalities 2 and 3, the more general modalities
of monotone modal logic, and the counting modalities 3k and 2k of graded modal logic,
which can be interpreted over B-coalgebras using the predicate liftings k and k given by

kS : U 7→
{
σ ∈ BS |

∑
u∈U σ(u) ≥ k

}
kS : U 7→ {σ ∈ BS |

∑
u 6∈U σ(u) < k

}
.

A pivotal role in our approach is filled by the one-step versions of coalgebraic logics.
Given a signature Λ and a set A of variables, we define the set Bool(A) of boolean formulas
over A and the set 1MLΛ(A) of one-step Λ-formulas over A, by the following grammars:

Bool(A) 3 π ::= a | ⊥ | > | π ∨ π | π ∧ π | ¬π
1MLΛ(A) 3 α ::= ♥λπ | ⊥ | > | α ∨ α | α ∧ α | ¬α

where a ∈ A and π = (π1, . . . , πn) for some λ ∈ Λ of arity n. We will denote the positive
(negation-free) fragments of Bool(A) and 1MLΛ(A) as, respectively, Latt(A) and 1ML+

Λ (A).
We shall often make use of substitutions: given a finite set A, let ∨A : PA→ Bool(A) be

the map sending B to
∨
B, and let ∧A : PA→ Bool(A) be the map sending B to

∧
B, and

given sets A,B let ∧A,B : A×B → Bool(A ∪B) be defined by mapping (a, b) to a ∧ b.
A monotone modal signature Λ for T is expressively complete if, for every n-place predicate

lifting λ and variables a1, . . . , an there is a formula α ∈ 1MLΛ({a1, . . . , an}) which is equivalent
to ♥λa. We will also be interested in the following strengthening of expressive completeness:
we say that Λ is Lyndon complete if, for every monotone n-place predicate lifting λ and
variables a1, . . . , an, there is a positive formula α ∈ 1ML+

Λ ({a1, . . . , an}) equivalent to ♥λa.
One-step formulas are naturally interpreted in the following structures. A one-step

T-frame is a pair (S, σ) with σ ∈ TS, i.e., an object in the category E(T) of elements of T.
Similarly a one-step T-model over a set A of variables is a triple (S, σ,m) such that (S, σ) is
a one-step T-frame and m : S → PA is an A-marking on S. Morphisms of one-step frames
and of one-step models are defined in the obvious way.

Given a one-step model (S, σ,m), we define the 0-step interpretation [[π]]0m ⊆ S of
π ∈ Bool(A) by the obvious induction: [[a]]0m := {v ∈ S | a ∈ m(v)}, [[>]]0m := S, [[⊥]]0m := ∅,
and the standard clauses for ∧,∨ and ¬. Similarly, the one-step interpretation [[α]]1m of
α ∈ 1MLΛ(A) is defined as a subset of TS, with [[♥λ(π1, . . . , πn)]]1m := λS([[π1]]0m, . . . , [[πn]]0m),
and standard clauses for ⊥,>,∧,∨ and ¬. Given a one-step modal (S, σ,m), we write
S, σ,m 1 α for σ ∈ [[α]]1m. Notions like one-step satisfiability, validity and equivalence are
defined in the obvious way.

A Λ-automaton over a set X of proposition letters, or more broadly, a coalgebra automaton,
is a quadruple A = (A,Θ,Ω, aI) where A is a finite set of states, with initial state aI ∈ A,
Θ : A× PX → 1ML+

Λ(A) is the transition map and Ω : A → ω is the priority map of A. Its
semantics is given in terms of a two-player infinite parity game: With S = (S, σ, V ) a T-model
over a set Y ⊇ X, the acceptance game A(A,S) is the parity game given by the table below.
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Position Player Admissible moves Priority
(a, s) ∈ A× S ∃ {m : S → PA | (S, σ(s),m) 1 Θ(a, X ∩ V [(s))} Ω(a)
m : S → PA ∀ {(b, t) | b ∈ m(t)} 0

We say that A accepts the pointed T-model (S, s), notation: S, s  A, if (aI , s) is a
winning position for ∃ in the acceptance game A(A,S).

I Fact 1. There are effective constructions transforming a formula in µMLΛ(X) into an
equivalent Λ-automaton over X, and vice versa.

3 Disjunctive formulas and disjunctive bases

In this section, we present the main conceptual contribution of the paper, and define
disjunctive bases. We then immediately consider a number of examples.

I Definition 2. A one-step formula α ∈ 1ML+
Λ(A) is called disjunctive if for every one-step

model (S, σ,m) such that S, σ,m 1 α there is a one-step frame morphism f : (S′, σ′)→ (S, σ)
and a marking m′ : S′ → PA such that:
1. S′, σ′,m′ 1 α;
2. m′(s′) ⊆ m(f(s′)), for all s′ ∈ S′;
3. |m′(s′)| ≤ 1, for all s′ ∈ S′.

I Definition 3. Let D be an assignment of a set of positive one-step formulas D(A) ⊆ 1ML+
Λ (A)

for all sets of variables A. Then D is called a disjunctive basis for Λ if each formula in D(A) is
disjunctive, and the following conditions hold:
1. D(A) is closed under finite disjunctions (in particular, it contains > =

∨
∅).

2. D is distributive over Λ: for every one-step formula of the form ♥λπ there is a formula
δ ∈ D(P(A)) such that ♥λπ ≡1 δ[∧A].

3. D admits a binary distributive law: for any two formulas α ∈ D(A) and β ∈ D(B), there is
a formula γ ∈ D(A×B) such that α ∧ β ≡1 γ[∧A,B ].

Disjunctive bases for weak pullback preserving functors. It is not hard to prove that
disjunctive formulas generalize the Moss modalities, which are tightly connected to weak
pullback preservation of the coalgebraic type functor. (Due to space limitations we refer
to [14] for the details on the syntax and semantics of the Moss modalities.) In many interesting
cases this suffices to find a disjunctive basis.

I Proposition 4. Let Λ be a signature for a weak-pullback preserving functor T. If Λ is
Lyndon complete, then the collection of all (finite or infinite) disjunctions of nabla formulas
provides a disjunctive basis for Λ.

For a proof of this proposition, which is a fairly straightforward exercise in coalgebraic
logic, we refer the reader to [6].

Graded modal logic. Our main motivating example to introduce disjunctive bases is graded
modal logic. The bag functor does preserve weak pullbacks, and so its Moss modalities are
disjunctive, and the set of all monotone liftings for B does admit a disjunctive basis as an
instance of Proposition 4. Note, however, that this proposition does not apply to graded
modal logic, since the signature ΣB is not expressively complete; this was essentially shown
in [18]. It was observed already in [1] that very simple formulas in the one-step language
1MLΣB are impossible to express in the (finitary) Moss language; consequently, the Moss

CALCO 2017



11:6 Disjunctive Bases

modalities for the bag functor are not suitable to provide disjunctive normal forms for graded
modal logic. Still, the signature ΣB does have a disjunctive basis.

We say that a one-step model for the finite bag functor is Kripkean if all states have
multiplicity 1. Note that a Kripkean one-step model (S, σ,m) can also be seen as a structure
(in the sense of standard first-order model theory) for a first-order signature consisting of a
monadic predicate for each a ∈ A: Simply consider the pair (S, Vm), where Vm : A→ PS is
the interpretation given by putting Vm(a) := {s ∈ S | a ∈ m(s)}. We consider special basic
formulas of monadic first-order logic of the form:

γ(a,B) := ∃x(diff(x) ∧
∧
i∈I

ai(xi) ∧ ∀y(diff(x, y)→
∨
b∈B

b(y)))

It is not hard to see that any Kripkean one-step B-model (S, σ,m) satisfies:

S, σ,m 1 γ(a,B) implies S, σ,m′ 1 γ(a,B) for some m′ ⊆ m with Ran(m′) ⊆ P≤1A. (2)

We can turn the formula γ(a,B) into a modality ∇(a;B) that can be interpreted in all
one-step B-models, using the observation that every one-step B-frame (S, σ) has a unique
Kripkean cover (S̃, σ̃) defined by putting S̃ :=

⋃
{s× σ(s) | s ∈ S}, and σ̃(s, i) := 1 for all

s ∈ S and i ∈ σ(s) (where we view each finite ordinal as the set of all smaller ordinals). Then
we can define, for an arbitrary one-step B-model (S, σ)

S, σ,m 1 ∇(a;B) if S̃, σ̃,m ◦ πS 1 γ(a,B), (3)

where πS is the projection map πS : S̃ → S. It is then an immediate consequence of (2) that
∇(a;B) is a disjunctive formula.

Given a set A we define DB(A) as the set of all formulas ∇(a;B) with a ∈ A and B ⊆ A.

I Theorem 5. The collection DB provides a disjunctive basis for the signature ΣB.

As far as we know, this result is new. The hardest part in proving it is actually not to
show that the language DB is distributive over ΣB or that it admits a distributive law (these
are easy exercises that we leave to the reader), but to show that formulas in DB(A) can be
expressed as one-step formulas in 1ML+

ΣB
(A). The reason that this is not so easy is subtle;

by contrast, it is fairly straightforward to show that formulas in DB(A) can be expressed
in 1MLΣB(A), using Ehrenfeucht-Fraïssé games, see e.g. Fontaine & Place [8]. However, a
proper disjunctive basis as we have defined it has to consist of positive formulas, and this
will be crucial for applications to modal fixpoint logics1.

I Proposition 6. Every formula ∇(a;B) ∈ DB is one-step equivalent to a formula in
1MLΣB(A).

Our main tool in proving this proposition will be Hall’s Marriage Theorem, which can be
formulated as follows. A matching of a bi-partite graph G = (V1, V2, E) is a subset M of E
such that no two edges in M share any common vertex. M is said to cover V1 if DomM = V1.

I Fact 7 (Hall’s Marriage Theorem). Let G be a finite bi-partite graph, G = (V1, V2, E). Then
G has a matching that covers V1 iff, for all U ⊆ V1, |U | ≤ |E[U ]|, where E[U ] is the set of
vertices in V2 that are adjacent to some element of U .

1 The same subtlety appears in Janin & Lenzi [10], where the translation of the language DB into 1ML+
ΣB

is required to prove that the graded µ-calculus is equivalent, over trees, to monadic second-order logic.
Proposition 6 in fact fills a minor gap in this proof.
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Proof of Proposition 6. We will show this for the simple case where B is a singleton {b}.
The general case is an immediate consequence of this (consider the substitution B 7→

∨
B).

Where a = (a1, . . . , an), define I := {1, . . . , n}. For each subset J ⊆ I, let χJ be the
formula

χJ := 3|J|
∨
i∈J

ai ∧2n+1−|J|(
∨
i∈J

ai ∨ b),

and let γ be the conjunction γ :=
∧
{χJ | J ⊆ I}. What the formula χJ says about a

Kripkean (finite) one-step model is that at least |J | elements satisfy the disjunction of the
set {ai | i ∈ J}, while all but at most n − |J | elements satisfy the disjunction of the set
{ai | i ∈ J} ∪ {b}. Abbreviating ∇(a;b) := ∇(a;{b}), we claim that γ ≡1 ∇(a;b), and to
prove this it suffices to consider Kripkean one-step models.

It is straightforward to verify that the formula γ is a semantic one-step consequence of
∇(a;b). For the converse, consider a Kripkean one-step model (S, σ,m) in which γ is true. Let
K be an index set of size |S| −n, and disjoint from I. Clearly then, |I ∪K| = |I|+ |K| = |S|.
Furthermore, let ak := b, for all k ∈ K.

We define a bipartite graph G := (V1, V2, E) by setting V1 := I ∪ K, V2 := S, and
E := {(j, s) ∈ (I ∪K)× S | aj ∈ m(s)}. By Hall’s Theorem the graph G has a matching M
that covers V1 (a full proof of this is given in [6]). Since the size of the set V1 is the same as
that of V2, any matching M of G that covers V1 is (the graph of) a bijection between these
two sets. Furthermore, it easily follows that such an M restricts to a bijection between I
and a subset {s1, ..., sn} of S such that ai ∈ m(si) for each i ∈ I, and that b ∈ m(t) for each
t /∈ {s1, ..., sn}. Hence ∇(a;b) is true in (S, σ,m), as required. J

This concludes the proof of Theorem 5.

An example without weak pullback preservation. There are also functors that do not
preserve weak pullbacks, but do have a disjunctive basis. As an example of this, consider
the subfunctor P2/3 of P3 given by: P2/3S = {(Z0, Z1, Z2) | Z0 ∩ Z1 6= ∅ or Z1 ∩ Z2 6= ∅}.
While it is easy to show that this functor does not preserve weak pullbacks, the signature
ΣP3 (regarded as a set of liftings for P2/3 rather than P3) still admits a disjunctive basis.

A non-example. Finally, we mention an example of a signature that does not admit any
disjunctive basis: the signature Σ consisting of the box- and diamond liftings for M does not
have a disjunctive basis. The full proof of this can be found in [6].

4 Disjunctive automata and simulation

We now introduce disjunctive automata, which serve as a coalgebraic generalization of
non-deterministic automata for the modal µ-calculus.

I Definition 8. A Λ-automaton A = (A,Θ,Ω, aI) is said to be disjunctive (relative to a
disjunctive basis D) if Θ(c, a) ∈ D(A), for all colors c ∈ PX and all states a ∈ A.

I Definition 9. Let A = (A,Θ,Ω, aI) be a Λ-automaton and let (S, sI) be a pointed T-model.
A strategy f for ∃ in A(A,S)@(aI , sI) is separating if for every s in S there is at most one
state a in A such that the position (a, s) is f -reachable (i.e., occurs in some f -guided match).
We say that A strongly accepts (S, sI), notation: S, sI s A if ∃ has a separating winning
strategy in the game A(A,S)@(aI , sI).

CALCO 2017



11:8 Disjunctive Bases

Disjunctive automata are very well behaved. For instance, the following result, which can
be proved using essentially the same argument as in [21], states a linear-size model property.

I Theorem 10. Let A = (A,Θ, aI ,Ω) be a disjunctive automaton for a set functor T. If A
accepts some pointed T-model, then it accepts one of which the carrier S satisfies S ⊆ A.

The main property of disjunctive automata, which we will use throughout the remainder
of this paper, is the following.

I Proposition 11. Let A be a disjunctive Λ-automaton. Then any pointed T-model which is
accepted by A has a pre-image model which is strongly accepted by A.

Proof. Let S = (S, σ, V ) be a pointed T-model, let sI ∈ S, and let f be a winning strategy
for ∃ in the acceptance game A := A(A,S)@(aI , sI); without loss of generality we may
assume that f is positional. We will construct (i) a pointed T-model (X, ξ,W, xI), (ii) a tree
(X,R) which is rooted at xI (in the sense that for every t ∈ X there is a unique R-path
from xI to x) and supports (X, ξ) (in the sense that ξ(x) ∈ TR(x), for every x ∈ X), (iii) a
morphism h : (X, ξ,W )→ (S, σ, V ) such that h(xI) = sI . In addition (X, ξ,W, xI) will be
strongly accepted by A.

In more detail, we will construct all of the above step by step, and by a simultaneous
induction we will associate, with each t ∈ X of depth k, a (partial) f -guided match Σt of
length 2k + 1; we will denote the final position of Σt as (at, st), and will define h(t) := st.

For the base step of the construction we take some fresh object xI , we define ΣxI
to be

the match consisting of the single position (aI , sI), and set h(xI) := sI .
Inductively assume that we are dealing with a node t ∈ X of depth k, and that Σt, at

and st are as described above. Since Σt is an f -guided match and f is a winning strategy in
A, the pair (at, st) is a winning position for ∃ in A. In particular, the marking mt : S → PA
prescribed by f at this position satisfies

S, σ(st),mt 
1 Θ(V [(st), at).

Now by disjunctiveness of the automaton A there is a set R(t) (that we may take to
consist of fresh objects), an object ξ(t) ∈ TR(t), an A-marking m′t : R(t) → PA and
a map ht : R(t) → S, such that2 |m(u)| = 1 and m′t(u) ⊆ mt(ht(u)) for all u ∈ R(t),
(Tht)ξ(t) = σ(st) and

R(t), ξ(t),m′t 1 Θ(V [(st), at).

Let au be the unique object such that m′t(u) = {au}, define su := ht(u), and put Σu :=
Σt ·mt · (au, su).

With (X,R, xI) the tree constructed in this way, and observing that ξ(t) ∈ R(t) ⊆ X, we
let ξ be the coalgebra map on X. Taking h : X → S to be the union (xI , sI) ∪ {ht | t ∈ X},
we can easily verify that h is a surjective coalgebra morphism. Finally, we define the valuation
W : X→ PX by putting W (p) := {x ∈ X | hx ∈ V (p)}.

It remains to show that A strongly accepts the pointed T-model (X, xI), with X =
(X, ξ,W ); for this purpose consider the following (positional) strategy f ′ for ∃ in A(A,X).
At a position (a, t) ∈ A×X such that a 6= at ∃ moves randomly (we may show that such
a position will not occur); on the other hand, at a position of the form (at, t), the move

2 To simplify our construction, we strengthen clause (3) in Definition 2. This is not without loss of
generality, but we may take care of the general case using a routine extension of the present proof.
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suggested by the strategy f ′ is the marking m′t. Then it is obvious that f ′ is a separating
strategy; to see that f ′ is winning from starting position (aI , xI), consider an infinite match
Σ of A(A,X)@(aI , xI) (finite matches are left to the reader). It is not hard to see that Σ must
be of the form Σ = (a0, x0)m′x0

(a1, x1)m′x1
· · · , where Σ− = (a0, h(s0))mx0(a1, h(s1))mx1 · · ·

is an f -guided match of A. From this observation it is immediate that Σ is won by ∃. J

We now come to our main application of disjunctive bases, and fill in the main missing
piece in the theory of coalgebraic automata based on predicate liftings: a simulation theorem.

I Theorem 12 (Simulation). Let Λ be a monotone modal signature for the set functor T and
assume that Λ has a disjunctive basis. Then there is an effective construction transforming
an arbitrary Λ-automaton A into an equivalent disjunctive Λ-automaton sim(A).

Proof. Assume that D is a disjunctive basis for Λ, and let A = (A,Θ,Ω, aI) be a Λ-automaton.
Our definition of sim(A) is rather standard [22], so we will confine ourselves to the definitions.
The construction takes place in two steps, a ‘pre-simulation’ step that produces a disjunctive
automaton pre(A) with a non-parity acceptance condition, and a second ‘synchronization’
step that turns this nonstandard disjunctive automaton into a standard one.

We define the pre-simulation automaton of A as the structure
pre(A) := (A],Θ],NBTA, RI), where the carrier of the pre-simulation pre(A) of A is the
collection A] of binary relations over A, and the initial state RI is the singleton pair {(aI , aI)}.
For its transition function, first define the map Θ? : A× PX→ 1ML+

Λ (A×A) by putting, for
a ∈ A and c ∈ PX:

Θ?(a, c) := Θ(a, c)[θa],

where θa : A→ Latt(A×A) is the tagging substitution given by θa : b 7→ (a, b). Now, given
a state R ∈ A] and color c ∈ PX, take Θ](R, c) to be an arbitrary but fixed formula in D(A])
such that

Θ](R, c)[∧A×A] ≡
∧

a∈RanR
Θ?(a, c).

Clearly such a formula exists by our assumption on D being a disjunctive basis for Λ.
Turning to the acceptance condition, define a trace on an A]-stream ρ = (Rn)0≤n<ω to

be an A-stream α = (an)0≤n<ω with Riaiai+1 for all i ≤ 0. Calling such a trace α bad if
max{Ω(a) | a occurs infinitely often in α} is odd, we obtain the acceptance condition of the
automaton pre(A) as the set NBTA ⊆ (A])ω of A]-streams that contain no bad trace.

Finally we produce the simulation of A by forming a certain kind of product of pre(A)
with Z, where Z = (Z, δ,Ω′, zI) is some deterministic parity stream automaton recognizing
the ω-regular language NBTA. More precisely, we define sim(A) := (A]×Z,Θ′′,Ω′′, (RI , zI))
where:

Θ′′(R, z) := Θ](R)[(Q, δ(R, z)/Q | Q ∈ A]] and
Ω′′(R, z) := Ω′(z).

The equivalence of A and sim(A) can be proved by relatively standard means [22]. J

5 Lyndon theorems

Lyndon’s classical theorem in model theory provides a syntactic characterization of a semantic
property, showing that a formula is monotone in a predicate P if and only if it is equivalent to
a formula in which P occurs only positively. A version of this result for the modal µ-calculus
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11:10 Disjunctive Bases

was proved by d’Agostino and Hollenberg in [3]. Here, we show that their result holds for
any µ-calculus based on a signature that admits a disjunctive basis.

We first turn to the one-step version of the Lyndon Theorem, for which we need the
following definition; we also recall the substitutions ∧A and ∨A defined in section 2.

I Definition 13. A propositional A-type is a subset of A. For B ⊆ A and a ∈ A, the formulas
τB and τa+

B are defined by:

τB :=
∧
B ∧

∧
{¬a | a ∈ A \B}

τa+
B :=

∧
B ∧

∧
{¬b | b ∈ A \ (B ∪ {a})}

We let τ and τa+ denote the maps B 7→ τB and B 7→ τa+
B , respectively.

I Proposition 14. Suppose Λ admits a disjunctive basis. Then for any formula α in 1MLΛ(A)
there is a one-step equivalent formula of the form δ[∨PA][τ ] for some δ ∈ D(PA).

Proof. Let’s first check that everything is correctly typed: note that we have ∨PA : PA→
Bool(PA) and so δ[∨PA] ∈ 1MLΛ(PA), and τPA : PA→ Bool(A). So δ[∨PA][τ ] ∈ 1MLΛ(A), as
required.

For the normal form proof, first note that we can use boolean duals of the modal operators
to push negations down to the zero-step level. Putting the resulting formula in disjunctive
normal form, we obtain a disjunction of formulas of the form ♥λ1π1 ∧ ... ∧ ♥λk

πk, where
π1, ..., πk ∈ Bool(A). Repeatedly applying the distributivity of D over Λ and the distributive
law for D, we can rewrite each such disjunct as a formula of the form δ[σ] where δ ∈ D({1, ..., k})
and σ : {1, ..., k} → Bool(A) is defined by setting i 7→ πi. Now, just apply propositional logic
to rewrite each formula πi as a disjunction of formulas in τ [PA], and we are done. J

I Theorem 15 (One-step Lyndon theorem). Let Λ be a monotone modal signature for the set
functor T and assume that Λ has a disjunctive basis. Any α ∈ 1MLΛ(A), monotone in the
variable a ∈ A, is one-step equivalent to some formula in 1MLΛ(A), which is positive in a.

Proof. By Proposition 14, we can assume that α is of the form δ[∨PA][τ ] for some δ ∈ D(PA).
Clearly it suffices to show that :

δ[∨PA][τ ] ≡1 δ[∨PA][τa+]

One direction, from left to right, is easy since δ[∨PA] is a monotone formula in 1MLΛ(PA),
and [[τB ]]0m ⊆ [[τa+

B ]]0m for each B ⊆ A and each marking m : X → PA.
For the converse direction, suppose X, ξ,m 1 δ[∨PA][τa+]. We define a PA-marking

m0 : X → PPA by setting m0(u) := {B ⊆ A | B �a m(u)}, where the relation �a over
PA is defined by B �a B′ iff B \ {a} = B′ \ {a}, and a /∈ B or a ∈ B′. We claim
that X, ξ,m0 1 δ[∨PA]. Since δ[∨PA] is a monotone formula, it suffices to check that
[[τa+
B ]]0m ⊆ [[B]]0m0

for each B ⊆ A. This follows by just unfolding definitions.
Since δ was disjunctive, so is δ[∨PA], as an easy argument will reveal. So we now find a

one-step frame morphism f : (X ′, ξ′)→ (X, ξ), together with a marking m′ : X ′ → PPA such
that |m′(u)| ≤ 1 and m′(u) ⊆ m0(f(u)) for all u ∈ X ′, and such that X ′, ξ′,m′ 1 δ[∨PA].
We define a new A-marking m′′ : X ′ → PA on X ′ by setting m′′(u) = B, if m′(u) = {B},
and m′′(u) = m(f(u)) if m′(u) = ∅. Note that, for each B ⊆ A, we have [[B]]0m′ ⊆ [[τB]]0m′′ ,
so by monotonicity of δ[∨PA] we get X ′, ξ′,m′′ 1 δ[∨PA][τ ].

If we compare the markings m′′ and m ◦ f , we see that m′′(u) �a m(f(u)) for all u ∈ X ′.
If m′(u) = ∅, then in fact m′′(u) = m(f(u)) by definition of m′′. If m′(u) = {B}, then
m′′(u) = B ∈ m′(u) ⊆ m0(f(u)), hence B �a m(f(u)) by definition of m0. Since δ[∨PA][τ ]
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was monotone with respect to the variable a it follows that X ′, ξ′,m ◦ f 1 δ[∨PA][τ ] and so
X, ξ,m 1 δ[∨PA][τ ] by naturality, thus completing the proof of the theorem. J

A useful corollary to this theorem is the following.

I Corollary 16. Suppose Λ is an expressively complete set of monotone predicate liftings for
T. If Λ admits a disjunctive basis, then Λ is Lyndon complete and hence µMLΛ ≡ µMLT.

At first glance this proposition (of which a full proof can be found in [6]) may seem trivial,
but it is important to see that it is not: given a formula ϕ of µMLT, a naive definition of
an equivalent formula in µMLΛ would be to apply expressive completeness to simply replace
each subformula of the form ♥λ(ψ1, ..., ψn) with an equivalent one-step formula α over
{ψ1, ..., ψn}, using only predicate liftings in Λ. But if this subformula contains bound fixpoint
variables, these must still appear positively in α in order for the translation to even produce
a grammatically correct formula! We need the stronger condition of Lyndon completeness for
Λ. We do not know whether expressive completeness entails Lyndon completeness in general,
but in the presence of a disjunctive basis, it does: this is a consequence of Theorem 15.

We now turn to our Lyndon Theorems for the full coalgebraic modal (fixpoint) languages.
Let (µMLΛ)Mp and (MLΛ)Mp denote the fragments of respectively µML and MLΛ, consisting of
the formulas that are positive in the proposition letter p.

I Theorem 17 (Lyndon Theorem). There is an effective translation (·)Mp : µMLΛ → (µMLΛ)Mp ,
which restricts to a map (·)Mp : MLΛ → (MLΛ)Mp , and satisfies that

ξ ∈ µML is monotone in p iff ξ ≡ ξMp .

Proof. Due to space limitations, we have to confine ourselves to a sketch. By the equivalence
between formulas and Λ-automata and the Simulation Theorem, it suffices to prove the
analogous statement for disjunctive coalgebra automata. Given a disjunctive Λ-automaton
A = (A,Θ,Ω, aI), we define AMp to be the automaton (A,ΘM

p ,Ω, aI), where

ΘM
p (c, a) :=

{
Θ(c, a) if p ∈ c
> if p 6∈ c.

Clearly AMp is a disjunctive automaton as well, and it is routine to show that AMp is equivalent
to a formula in µMLΛ that is positive in the variable p. Our main claim is then that A is
monotone in p iff A ≡ AMp . Some more details of this proof can be found in the appendix. J

I Remark. Observe that as a corollary of Theorem 17 and the decidability of the satisfiability
problem of µMLΛ [2], it is decidable whether a given formula ξ ∈ µML is monotone in p.

6 Uniform Interpolation

Uniform interpolation is a very strong form of the interpolation theorem, first proved for
the modal µ-calculus in [3]. It was later generalized to coalgebraic modal logics in [16].
However, the proof crucially relies on non-deterministic automata, and for that reason the
generalization in [16] is stated for nabla-based languages. With a simulation theorem for
predicate liftings based automata in place, we can prove the uniform interpolation theorem
for a large class of µ-calculi based on predicate liftings. Given a set X of proposition letters
and a single proposition letter p, it may be convenient to denote the set X ∪ {p} as Xp.
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I Definition 18. Given a formula ϕ ∈ µMLΛ, we let Xϕ denote the set of proposition letters
occurring in ϕ.

A logic L with semantic consequence relation |= is said to have the property of uniform
interpolation if, for any formula ϕ ∈ L and any set X ⊆ Xϕ of proposition letters, there is a
formula ϕX ∈ L(X), effectively constructible from ϕ, such that

ϕ |= ψ iff ϕX |= ψ, (4)

for every formula ψ ∈ L such that Xϕ ∩ Xψ ⊆ X.

To see why this property is called uniform interpolation, it is not hard to prove that, if
ϕ |= ψ, with Xϕ ∩ Xψ ⊆ X, then the formula ϕX is indeed an interpolant in the sense that
ϕ |= ϕX |= ψ and XϕX ⊆ Xϕ ∩ Xψ.

I Theorem 19 (Uniform Interpolation). Let Λ be a monotone modal signature for the set
functor T and assume that Λ has a disjunctive basis. Then both logics MLΛ and µMLΛ enjoy
the property of uniform interpolation.

Following D’Agostino & Hollenberg [3], we prove Theorem 19 by automata-theoretic
means. The key proposition in our proof is Proposition 21 below, which refers to the following
construction on disjunctive automata.

I Definition 20. Let X be a set of proposition letters not containing the letter p. Given a
disjunctive (Λ, Xp)-automaton A = (A,Θ,Ω, aI), we define the map Θ∃p : A× PX→ D(A) by

Θ∃p(c, a) := Θ(c, a) ∨Θ(c ∪ {p}, a),

and we let A∃p denote the (Λ, X)-automaton (A,Θ∃p,Ω, aI).

I Proposition 21. Let X ⊆ Y be sets of proposition letters, both not containing the letter p.
Then for any disjunctive (Λ, Xp)-automaton A and any pointed T-model (S, sI) over Y:

S, sI  A∃p iff S′, s′I s A for some Yp-model (S′, s′I) such that S′�Y , s′I → S, sI . (5)

Proof. We only prove the direction from left to right, leaving the other (easier) direction as
an exercise to the reader. For notational convenience we assume that X = Y.

By Proposition 11 it suffices to assume that (S, sI) is strongly accepted by A∃p and find
a subset U of S for which we can prove that S[p 7→ U ], sI s A. So let f be a separating
winning strategy for ∃ in A(A∃p,S)@(aI , sI) witnessing that S, sI s A∃p. Call a point s ∈ S
f-accessible if there is a state a ∈ A such that the position (a, s) is f -reachable; since this
state is unique by the assumption of strong acceptance we may denote it as as. Clearly
any position of the form (as, s) is winning for ∃, and hence by legitimacy of f it holds in
particular that

S, σ(s),ms 
1 Θ∃p(V [(s), as),

where ms : S → PA denotes the marking selected by f at position (as, s). Recalling that
Θ∃p(V [(s), as) = Θ(V [(s), as) ∨Θ(V [(s) ∪ {p}, as), we define

U := {s ∈ S | s is f -accessible and S, σ(s),ms 61 Θ(V [(s), as)}.

By this we ensure that, for all f -accessible points s:

s 6∈ U implies S, σ(s),ms 
1 Θ(V [(s), as) (6)

while s ∈ U implies S, σ(s),ms 
1 Θ(V [(s) ∪ {p}, as) (7)
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Now consider the valuation VU := V [p 7→ U ], and observe that by this definition we have
V [U (s) = V [(s) if s 6∈ U while V [U (s) = V [(s) ∪ {p} if s ∈ U . Combining this with (6) and (7)
we find that

S, σ(s),ms 
1 Θ(V [U , as)

whenever s is f -accessible. In other words, f provides a legitimate movems in A(A,S)@(as, s)
at any position of the form (as, s). From this it is straightforward to derive that f itself
is a (separating) winning strategy for ∃ in A(A,S[p 7→ U ])@(aI , sI), and so we obtain that
S[p 7→ U ], sI s A as required. J

The remaining part of the argument follows by a fairly standard argument going back to
D’Agostino & Hollenberg [3] (see also Marti et alii [16]), with a twist provided by the fact
that the ‘bisimulation quantifier’ here refers to pre-images rather than to bisimilar models.

I Proposition 22. Given any proposition letter p, there is a map ∃p on µMLΛ, restricting to
MLΛ, such that X∃p.ϕ = Xϕ \ {p} and, for every pointed (S, sI) over a set Y ⊇ Xϕ with p 6∈ Y:

S, sI  ∃p.ϕ iff S′, s′I  ϕ for some Yp-model (S′, s′I) such that S′�Y , s′I → S, sI . (8)

Proof. Straightforward by the equivalence between formulas and Λ-automata, the Simulation
Theorem, and Proposition 21. J

Proof of Theorem 19. With p1, . . . , pn enumerating the proposition letters in Xϕ \ X, set

ϕX := ∃p1∃p2 · · · ∃pn.ϕ.

Then a relatively routine exercise shows that ϕ |= ψ iff ϕY |= ψ, for all formulas ψ ∈ µMLΛ
such that Xϕ ∩ Xψ ⊆ X. Finally, it is not difficult to verify that ϕY is fixpoint-free if ϕ is so;
that is, the uniform interpolants of a formula in MLΛ also belong to MLΛ. J

7 Yoneda representation of disjunctive liftings

It is a well known fact in coalgebraic modal logic that predicate liftings have a neat repres-
entation via an application of the Yoneda lemma. This was explored by Schröder in [20],
where it was used among other things to prove a characterization theorem for the monotone
predicate liftings. Here, we apply the same idea to disjunctive liftings. We shall be working
with a slightly generalized notion of predicate lifting here, taking a predicate lifting over a
finite set of variables A to be a natural transformation λ : P̆A → P̆ ◦ T. Clearly, one-step
formulas in 1MLΛ(A) can then be viewed as predicate liftings over A.

I Definition 23. Let λ : P̆A → P̆ ◦ T be a predicate lifting over variables A = {a1, ..., an}.
The Yoneda representation y(λ) of λ is the subset

λPA(truea1 , ..., truean) ∈ PTPA

where trueai = {B ⊆ A | ai ∈ B}. We shall write simply λ ⊆ TPA instead of y(λ).

I Definition 24. Given a set A, let A> be the set A ∪ {>}. Let εA ⊆ A> × PA be the
relation defined by aεAB iff a ∈ B, and >εAB for all B ⊆ A. Let ηA : A> → PA be defined
by ηA(a) = {a}, and ηA(>) = ∅.

In the remainder of this section we assume familiarity with the Barr relation lifting T
associated with a functor T; see [14] for the definition and some basic properties.
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I Definition 25. A predicate lifting λ ⊆ TPA is said to be divisible if, for all α ∈ λ there is
some β ∈ TA> such that (β, α) ∈ T(εA) and TηA(β) ∈ λ.

I Proposition 26. Any disjunctive lifting over A is divisible, and if T preserves weak pullbacks
the disjunctive liftings over A are precisely the divisible ones.

Proof. Suppose λ ⊆ TPA is disjunctive, and pick α ∈ λ. Then PA,α, idPA 1 λ, so since λ is
disjunctive there are some one-step model (X, ξ,m) and map f : X → PA with m : X → PA,
m(u) ⊆ f(u) for all u ∈ X, Tf(ξ) = α, and |m(u)| ≤ 1 for all u ∈ X. We define a map
g : X → A> by setting g : u 7→ > if m(u) = ∅, g : u 7→ a if m(u) = {a}. We tuple the maps
f, g to get a map 〈f, g〉 : X → A> × PA. In fact, since m(u) ⊆ f(u) for all u ∈ X, we have
〈f, g〉 : X → εA. Let π1 : εA → A> and π2 : εA → PA be the projection maps. We have the
following diagram, in which the two triangles and the outer edges commute (i.e., m = ηA ◦ g).

PA

X

m //

f

77

g
&&

〈f,g〉
// εA

π2

OO

π1
��

A>

ηA

gg

Now apply T to this diagram and define β ∈ TA> to be T(π1 ◦ 〈f, g〉)(ξ) = Tg(ξ). First,
we have (β, α) ∈ T(εA), witnessed by T(〈f, g〉)(ξ) ∈ TεA. We claim that TηA(β) ∈ λ.
But since X, ξ,m 1 λ and m = ηA ◦ g, naturality of λ applied to the map g : X →
A>, gives A>, β, ηA 1 λ. Another naturality argument, applied to ηA : (A>, β, ηA) →
(PA,TηA(β), idPA) gives PA,TηA(β), idPA 1 λ, i.e., TηA(β) ∈ λ.

For the converse direction, under the assumption that T preserves weak pullbacks,
suppose that λ is divisible, and suppose X, ξ,m 1 λ. We get Tm(ξ) ∈ λ and so we find some
β ∈ TA> with β(TεA)Tm(ξ) and TηA(β) ∈ λ. Pick some β′ ∈ TεA with Tπ2(β′) = Tm(ξ)
and Tπ1(β′) = β. Let R, g1, g2 be the pullback of the diagram X → PA← εA, shown in the
diagram.

X
m // PA

R

g1

OO

g2
// εA

π2

OO

π1
��

A>

ηA

gg

By weak pullback preservation there is ρ ∈ TR with Tg1(ρ) = ξ and Tg2(ρ) = β′. The map
g1 : (R, ρ)→ (X, ξ) is thus a cover, and we have a marking m′ on R defined by ηA ◦ π1 ◦ g2
(follow the bottom-right path in the previous diagram). It is now routine to check that
R, ρ,m′ 1 λ, and |m′(u)| ≤ 1 and m′(u) ⊆ m(g1(u)) for all u ∈ R, so we are done. J

For the moment, we leave the question open, whether a similar characterization of
disjunctive predicate liftings can be proved without weak pullback preservation. We also
leave it as an open problem to characterize the functors that admit a disjunctive basis.
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