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Abstract
Fibred semantics is the foundation of the model-instance pattern of software engineering. Soft-
ware models can often be formalized as objects of presheaf topoi, i.e, categories of objects that
can be represented as algebras as well as coalgebras, e.g., the category of directed graphs. Mul-
timodeling requires to construct colimits of models, decomposition is given by pullback. Com-
positionality requires an exact interplay of these operations, i.e., diagrams must enjoy the Van
Kampen property. However, checking the validity of the Van Kampen property algorithmically
based on its definition is often impossible.

In this paper we state a necessary and sufficient yet easily checkable condition for the Van
Kampen property to hold in presheaf topoi. It is based on a uniqueness property of path-like
structures within the defining congruence classes that make up the colimiting cocone of the
models. We thus add to the statement ”Being Van Kampen is a Universal Property” by Heindel
and Sobociński the fact that the Van Kampen property reveals a set-based structural uniqueness
feature.
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1 Introduction

A presheaf topos is a category, that is based on an algebraic signature with unary operation
symbols. Presheaves can also be considered as intersection of algebras and coalgebras [10].
Van Kampen Colimits are a generalization of Van Kampen squares [22]. In [26] we gave a
necessary and sufficient condition for a pushout to be a Van Kampen square in a presheaf
topos. In the present paper a corresponding criterion is given for all colimiting cocones.

1.1 Motivation
Software engineering and especially model-driven software development requires the de-
composition of large models into smaller components, i.e., successful development of large
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16:2 Van Kampen Property As Uniqueness Property

applications requires system design fragmentation. Vice versa, a comprehensive viewpoint
of a related ensemble of heterogenous software-engineering components is taken up by con-
sidering the amalgamation (union) of these artefacts modulo their relations amongst each
other. This assembly shall not only be carried out on a syntactical level (models), but in
the same way on the semantical level (instances). This interplay between assembly and
disassembly shows that composition and correct decomposition of an instance of a model
into instances of the model components always accompany each other. It can be shown that
correctness, i.e., compositionality [4, 5] is not always guaranteed [20].

Fibred semantics adheres to the model-instance pattern, a standard viewpoint in software
engineering: A model M is an object of an appropriate category C, semantics is given by
the comma category C↓M . In each object τ ∈ C↓M , τ ∶ I →M , I is the instance structure
and τ is its typing. Amalgamation is colimit (of the arrangement of components) and
decomposition is performed by taking pullbacks along the cocone morphisms of the colimit.

To wit: Compositionality means that colimit of semantics (instances) is controlled by
colimit of syntax (models) such that pullback of the instance colimit retrieves the original
instances. Thus compositionality is equivalent to the Van Kampen property [7], an abstract
characteristic which determines an exactness level for the interaction of colimits and pull-
backs. It is thus often necessary to check validity of this property. However, since the
definition of the property comes in terms of an equivalence of categories, see Definition 2 in
the present paper, algorithmic verification based on the definition is hard even for a finite
number of finite models, because the involved comma categories are infinite nevertheless.

Artefacts like UML- or ER-models are based on directed multigraphs, which in turn can
be coded as a functor category SetB, where B has objects E (edges) and V (vertices) and non-
identical arrows s, t ∶ E → V . More general metamodels, however, use more sophisticated
categories B, such as E-graphs for attributed graphs [3], bipartite graphs for Petri nets [3],
or more complex structures for generalized sketches [2]. Hence, SetB with B an arbitrary
small category, will be the underlying category for the forthcoming investigations.

Constructing colimits in a category C is an operation on diagrams, which are usually
coded as functors from a small schema category I to C. In order to make our results
usable for software engineering, we use the older definition for diagrams: Instead of a small
category, the schema I is a finite multigraph and a diagram is a graph morphism from I to C
[16]1. The practical construction of colimits relies on mapping paths, i.e., chains of pairs of
elements that are mapped to each other by the morphisms in the diagram, cf. Definition 3
in Section 3. Thus, colimit computation can easily be carried out algorithmically, if the
diagram is finite and consists of finite artefacts.

Summary: While colimit construction is easy, compositionality check (validation of the
Van Kampen property) is hard. The main contribution of the present paper is a theorem
(Theorem 5 in Section 3), which states that a colimit in a presheaf topos has the Van Kampen
property if and only if there are no ambiguous mapping paths between any pair of elements
of the coproduct of the model artefacts. Thus the implementation of the colimit operation
on the model level already provides the material for more efficient compositionality checking.

The paper is organized as follows: Section 2 introduces notation and background in-
formation, Section 3 presents the main theorem and applies it to a Software Engineering
problem. Section 4 sketches the proof idea: We use a former result, in which a necessary
and sufficient criterion is given for pushouts [26]. This result is translated to coequalizers
and, finally, lifted to colimits of arbitrary diagrams. Section 5 concludes and discusses future
research topics.

More details and elaborated proofs can be found in the underlying technical report [12].

1 More precisely to the underlying graph of C, see Section 2
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1.2 Related Work
The Van Kampen property has its origin in algebraic topology: Topological spaces X can
be investigated by a covering family of X which are related by their inclusions. Topological
properties are expressed with the help of the fundamental groupoid. The Van Kampen
Theorem [18] states that the colimit of the fundamental groupoids of all covering spaces is
the fundamental groupoid ofX, thus inferring global properties from local ones. The original
idea was stated by Seifert [21] for pushouts and was further elaborated by Van Kampen [23].

Inferring global properties from local ones is the heart of sheaf theory [17]. The fibred
view on sheaves is discussed in [24]. The application of Van Kampen’s ideas to graphical
modeling and to Software Engineering was invented in [13, 22] and then further detailed in
[3] for the theory of Graph Transformations. That extensive categories and especially topoi
are a reasonable playground for these theories is shown in [1, 14].

Amalgamation is a requirement for a collection of artefacts in computer science [4, 5]
which has been connected to the Van Kampen property in [26]. The same property is
called exactness in institution theory [20]. The importance of finding a feasible condition
to check the Van Kampen property was caused by investigations of new methods in Graph
Transformations [11, 15]. That the Van Kampen property can be characterized as a bicolimit
in a comprising span bicategory [7] is a fundamental statement. Moreover, the Van Kampen
property has been investigated in more special contexts [9] and can also be described with
the help of weak 2-limits in CAT (https://ncatlab.org/nlab/show/van+Kampen+colimit).
However, all these characterisations can hardly be applied in practice.

2 Preliminaries

This chapter recapitulates the most important notation for the following elaboration. For
any category C, X ∈ Cmeans that X is contained in the collection of objects in C. A diagram
in C is based on a directed multigraph I, the schema for the diagram. We write I0 and I1 for
the sets of vertices and edges of I. Formally, a diagram D ∶ I → U(C) is a graph morphism
where U denotes the forgetful functor assigning to each category its underlying graph. For
convenience reasons, however, the forgetful functor will be omitted, i.e., diagrams will be
denoted D ∶ I → C. This definition is used instead of the one, where I is a schema category
rather than a graph, because it will turn out, that the results in this paper can easier be
stated. The notions of (co-)cones and (co-)limits is the same modulo the adjunction F ⊣ U
where F ∶ Graphs → Cat assigns to any graph its freely generated category, see [16], III,
4 for more details. Another advantage of this definition occurs in software engineering:
Although the schema graph is finite, F(I) may have infinitely many arrows.

Vertices of I play the role of indices for diagram objects, hence, we use letters i, j, . . .
for vertices. Edges of I will be depicted i

d // j and we write i = s(d), j = t(d) (source

and target of d). Images of edges under a diagram D ∶ I → C will be denoted Di
Dd // Dj

(slightly deviating from the usual notation D(i),D(d), etc).
Let E ,D ∶ I→ C be two diagrams, then a family

τ = (τi ∶ Ei → Di)i∈I0

of C-morphisms with τj ○ Ed = Dd ○ τi for all edges i
d // j in I1 will be called a natural

transformation between the diagrams and will be denoted in the usual way τ ∶ E ⇒ D. For
any S ∈ C, ∆S ∶ I → C denotes the constant diagram, which sends each edge of I to idS .

CALCO 2017



16:4 Van Kampen Property As Uniqueness Property

S (as C-object) and ∆S (as diagram) will be used synonymously. Diagrams together with
natural transformations constitute the category CI. Note that ∆ ∶ C→ CI is itself a functor,
assigning to each object of C its constant diagram and to an arrow f ∶ A→ B the ”constant”
natural transformation (f)i∈I0 .

We assume all categories under consideration to have colimits. The coproduct cocone of
a family (Di)i∈I of C-objects will be denoted

( Di
⊆i // ∐i∈I Di )i∈I .

The morphisms ⊆i are called coproduct injections. For a family of arrows (fi ∶ Di → A)i∈I
we write f⃗ ∶∐i∈I Di → A for the resulting unique mediating arrow.

We assume all categories under consideration to have pullbacks. In the sequel, we will
work with chosen pullbacks, i.e., for each pair of C-arrows B h→ A

k←X a choice

Y
h′ //

h∗(k)
��

X

k
��

B
h
// A

of pullback span (h∗(k), h′) is determined once and for all. For all h ∶ B → A, h∗(idA) shall
be chosen to be idB . Whenever we deviate from these choices, this will be emphasized. It
is well-known [6] that for fixed h ∶ B → A chosen pullbacks along h give rise to a (pullback)
functor h∗ ∶ C ↓A → C ↓B between comma categories. Pullbacks can be composed, i.e., if
C
h2→ B

h1→ A, then h∗2 ○h∗1 yields a pullback along h1 ○h2, and decomposed, i.e., if h∗1(k) and
(h1 ○ h2)∗(k) are computed, the resulting universal arrow from the latter into the former
pullback yields a pullback of h2 and h∗1(k). Note, that in both cases the automatically
appearing pullbacks need not be chosen.

The underlying category for all further considerations is a category of presheaves, i.e., the
category G ∶= SetB (with B a small (base) category, Set the category of sets and mappings)
of covariant functors from B to Set together with natural transformations between them2.
We will also use the term ”sort” for the objects in B and the term ”operation (symbol)”
for the morphisms in B. It is folklore that G has all colimits and all pullbacks, which are
computed sortwise, resp. G is a topos, i.e. a category with finite limits and colimits, which
has exponents and where the subobject functor is representable [6]. G will thus also be called

a presheaf topos. E.g., the category of multigraphs is a presheaf topos with B = ( E
t
//

s //
V )

(plus identities). The simplest presheaf topos is Set (B = 1, the one-object-one-morphism
category).

In this paper, we will make frequent use of (sortwise) coproducts, i.e., disjoint unions
of sets. In order to make argumentations simpler, we will assume that for each X ∈ B the
artefacts (Di(X))i∈I0 are a priori disjoint, i.e., the coproduct is obtained by simple union.

An important property of presheaf topoi is (infinite) extensivity, i.e., the functor

∐ ∶∏
i∈I

G↓Di → G↓∐
i∈I
Di (1)

2 Normally presheaves are categories SetB
op , i.e., contravariant Set-valued functors. But we prefer the

slightly deviating definition, because we found the contravariant version counterintuitive for our work.
Clearly, it is easy to switch to the contravariant setting, if one inverts all arrows of B.
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assigning to each object (fi ∶ Ai →Di)i∈I in∏i∈I G↓Di the object∐i∈I fi ∶∐i∈I Ai →∐i∈I Di

in G↓∐i∈I Di, is an equivalence of categories for each index set I and each I-indexed family
(Di)i∈I of objects in G. Its ”inverse” arises from constructing pullbacks along coproduct
injections. From these facts one derives the stability of coproducts under pullbacks, i.e., if

Ai
ai //

fi

��

A

g
��

∐i∈I Ai
a⃗ //

∐i∈I fi

��

A

g
��

Mi
gi // M ∐i∈IMi

g⃗ // M

(2)

are commutative diagrams, then the squares on the left-hand side are pullbacks for all i ∈ I,
if and only if the square on the right-hand side is a pullback [6]. In general topoi, all these
statements still hold for finite index sets I (finite extensivity).

3 An Equivalent Condition for the Van Kampen Property

In this chapter we introduce the Van Kampen property and state the main result of this
paper, a necessary and sufficient condition for the Van Kampen property to hold in G = SetB.

3.1 Van Kampen Colimits
A commutative cocone out of a diagram D ∶ I→ G is a natural transformation

κ ∶ D⇒∆S. (3)

For fixed i
d // j of I1, pulling back a G-arrow K

σ // S along κi and κj yields

Ei
Ed //

κ′i
''

κ∗i (σ)
��

Ej
κ∗j(σ)
��

κ′j // K

σ
��

Di
Dd //

κi

88Dj
κj // S

(4)

where the right and the outer rectangles are chosen pullbacks, Ed is the unique completion
into the right pullback, and the resulting left square is a pullback by the pullback decompos-
ition property. The left square may, however, not be a chosen one, but it results in diagram
E as well as natural transformation κ∗(σ) ∶= (κ∗i (σ))i∈I0 ∶ E ⇒ D, whose naturality squares
are pullbacks. This fact gives rise to the following definition:

I Definition 1 (Cartesian Transformation). A natural transformation τ ∶ E ⇒ D ∶ I → G is
called cartesian if all naturality squares are pullbacks.

For a fixed diagram D ∶ I → G let GI ⇓ D be the full subcategory of GI ↓ D of cartesian
natural transformations. Thus, by (4), κ∗ maps objects of G ↓ S to objects in GI ⇓ D.
Moreover, any arrow γ ∶ σ → σ′ of G↓S yields a family of arrows (κ∗i (γ)) (universal arrows
into pullbacks) of which it can easily be shown that together they yield a cartesian natural
transformation κ∗(γ) ∶ κ∗(σ)→ κ∗(σ′). Thus κ∗ becomes a functor

κ∗ ∶ G↓S → GI ⇓ D. (5)

CALCO 2017



16:6 Van Kampen Property As Uniqueness Property

I Definition 2 (Van Kampen Cocone, [7]). Let D ∶ I → G be a diagram and κ ∶ D⇒ ∆S be
a commutative cocone. Then κ has the Van Kampen (VK) Property (”κ is VK”) if functor
κ∗ is an equivalence of categories.

As usual, a colimit (or colimiting cocone) is a universal cocone κ ∶ D ⇒ ∆S, i.e., for each
T ∈ G and commutative cocone ρ ∶ D⇒ ∆T , there is a unique G-morphism S

u // T such
that ∆u ○ κ = ρ, i.e., u ○ κi = ρi for all i ∈ I0. S is called the colimit object.

κ∗ has a left-adjoint κ∗ ∶ GI ⇓ D → G↓S which assigns to a cartesian natural transform-
ation τ ∶ E ⇒ D the unique arrow to S out of the colimit object of the colimiting cocone of
E [22]. I.e., κ∗ is the (pseudo-)inverse of κ∗, if the VK property holds. In this case, unit
and counit of the adjunction are isomorphisms. Note also that each VK cocone D ⇒ ∆S
is automatically a colimit (apply κ∗ to id∆S and use the definition of κ∗) such that we can
use the terms ”Van Kampen cocone” and ”Van Kampen colimit” synonymously.

Whereas the counit of this adjunction is always an isomorphism, if pullback functors have
right-adjoints (and thus preserve colimits), which is true in every (presheaf) topos [6], the
situation is more involved concerning the unit of the adjunction: The easiest example of the
VK property arises for the empty diagram. In this case the property translates to the fact,
that the initial object 0 is strict, i.e., each arrow A // 0 is an isomorphism. This is true in
all topoi [6]. In the same way, since all presheaf topoi are extensive (cf. Section 2), coproducts
have the Van Kampen property. But the unit fails to be an isomorphism for pushouts and
coequalizers: Even in Set there are easy examples of pushouts which violate the VK property
[22]. In adhesive categories (and thus in all topoi [14]) pushouts are VK, if one leg is monic,
by definition. Vice versa, there are also pushouts with both legs non-monic, which enjoy this
property nevertheless [26]. Astonishingly, coequalizers seldom are VK: Consider the shape

graph 2 ∶= 1
d
//

d′ // 2 and the diagram D ∶ 2→ Set with D1 = {∗1},D2 = {∗2}. Clearly,

D1 //// D2 // {∗} (6)

is a coequalizer in Set. Then the cartesian transformation

τ ∶ ( E1 ∶= {a, b}
k
//

id // E2 ∶= {a, b} )⇒ D,

with k the non-identical bijection of {a, b}, is mapped to id{∗} by κ∗, i.e., τ /≅ (κ∗ ○ κ∗)(τ).

3.2 Equivalent Condition
As mentioned in the introduction it is important for several software engineering scenarios
to find an easily checkable criterion for the Van Kampen property. The presented condition
of this paper comes in terms of the mapping behavior of all morphisms Dd in the diagram.

I Definition 3 (Mapping Path). Let G = SetB be a presheaf topos and D ∶ I → G be a
diagram w.r.t. shape graph I. Let Iop1 ∶= {dop ∣ d ∈ I1}.

A Path Segment of sort X ∈ B is a triple (y, δ, y′) with δ ∈ I1 ∪ Iop1 and3

If δ = d ∈ I1 then y ∈ Ds(d)(X), y′ = Dd(y) ∈ Dt(d)(X)
If δ = dop ∈ Iop1 then y′ ∈ Ds(d)(X), y = Dd(y′) ∈ Dt(d)(X)

3 Whenever i
d // j ∈ I1 and we apply a mapping in the family ((Dd)X ∶ Di(X) → Dj(X))X∈B, we

write Dd instead of (Dd)X .
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Two path segments (y1, δ1, y
′
1) and (y2, δ2, y

′
2) of sort X are equal if y1 = y2, δ1 = δ2,

and y′1 = y′2. Moreover, two path segments are weakly equal, (y1, δ1, y
′
1) =w (y2, δ2, y

′
2) in

symbols, if (y1, δ1, y
′
1) = (y2, δ2, y

′
2) or (y1, δ1, y

′
1) = (y′2, δ

op
2 , y2).4

A Non-empty Mapping Path in D of sort X ∈ B is a sequence

P = [(y0, δ0, y1), (y1, δ1, y2), (y2, δ2, y3), . . . , (yn−1, δn−1, yn)]

of path segments of sort X, where any third component of a segment coincides with the
first component of its successor segment5, and where n ≥ 1. We say that the above path
connects y0 with yn in D.
For each y ∈ Di(X), where i ∈ I0 and X ∈ B, we say that the Empty Mapping Path [ ] of
sort X connects y with itself in D.
Two paths are equal, if they have the same length and are segmentwise equal.
A mapping path is proper if there are no two distinct path segments that are weakly
equal.

Examples of mapping paths for graphs are depicted in Figure 1 (the complete meaning of
the contents of Figure 1 will be explained in the next section): There are two paths (one
along the dashed path segments, the other one along the dotted segments) both connecting
vertex ”Sort” with vertex ”Type”. Each arrow depicts a path segment with first component
the arrow’s source and third component its target. The middle component is annotated near
the arrows, resp., their names will be explained in the next section, as well.

For any X ∈ B, any i, j ∈ I0 and any z ∈ Di(X), z′ ∈ Dj(X) we write z ≡X z′ (z ≡pX z′),
if there is a mapping path (proper mapping path) of sort X connecting z with z′. It is easy
to see that ≡ = ≡p and that this relation is a congruence relation on ∐i∈I0 Di (i.e., a family
of equivalence relations (≡X)X∈B compatible with operations of B), because paths can be
concatenated and reversed. Moreover, it is well-known [16] that the colimiting cocone of
diagram D ∶ I→ G is given by

D κ⇒ (∐
i∈I0

Di)/ ≡ = (∐
i∈I0

Di)/≡p (7)

where κi = [ ]≡○ ⊆i with [ ]≡ the canonical morphism. In the present paper we will show that
mapping paths also play a crucial role for a simpler characterization of the Van Kampen
property. The following examples hint at this connection.

I Example 4. Let G = Set.
1. In (6) there are proper mapping paths [] and [(∗2, d

op,∗1), (∗1, d
′,∗2)] both connecting

∗2 with itself.
2. The shape graph 1 0doo d′ // 2 yields pushouts. The easiest example of a non-VK

pushout arises from D0 = {x, y},D1 = {∗1},D2 = {∗2}, cf. [22]. In this case, we obtain
two different proper mapping paths [(∗1, d

op, x), (x, d′,∗2)] and [(∗1, d
op, y), (y, d′,∗2)]

both connecting ∗1 and ∗2 in D.
3. Let I = ●d :: consist of one vertex and one loop. I.e., diagrams depict endomorphisms

f ∶ A→ A. It is astonishing that even the colimiting cocone D +3 {∗} with Dd = id{∗}
is not VK: Take E = ( {a, b} k // {a, b} ) (with k the non-identity bijection of {a, b}),

4 (dop)op ∶= d.
5 By the introductory remarks on disjointness of artefacts, this means that the third component and
the successor’s first component are elements of the same Di.
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16:8 Van Kampen Property As Uniqueness Property

τ ∶ {a, b} → {∗}, then E ’s colimit is a singleton. In this example, we have two proper
mapping paths [] and [(∗, d,∗)] in D both connecting ∗ with itself. Note that this is
just another presentation of example (6), since the colimit of f ∶ A→ A can be obtained

by the coequalizer of A
f
//

idA //
A ).

4. D = ( {x}
f
//

g // {y, z} ) with f(x) = y, g(x) = z has the VK property, which can be

checked by elementary means based on Definition 2. There is exactly one proper mapping
path connecting y and z, namely (y, fop, x), (x, g, z). Moreover, there is exactly one
proper path connecting y with itself (namely the empty one, the hypothetical path
(y, fop, x), (x, f, y) is not proper, see Definition 3). In the same way x has only one path
back to itself, namely the empty one (the hypothetical path (x, f, y), (y, fop, x) is not
proper).

As suggested by these examples, uniqueness of proper mapping paths between two elements
of the same sort X in the sets (Di(X))i∈I0 is a crucial feature for the Van Kampen property
to hold. Indeed, we will prove

I Theorem 5 (Characterization of VK Cocones as Uniqueness Property). Let G = SetB be a
presheaf topos and D ∶ I → G be a diagram. Let D κ⇒ ∆S be a colimiting cocone. The
cocone is a Van Kampen cocone if and only if for all X ∈ B, all i, j ∈ I0 and all z ∈ Di(X),
z′ ∈ Dj(X): There are no two different proper mapping paths in D connecting z and z′.

Since, in colimit computations, all mapping paths need to be computed (see (7)), and –
according to Theorem 5 – the Van Kampen property can be checked by means of mapping
paths, algorithmic verification of the Van Kampen property can be carried out in the back-
ground of colimit computation. In the technical report [12], we further simplify the condition
of Theorem 5 and thus simplify the algorithm: We state conditions on the morphisms of D,
under which the Van Kampen property always holds (e.g., if all Dd are monomorphisms and
enjoy a certain kind of image-disjointness) and we identify special shapes of schema graph
I, where a significantly smaller subset of indices i has to be tested for path uniqueness.

3.3 Application of Theorem 5
In order to demonstrate the benefits of this criterion, we consider a more substantial example

than the ones in Example 4. We let B = ( E
t
//

s //
V ) (idE and idV not shown), thus our

base presheaf topos is G = SetB, the category of directed multigraphs. In the sequel, we
depict vertices as rectangles and edges are arrows pointing from its source to its target. In
Figure 1 the three highlighted graphs6 D1, D2, and D3 depict meta-models for type systems:
D1 represents parts of the domain of algebraic specifications: Operations have an arbit-
rary number of sort-typed input parameters and exactly one return parameter.
In D2 terminology of abstract data types is used: Functions have an arbitrary number of
typed input and return parameters, resp.
D3 is the object-oriented view: Interfaces own operations, which have inputs and one
return parameter typed in interfaces, resp. Methods implement operations, their input
parameters may be of specialized type.

6 These are not just graphs since they contain "multiplicity constraints". They can be formalized, actually,
as generalized sketches, i.e., graphs with diagrammatic predicates, in the sense of [2].
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Sort

Operation

in
D1

d-13

return1

Interface

Operation

in return1

own

D3

Type

Function

in

D2
return

Method

implmnts

S/I

Op

d13

in return

S/T

d-12

D13

D12

d12

in

T/I

F/M

in

D23

d23

d-23

1

-13op

13

-12op 12

-23

23op

Figure 1 A diagram of metamodels and two mapping paths.

Figure 1 represents a multimodeling scenario [19]. Reasoning about these collective mod-
els (the multimodel) as one artefact requires matching of different terminology of each of the
model graphs: Sameness of terminology in graphs D1 and D2 is formally enabled by defining
a relation on D1 ×D2 by means of auxiliary graph D12, which consists of exactly one vertex
S/T , d−12(S/T ) = Sort, d12(S/T ) = Type, such that span D1

d−12← D12
d12→ D2 specifies same-

ness of terms ”Sort” and ”Type” in graphs D1, D2 and no other commonalities. In the same
way span D1

d−13← D13
d13→ D3 specifies sameness of terms ”Sort” and ”Interface” (in D1 and

D3) as well as ”Operation” (in both graphs) together with the in- and return-relationships.
Moreover, relation ”in” of term ”Method” in D3 is declared to be equal to property ”in” of
term ”Function” in D2 via span D3

d23← D23
d−23→ D2.

We now describe a scenario, in which colimit computation of the graphs in Figure 1 and
amalgamation of instances typed over these graphs is important. It is common to reason
about the multimodel by imposing constraints that spread over different models. We could,
e.g., claim that ”The return type of a method’s implemented operation (as specified in D3)
has to be contained in the list of return types of the corresponding function (as specified in
D2)”. In order to check this inter-model constraint, it is necessary to construct the diagram’s
colimit. Formally, for schema graph I =

1 12−12oo 12 // 2

13
−13

``

13 !!

23
−23

>>

23}}
3

we obtain diagram D ∶ I→ G and construct the colimiting cocone D κ⇒∆S.
Assume now that we want to check consistency of given typed instances τi ∶ Ei → Di,

i ∈ {1,2,3} against the above formulated constraint. For this we have to declare sameness of
elements within E1,E2, and E3 with the help of new relating typing morphisms τk ∶ Ek → Dk,
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16:10 Van Kampen Property As Uniqueness Property

k ∈ {12,13,23} and spans E1
e−12← E12

e12→ E2, E1
e−13← E13

e13→ E3, and E2
e−23← E23

e23→ E3. Of
course, all τk have to be compatible with model matching and sameness declaration within
E1,E2, and E3, i.e., we obtain a natural transformation τ ∶ E ⇒ D between diagrams of type
I → G. Consistency checking is then carried out by constructing the colimit object K of E
and checking whether the resulting typing arrow σ ∶K → S fulfills the constraint, see [19].

Let us momentarily ignore constraint checking and just consider the relation between
this amalgamated instance σ and the original component instances (τi)i∈{1,2,3,12,13,23}: It is
necessary to faithfully recover all τi from σ, otherwise we would loose information about the
origin of the elements in the domain of σ. This means that we require, for all i, κ∗i (σ) ≅ τi,
i.e., the Van Kampen property for the cocone κ has to hold. However, it turns out, that the
property is violated: This can be seen by considering the following instance constellation
(we write x∶T whenever τ_(x) = T ): Let E1(V ) = {s∶Sort, s′∶Sort},E1(E) = ∅, E2(V ) =
{t1∶Type, t2∶Type},E2(E) = ∅, and E3(V ) = {i∶ Interface, i∶ Interface},E3(E) = ∅. One
may now declare sameness of elements within E1,E2, and E3 as follows

s = t1, s′ = t2 by span (e−12, e12); s = i, s′ = i by (e−13, e13); t1 = i, t2 = i by (e−23, e23).

This is established as described above, e.g., graph E12 consists of two vertices 1∶S/T and
2∶S/T . Graph morphisms e−12 maps 1∶S/T ↦ s and 2∶S/T ↦ s′ wheras e12 maps 1∶S/T ↦ t1
and 2∶S/T ↦ t2. We omit the obvious formal definitions of the other two spans.

Unfortunately, by transitivity, this matching also yields s = s′, an unwanted anomaly.
But in practice this effect may happen, if two modelers work separately: One modeler might
define matches (e−12, e12) and (e−13, e13) and, independently and inadvertently, the second
modeler defines the match (e−23, e23). The inconsistent matching yields a colimit K of E
with one vertex only, because each sort/type/interface is connected with each other along
mapping paths. Clearly, κ∗i (σ) /≅ τi since κi are monomorphisms, hence the domains of
κ∗i (σ) are singleton sets, as well.

In this simple example, a small instance constellation allowed for the detection of a VK
violation witness. However, it is hard to determine such witnesses in more complex examples.
In these cases, Theorem 5 is a more reliable indicator for VK validity or violation, because
we do not need to find violating instance constellations. Instead, the violation of the VK
property can be detected by analysing mapping path structures of the metamodels only.
In the present example, the indicator are the two different proper mapping paths of sort V
shown in Figure 1 both connecting ”Sort” and ”Type” (one is depicted by dashed, the other
one by dotted arrows) such that Theorem 5 immediately yields violation of the Van Kampen
property. At least from this example we derive the slogan that the Van Kampen property
holds, if there is no redundant matching information in D. It is easy to see that the negative
effect vanishes if we reduce the diagram accordingly, i.e. if we erase matching via D12 since
this information is already contained in the transitive closure of matchings D13 and D23. In
this way, the above mentioned modelers can indeed work independently!

4 An Outline of the Proof of Theorem 5

In this section, we sketch the main steps for the proof of our main theorem. Each step is
given by a Lemma for which detailed proofs can be found in the technical report [12].
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4.1 Pushouts
Often, the Van Kampen property for pushouts is formulated as follows: A pushout of a dia-

gram D1 D0
h1oo h2 // D2 is said to have the Van Kampen property if for any commutative

cube

E0

��

}}

// E2

��

~~
E1

��

// K

σ

��

D0
h2 //

h1

}}

D2

κ2~~
D1 κ1

// S

with this pushout in the bottom and back faces pullbacks, the front faces are pullbacks if
and only if the top face is a pushout. In [26] we already stated a characterization of the Van
Kampen property for pushouts based on this definition. It comes in terms of cyclic mapping
structures within D0:

I Definition 6 (Domain Cycle, [15]). Consider a span D1 D0
h1oo h2 // D2 in G = SetB. For

X ∈ B we call a sequence [x0, x1, . . . , x2k+1] of elements of D0(X) a domain cycle (for the
span (h1, h2)) (of sort X), if k ∈ N and the following conditions hold:
1. ∀j ∈ {0,1, . . . ,2k + 1} ∶ xj /= xj+1

2. ∀i ∈ {0, . . . , k} ∶ h1(x2i) = h1(x2i+1)
3. ∀i ∈ {0, . . . , k} ∶ h2(x2i+1) = h2(x2i+2)
where 2k + 2 ∶= 0. A domain cycle is proper if xi /= xj for all 0 ≤ i < j ≤ 2k + 1.

The main outcome of [26] is the following fact:

I Lemma 7 (Condition for VK Pushouts). A pushout

D0
h2 //

h1
��

D2

κ2
��

D1 κ1
// S

in G = SetB is a Van Kampen cocone iff there is no proper domain cycle for (h1, h2). J

This result can be proven by means of elementary set-based arguments [15], but also by
investigating forgetful functors between categories of descent data [8] for general topoi [26].

It is easy to see that the above definition for pushouts is an instance of the general
definition of Van Kampen colimits in Definition 2:

If the front faces are pullbacks, then the back faces are the result of applying κ∗. Then
the counit ε ∶ κ∗ ○ κ∗ ⇒ Id of adjunction is an isomorphism if and only if the cube’s top
face is already a pushout.
If the top face is a pushout, then (up to isomorphism) σ is the result of applying κ∗.
Then the unit η ∶ Id ⇒ κ∗ ○ κ∗ is an isomorphism if and only if κ∗(σ) produces the
original cube up to isomorphism, i.e., the original front faces are pullbacks.
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Hence, the two implications ”Front face pullbacks iff top face pushout” actually reflect the
two statements ”The counit is an isomorphism” and ”The unit is an isomorphism”.

Hence, Lemma 7 is a good starting point for the proof of Theorem 5: We transfer the
knowledge to special mapping paths in coequalizer diagrams (Section 4.2) and from there
to mapping paths in arbitrary colimits (Section 4.3).

4.2 From Pushouts to Coequalizers
The transfer from pushouts to coequalizers is accomplished in two steps. The first step
connects the VK property for coequalizers and pushouts:

I Lemma 8. Let G be a general topos and B
f
//

g //
D be two arrows in G. Let two arrows

κD ∶D → S and κB ∶ B → S be given such that the diagrams

B

κB

88
f
//

g //
D

κD // S B +B
[f,g] //

[id,id]
��

D

κD
��

B κB

// S

are commutative, resp.
1. The left diagram is a coequalizer if and only if the right diagram is a pushout.
2. The left diagram is a VK cocone if and only if the right diagram is.

Proof. (1) is well-known [16]. (2) is proven by means of Definition 2, where the transfer
is possible, because topoi are (finitely) extensive, cf. Section 2, and especially because of
property (2). J

The second step establishes a connection between domain cycles and mapping paths. It
comes in terms of disjoint mapping paths, i.e., paths P1 and P2 for which non of the path
segments in P1 is weakly equal7 to a path segment in P2. The proof is rather technical and
will be omitted, see [12], Lemma 14.

I Lemma 9 (Domain Cycles vs. Mapping Paths). Let G = SetB, f and g as in Lemma 8, and

X ∈ B. There is a proper domain cycle of sort X for B B +B
[f,g] //[id,id]oo D , if and only if

there are z, z′ ∈D(X) and two disjoint proper mapping paths connecting z and z′. J

Lemmas 7, 8, and 9 yield

I Corollary 10 (Condition for VK Coequalizers). Let G = SetB, let 2 be the schema graph

1
d
//

d′ // 2 , and D ∶ 2→ G. The coequalizer diagram

D1

κ1

77
Dd

//
Dd′ // D2

κ2 // S

has the Van Kampen property, if and only if for all X ∈ B and all z, z′ ∈ D2(X) : There are
no two disjoint proper mapping paths of sort X in D connecting z and z′. J

Recall the already made observations in Example 4, 1. and 4., which confirm this statement.

7 Recall the definition of weak equality in Definition 3.
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4.3 From Coequalizers to Colimits
It is well-known [16], that the colimit of D ∶ I → G can be computed by constructing the
coequalizer of

∐d∈I1 Ds(d) D⃗d

//
i⃗d //
∐j∈I0 Dj , (8)

where D⃗d and i⃗d are mediators out of the involved coproducts:

∐d∈I1 Ds(d)
D⃗d // ∐j∈I0 Dj ∐d∈I1 Ds(d)

i⃗d // ∐i∈I0 Di

Di

⊆i,d

OO

Dd // Dj

⊆j

OO

Di

⊆i,d

OO

Di

⊆i

OO
(9)

(for all edges i
d // j in I1).8

Let D ∶ 2→ G be the functor mapping 2 to the objects and arrows in (8), where schema
graph 2 is given as before (cf. e.g. Corollary 10). Then a technical analysis shows that we
can combine mapping paths of D with special mapping paths of D (again, we omit the proof
and refer to [12]):

I Lemma 11. Let G = SetB and X ∈ B. The following statements are equivalent:
∀i, j ∈ I0 ∶ ∀z ∈ Di(X),∀z′ ∈ Dj(X): There are no two disjoint proper mapping paths in
D connecting z and z′.
∀z, z′ ∈ D2(X) = ∐j∈I0 Dj(X): There are no two disjoint proper mapping paths in D
connecting z and z′. J

The main part of the proof of Theorem 5 is to carry over the VK property for the coequalizer
of (8) to its underlying colimiting diagram for D.

I Lemma 12. For G ∶= SetB, the cocone (3) is VK if and only if the cocone

∐d∈I1 Ds(d)

κ′

55
D⃗d

//
i⃗d //
∐j∈I0 Dj

κ // S (10)

resulting from constructing the coequalizer in (8) is VK.

Proof: Let κ∗ ∶ G ↓ S → GI ⇓ D be the functor introduced in (5) and κ∗ ∶ G ↓ S → G2 ⇓ D
be the corresponding functor for the colimiting cocone in (10). Using (1) and (2), one can
show that for each cartesian τ ∶ E ⇒ D the squares

∐d∈I1 Es(d)
i⃗d //

∐d∈I1 τs(d)
��

∐i∈I0 Ei
∐i∈I0 τi

��
∐d∈I1 Ds(d)

i⃗d // ∐i∈I0 Di

∐d∈I1 Es(d)
E⃗d //

∐d∈I1 τs(d)
��

∐j∈I0 Ej
∐j∈I0 τj

��
∐d∈I1 Ds(d)

D⃗d // ∐j∈I0 Dj

are pullbacks, i.e., there is the assignment τ ↦ (∐d∈I1 τs(d),∐i∈I0 τi). It can be shown with
elementary arguments that it extends to an equivalence of categories:

φ ∶ GI ⇓ D ≅ G2 ⇓ D.

8 Note that in the left coproduct of (8) an object Di occurs as often as there are edges d leaving i in I.
Moreover, ⊆i,d in (9) denotes the embedding of Di into its appropriate copy, namely the source of Dd.
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Moreover, the colimit construction principle, see (8), yields commutativity of

G↓S
κ∗

zz
κ∗

$$

GI ⇓ D
φ

// G2 ⇓ D

up to natural isomorphism, hence, by Definition 2, the desired result. J

4.4 Combining the Results
We are now ready to prove Theorem 5 for disjoint proper mapping paths. This follows by
combining Lemma 12, Corollary 10 and Lemma 11. Afterwards we can get rid of disjointness
by showing that any two proper mapping paths connecting the same two elements also admit
two disjoint proper paths (probably connecting two different elements). J

5 Conclusion and Future Work

In general, arbitrary diagrams in arbitrary categories are not VK. Even if we restrict to
presheaf topoi, many diagrams are not VK. In the paper we presented a feasible condition
(Theorem 5) to check if a diagram in a presheaf topos is VK or not.

As suggested by the example in Section 3.3, modelers may well work with a non-VK-
diagram (of software models), if they have a common understanding of the used natural
transformation τ ∶ E ⇒ D, i.e., if they know how to avoid "twisting anomalies" as shown
in the example. Hence, the natural next step will be to look for feasible conditions that
a given τ ∶ E ⇒ D is in the image of κ∗, even if the diagram is not VK. We may allow
non-uniqueness of mapping paths in diagrams of models, but then paths in the diagram of
instances have to be exact copies of them, i.e., path liftings from models to instances must
behave like discrete fibrations. It is worth to underline that the instances we get from a
given "indexed semantics" via a corresponding variant of the Grothendieck construction [25]
are always contained in the image of κ∗ up to isomorphism.

The ultimate goal, however, is to find a categorical counterpart for the different paths
criterion (Theorem 5), which states a necessary and sufficient condition for the Van Kampen
property in more general categories. Is such a condition significantly different from the
bilimit condition mentioned in the introduction and the universal property in [7]?
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