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Abstract
For an endofunctor H on a hyper-extensive category preserving countable coproducts we describe
the free corecursive algebra on Y as the coproduct of the terminal coalgebra for H and the free
H-algebra on Y . As a consequence, we derive that H is a cia functor, i.e., its corecursive algebras
are precisely the cias (completely iterative algebras). Also all functors H(−) + Y are then cia
functors. For finitary set functors we prove that, conversely, if H is a cia functor, then it has the
form H = W × (−) + Y for some sets W and Y .
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1 Introduction

Iteration and (co)recursion are of central importance in computer science. A formalism
for iteration was proposed by Elgot [11] as iterative algebraic theories. Later Nelson [14]
and Tiuryn [15] introduced iterative algebras for finitary signatures which yield an easier
approach to iterative theories. For endofunctors H there are two related notions of algebras.
Corecursive algebras introduced by Capretta et al. [9] are those algebras A such that every
recursive equation expressed as a coalgebra for H has a unique solution (i.e., a coalgebra-to-
algebra morphism into A). The other notion, completely iterative algebras (or cia, for short),
introduced by the second author [13], are H-algebras A with the stronger property that every
recursive equation with parameters in A has a unique solution (Definition 7). Corecursive
algebras often fail to be cias. In the present paper we study endofunctors such that every
corecursive algebra is a cia – we call them cia functors.

Our first result is that every endofunctor preserving countable coproducts and having a
terminal coalgebra is a cia functor (Corollary 21). This is based on a description of the free
cia on an object Y as a coproduct

νH + FY

of the terminal coalgebra and the free algebra on Y (Theorem 14). We deduce that, for H
preserving countable coproducts and having a terminal coalgebra, we obtain cia functors

∗ A full version of the paper is available at https://arxiv.org/abs/1703.07574, [5].
† Supported by Deutsche Forschungsgemeinschaft (DFG) under project MI 717/5-1

© Jiří Adámek and Stefan Milius;
licensed under Creative Commons License CC-BY

7th Conference on Algebra and Coalgebra in Computer Science (CALCO 2017).
Editors: Filippo Bonchi and Barbara König; Article No. 3; pp. 3:1–3:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/132422743?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CALCO.2017.3
https://arxiv.org/abs/1703.07574
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


3:2 Corecursive Algebras

H(−) + Y for all objects Y (Corollary 24). All this holds in every hyper-extensive base
category (Definition 1), e.g., in sets, posets, graphs and all presheaf categories.

In particular, if the base category is also cartesian closed, then X 7→W ×X + Y is a cia
functor for every pair of objects W and Y . For finitary set functors we prove a surprising
converse: the only cia functors are those of the above form X 7→W ×X + Y .

2 Preliminaries

Throughout the paper H denotes an endofunctor on a hyper-extensive category (recalled
below) having a terminal coalgebra

t : νH → H(νH).

By the famous Lambek Lemma [12], the coalgebra structure t is invertible and its inverse
makes νH an H-algebra.

We denote by AlgH the category of H-algebras and their morphisms.

I Definition 1 ([2]). A category is called hyper-extensive if it has countable coproducts
which are
(1) universal, i.e., preserved by pullbacks along any morphism,
(2) disjoint, i.e., coproduct injections are monomorphic and have pairwise intersection 0

(the initial object), and
(3) coherent, i.e., given pairwise disjoint morphisms an : An → A, n ∈ N, each of which is a

coproduct injection, then their copairing [an]n∈N :
∐
n∈NAn → A is also a coproduct

injection.

I Example 2. The categories of sets, posets, graphs, and presheaf categories are hyper-
extensive.

I Remark 3.
(1) We write A+B for the coproduct of the objects A and B and denote coproduct injections

by inl : A→ A+B and inr : B → A+B.
(2) Recall that a category with finite coproducts is extensive if it has pullbacks along

coproduct injections and conditions (1) and (2) are satisfied [10]. Equivalently, in a
diagram of the following form

X

f

��

x // Z

h

��

Y
yoo

g

��
A

inl
// A+B B

inr
oo

the top row is a coproduct if and only if the squares are pullbacks. Another, more
compact, equivalent characterization of extensivity states that the canonical functor
C/A×C/B → C/(A+B) is an equivalence of categories for any pair of objects A and B.

(3) The somewhat technical condition (3) in Definition 1 is not a consequence of the other
two. In fact, let C be the category of Jónsson-Tarski algebras, i.e., binary algebras A
whose operation A×A→ A is a bijection. Then C has disjoint and universal countable
(in fact, all) coproducts but is not hyperextensive [2].
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I Definition 4 ([9]). An algebra a : HA → A is called corecursive if for every coalgebra
e : X → HX there exists a unique algebra-to-coalgebra morphism e† : X → A:

X
e† //

e

��

A

HX
He†
// HA

a

OO

(1)

I Examples 5.
(1) The terminal coalgebra νH (considered as an algebra) is obviously corecursive. This is

the initial corecursive algebra [9].
Furthermore, let Y be an object of C and assume that the functor H(−) + Y has a
terminal coalgebra TY . Then its structure

TY
αY−−→ HTY + Y

has an inverse which is the copairing of two morphisms denoted by

HTY
τY−−→ TY

ηY←−− Y.

It follows that TY is a coproduct of HTY and Y with the above coproduct injections.
It is easy to show that (TY, τY ) is a corecursive algebra.

(2) The trivial terminal algebra H1→ 1 is corecursive, and if (A, a) is a corecursive algebra
so is (HA,Ha) [9, Prop. 21]. Furthermore, if C has limits then corecursive algebras are
closed under limits in the category of algebras for H [3, Prop. 2.4]. It follows that all
members of the terminal-coalgebra chain

1 H1oo HH1oo · · ·oo

are corecursive algebras.
(3) A particular instance of point (1) is given by a signature Σ = (Σn)n<ω of operation

symbols with prescribed arity and considering the corresponding polynomial endofunctor
HΣ on Set defined by

HΣX =
∐
n<ω

Σn ×Xn.

For an operation symbol σ ∈ Σn we write σ(x1, . . . , xn) in lieu of (σ, (x1, . . . , xn)) for elements
in the summand of HΣX corresponding to n < ω. The terminal coalgebra νHΣ is carried by
the set of all Σ-trees, i.e., rooted and ordered trees with nodes labeled in Σ such that every
node with n children is labeled by an n-ary operation symbol. The algebraic operation of
νHΣ is tree-tupling: t−1 assigns to σ(t1, . . . , tn) with σ ∈ Σn and ti ∈ νHΣ, i = 1 . . . , n, the
Σ-tree obtained by joining the Σ-trees t1, . . . , tn by a root node labeled by σ.

For every set Y we denote by

TΣY

the algebra of all Σ-trees over Y , i.e., Σ-trees whose leaves are labeled by constant symbols
in Σ0 or elements of Y . This is the terminal coalgebra for HΣ(−) + Y , and therefore it is a
corecursive algebra.

CALCO 2017



3:4 Corecursive Algebras

I Remark 6. For a polynomial endofunctor HΣ on Set we can view a coalgebra e : X → HΣX

as a system of recursive equations over the set X of (recursion) variables: for every variable
x ∈ X we have a formal equation

x ≈ σ(x1, . . . , xn) = e(x).

The map e† in Definition 4 is then a solution of the system of equations in the Σ-algebra
A: the commutative square (1) states that e† turns the above formal equations into actual
identities in A: e†(x) = σA(e†(x1), . . . , e†(xn)).

I Definition 7 ([13]). An algebra a : HA→ A is called completely iterative (or cia, for short)
if the algebra [a,A] : HA+A→ A is corecursive for the endofunctor H(−) +A. That means
that for every (flat) equation morphism e : X → HX +A there exists a unique solution, i.e.,
a unique morphism e† such that square below commutes:

X
e† //

e

��

A

HX +A
He†+A

// HA+A

[a,A]

OO

(2)

I Examples 8.
(1) If H(−) + Y has a terminal coalgebra TY (cf. Example 5(1)), then (TY, τY ) is a cia. In

fact, (TY, τY ) is a free cia on Y with the universal morphism ηY [13].
(2) For a polynomial functor HΣ on Set the above example states that the algebra TΣY of

all Σ-trees over Y is the free cia on the set Y . Let us denote by

CΣY

the subalgebra of TΣY given by all Σ-trees over Y which have only a finite number of
leaves labeled in Y (and the remaining, possibly infinitely many, leaves are labeled in
Σ0). This algebra is corecursive but, whenever Σ contains an operation symbol of arity
at least 2, not a cia. Moreover, CΣY is the free corecursive algebra on Y [3].
As a concrete example, consider the signature Σ consisting of a single binary operation
σ. Then the equation morphism e : {x1, x2} → HΣ{x1, x2}+ {y} given by the recursive
equations x1 ≈ σ(x1, x2) and x2 ≈ y has the unique solution e† : {x1, x2} → TΣ{y}
given as follows

e† : x1 7→

σ

σ y

σ y

... y

x2 7→ y.

This demonstrates that CΣ{y} is not a cia because the above infinite Σ-tree is not
contained in it.

I Definition 9. A cia functor is an endofunctor such that every corecursive algebra for it is
a cia. (It the follows that cias and corecursive algebras coincide).

I Notation 10.
(1) If a free H-algebra on Y exists, we denote it by FY and its structure and universal

morphism by

ϕY : HFY → FY and ηFY : Y → FY,

respectively.
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In the case of a polynomial set functor HΣ, the free Σ-algebra FΣY is the subalgebra of
TΣY on all finite Σ-trees over Y .

(2) If a free corecursive H-algebra on Y exists, we denote it by CY and its structure and
universal morphism by

ψY : HCY → CY and ηCY : Y → CY,

respectively.

3 Functors Preserving Countable Coproducts

I Assumption 11. In this and the subsequent section we assume that H is an endofunctor on
a hyper-extensive category having a terminal coalgebra and preserving countable coproducts.

I Fact 12 ([8]). A free algebra on Y is

FY = H∗Y =
∐
n<ω

HnY with coproduct injections jn : HnY → H∗Y .

Its algebra structure and universal morphism are given by

ϕY ·Hjn = jn+1 (n > 0) and ηFY = j0 : Y → H∗Y

using that HFY =
∐
n<ωH

n+1Y .

I Notation 13. We denote by

σY : H∗Y =
∐
n<ω

HnY → Y +H

(∐
n<ω

HnY

)
= Y +HH∗Y

the isomorphism inverse to [ηFY , ϕY ] : Y + HH∗Y → H∗Y . It is defined by the following
commutative diagrams:

Y
inl

&&
j0

��
H∗Y

σY

// Y +HH∗Y

HnY
Hjn−1 //

jn

��

HH∗Y

inr
��

H∗Y
σY

// Y +HH∗Y

for n > 0. (3)

I Theorem 14. The free cia on Y is

CY = H∗Y + νH

with algebra structure ϕY + t−1 : H(H∗Y + νH) ∼= HH∗Y +H(νH)→ H∗Y + νH.

Proofsketch. In view of Example 8 it suffices to prove that the terminal coalgebra for
Y +H(−) is H∗Y + νH with the following coalgebra structure

H∗Y + νH
σY +t−−−→ Y +HH∗Y +H(νH) ∼= Y +H(H∗Y + νH).

That means that for a given coalgebra e : X → Y +HX there exists precisely one coalgebra
morphism h : X → H∗Y + νH. This morphism h is defined by an iterative construction
using pullbacks and (hyper-)extensivity that we now explain.

CALCO 2017



3:6 Corecursive Algebras

Let X0 = X and e0 = e and denote the coproduct injections of Y +HX by i0 : HX →
Y +HX and i0 : Y → Y +HX. Next form the pullbacks of e along these injections:

X1
i1 //

e1

��

X0

e0

��

X1
i1oo

e1

��
HX

i0
// Y +HX Y

i0

oo

(4)

By extensivity, X = X1 +X1 with injections i1 and i1. The component h1 := h · i1 of h at
X1 is defined by

h · i1 =
(
X1

e1−→ Y
j0−→ H∗Y

inl−→ H∗Y + νH
)
.

In order to analyze the complementary coproduct component h · i1, we form the pullbacks of
e1 along the coproduct injections of HX0 = HX1 +HX1:

X2
i2 //

e2

��

X1

e1

��

X2

e2
��

i2oo

HX1
Hi1

// HX0 HX1
Hi1

oo

Then X1 = X2 +X2 and the component h2 = h · i1 · i2 of h at X2 is defined by

h · i1 · i2 =
(
X2

e2−→ HX1
He1−−−→ HY

j1−→ H∗Y
inl−→ H∗Y + νH

)
.

We continue this process recursively: given a coproduct Xn
in−→ Xn−1

in←− Xn and a
morphism en : Xn → HXn−1 we form its pullbacks along the coproduct injection of
HXn−1 = HXn +HXn:

Xn+1
in+1 //

en+1

��

Xn

en

��

Xn+1
in+1oo

en+1

��
HXn

Hin

// HXn−1 HXn
Hin

oo

(5)

Since compositions of coproduct injections are always coproduct injections, we obtain
coproduct injections

i
∗
n+1 =

(
Xn+1

in+1−−−→ Xn
in−→ Xn+1

in−1−−−→ · · · i1−→ X

)
(n < ω) (6)

and morphisms

ên+1 =
(
Xn+1

en+1−−−→ HXn
Hen−−−→ H2Xn−1

H2en−1−−−−−→ · · · H
ne1−−−→ HnY

)
(n < ω). (7)

The component hn+1 := (Xn+1
i
∗
n+1−−−→ X

h−→ H∗Y + νH) of h at Xn+1 is defined by the
commutativity of the following square

Xn+1
i
∗
n+1 //

ên+1

��

X

h

��
HnY

jn

// H∗Y
inl
// H∗Y + νH

(8)
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Observe also that by composing pullback squares we obtain the following pullback:

Xn
in //

en

��

Xn−1
in−1 //

en−1

��

Xn−2
in−2 //

en−2

��

· · · i3 //

· · ·

X2
i2 //

e2

��

X1
i1 //

e1

��

X0 = X

e

��

��

i
∗
n

HXn−1
Hin−1

// HXn−2
Hin−2

// HXn−3
Hin−3

// · · ·
Hi2

// HX1
Hi1

// HX0
i0
//

OO

Hi
∗
n−1

Y +HX

(9)

Now the coproduct injections in (6) are clearly pairwise disjoint. Therefore, by hyper-
extensivity, we have a coproduct injection [i∗n+1]n<ω which we denote by

X∞
i∞−−→ X for X∞ :=

∐
n<ω

Xn+1,

and h · i∞ is defined coponentwise by (8). By hyper-extensivity we can consider the
complementary coproduct component i∞ : X∞ → X, i.e., we have the coproduct

X∞
i∞−−→ X

i∞←−− X∞.

Since the pullbacks (9) have pairwise disjoint coproduct injections as their upper arrows,
they form together the pullback on the left below:

X∞ = X1 +X2 +X3 + · · · i∞ //∐
en

��

X

e

��

X∞
i∞oo

e∞

��

Y +HX1 +HX2 + · · · Y+Hi∞ // Y +HX

Y +HX∞ inl
// Y +HX∞ +HX∞ HX∞inr

oo

inr·Hi∞
gg (10)

By extensivity, we obtain a morphism e∞ : X∞ → HX∞ complementary to
∐
en. This

morphism is the structure of an H-coalgebra on X∞. Thus, we define h · i∞ to be the unique
coalgebra morphism from X∞ to νH.

One now verifies that the morphism h : X → H∗Y + νH so defined is a unique coalgebra
morphism for Y +H(−) as desired (see the full version [5] of our paper for details). J

I Example 15.
(a) It is well-known that the identity functor on Set has the free cias (equivalently, final

coalgebras for (−) + Y ) TY = N × Y + 1 where N is the set of natural numbers. It
follows from Theorem 14 that the same formula holds in every hyper-extensive category
with a terminal object 1. To see this, one first shows that

N :=
∐
n<ω

1 with 1 in0 //N N
[inn+1]n<ωoo

forms a natural number object, i.e., an initial algebra for 1 + (−). Using distributivity
we see that for any object Y the free algebra Id∗Y is

Id∗Y =
∐
n<ω

Y ∼=

(∐
n<ω

1
)
× Y = N × Y. (11)

CALCO 2017



3:8 Corecursive Algebras

Finally, we clearly have νId = 1. By Theorem 14, we thus obtain

TY ∼= N × Y + 1.

(b) For the above formula giving the free cia for Id on every Y it is not sufficient that C be
an extensive category. As a counterexample consider the category C = CHaus of compact
Hausdorff spaces. Its limits and finite coproducts are created by the forgetful functor
into Set, thus CHaus is extensive. However, it is not hyper-extensive since countable
coproducts are not universal. For Y = 1 (the one point space) the formula (11) gives
an uncountable space since

∐
n<ω 1 is the Stone-Čech compactification of an infinite

discrete space. However, in the notation of Example 5, T1 is a countable space; for the
terminal ωop-chain

1← 1 + 1← 1 + 1 + 1← · · ·

of the functor Id + 1 on CHaus has the corresponding underlying chain in Set. The limit
in Set is countable, giving the set N + 1. The limit in CHaus is then a compact space on
this set, in fact, it is the one-point compactification of the discrete space on N . Since
the functor X 7→ X + 1 preserves this limit, it is its terminal coalgebra. That means
that T1 is countable.

I Example 16. Extending Example 15(a), we know that the functor HX = Σ×X on Set
has the free cias TY = Σ∗ × Y + Σω, where Σ∗ and Σ∞ are the usual sets of strings (words)
and sequences (streams) on Σ.

It follows from Theorem 14 that the same formula holds in every hyper-extensive category
C with finite products commuting with countable coproducts. Examples of such categories
are presheaf categories, posets, graphs and unary algebras.

Given an object Σ of C, the functor HX = Σ×X has the terminal coalgebra

Σω = lim
n<ω

Σn

which is the limit of the ωop-chain of projections as follows:

1 !←− Σ Σ×!←−− Σ× Σ Σ×Σ×!←−−−−− Σ× Σ× Σ← · · ·

The free algebras H∗Y are obtained as follows: define

Σ∗ =
∐
n<ω

Σn.

Then H∗Y = Σ∗ × Y . Thus, according to Theorem 14, the free cia for H on Y is given by

TY = Σ∗ × Y + Σω.

Similarly, given another object W of C, the functor H ′X = W + Σ×X has the free cias
T ′Y = Σ∗ × (W + Y ) + Σω.

I Example 17. In Theorem 14 it is not sufficient that H preserves finite coproducts. In
fact, consider the ultrafilter functor U : Set→ Set which assigns to every set X the set of
all ultrafilters on X and to a map f : X → Y the map Uf sending an ultrafilter A on X
to {B ⊆ Y | f−1(B) ∈ A}. It preserves finite coproducts and νU = 1. But for Y infinite,
Y + U(−) has no fixed points; for suppose that TY ∼= Y + UTY , then TY must be infinite
since Y is so and therefore |TY | < |UTY | contradicting the isomorphism.
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4 Corecursiveness vs. Complete Iterativity

Under Assumption 11 we prove in this section that H is a cia functor, i.e., every corecursive
algebra is a cia. Let a : HA→ A be a fixed algebra.

I Notation 18.
(1) Define morphisms

an : HnA→ A

by the following induction:

a0 = idA and an+1 = (Hn+1A = HHnA
Han

−−−→ HA
a−→ A).

(2) For every equation morphism e : X → HX + A we use the notation of the proof of
Theorem 14, except that Y is replaced by A everywhere (and the order of summands is
swapped). Thus we use the morphisms

in, in, en, en, e∞, i∞, i∞, ên, and, i
∗
n

as in that proof.

I Construction 19. Let a : HA→ A be an algebra. Given an equation morphism e : X →
HX +A and a coalgebra-to-algebra morphism s : X∞ → A:

X∞
s //

e∞

��

A

HX∞
Hs
// HA

a

OO

(12)

we define a morphism e†s : X → A on the components of the coproductX =
(∐

n≥1Xn

)
+X∞

(with injections i∗n, for every n ≥ 1, and i∞) separately as follows:

Xn
ên //

i
∗
n

��

Hn−1A

an−1

��
X

e†s

// A

for n ≥ 1, and

X∞

i∞
��

s

!!
X

e†s

// A

(13)

I Proposition 20. The morphism e†s is a solution of e. Moreover, every solution of e is of
the form e†s for some coalgebra-to-algebra morphism s.

I Corollary 21. The functor H is a cia functor.

Indeed, if (A, a) is a corecursive H-algebra and e : X → HX + A is a given equation
morphism, we have a unique s as in (12). Now note that Proposition 20 establishes a bijective
correspondence between solutions of e and coalgebra-to-algebra morphisms from e∞ to a,
and therefore there exists a unique solution of e.

I Example 22. For the ultrafilter functor U of Example 17 consider the subfunctor U0 of all
ω-complete ultrafilters, i.e., those closed under countable intersections. This functor preserves
countable coproducts and νU0 = 1. Assume that a proper class of measurable cardinals n

CALCO 2017



3:10 Corecursive Algebras

exists (i.e., for each n we have an ω-complete ultrafilter P on a set X not containing any
subset of X of less than n elements). This is quite a strong assumption in set theory, but we
make it here to derive a strong property of U0: it is a non-accessible cia functor! Indeed, the
latter follows from Corollary 21, and U0 is not accessible: for every measurable cardinal n it
does not preserve the n-filtered colimit of all subsets Y of X of cardinality less than n, since
P lies in U0X but not in U0Y if |Y | < n. This is a surprising example in view of Theorem 37
which shows that such a complex example does not exist among finitary set functors.

Finally, note that both cias and corecursive algebras form full subcategories of the category
of all algebras for H. Thus Corollary 21 establishes an isomorphism of categories between
the categories of cias and corecursive algebras for H.

The following proposition needs no assumptions on H or the base category except that
binary coproducts exist.

I Proposition 23. If H is a cia functor, then so is H(−) + Y for every object Y .

I Corollary 24. Let H be a functor having a terminal coalgebra and preserving countable
coproducts. Then H(−) + Y is a cia functor for every object Y .

5 Finitary Set Functors

We have seen above that for every functor H on a hyper-extensive category preserving
countable coproducts, the functors H(−) + Y are cia functors (i.e., every corecursive algebra
is a cia). In particular, if C is cartesian closed, then the functor X 7→ W ×X + Y is a cia
functor. For C = Set and H finitary we now prove the converse: if H is a cia functor then it
has the form X 7→W ×X + Y for some sets W and Y .

I Assumption 25. Throughout this section H denotes a standard, finitary set functor.

Recall from [6] that H is finitary iff for every set X we have HX =
⋃
HY where the union

ranges over finite subsets Y ⊆ X. An example of a finitary functor on Set is the polynomial
functor HΣ, see Example 5(3).

Standard means that H preserves
(1) inclusions, i.e., X ⊆ Y implies HX ⊆ HY and the H-image of the inclusion map X ↪→ Y

is the inclusion map HX ↪→ HY , and
(2) finite intersections.

Assuming that H is standard is without loss of generality because for every set functor
H there exist a standard set functor H ′ naturally isomorphic to H on the full subcategory
of all nonempty sets [7, Theorem 3.4.5]. (And the change of value at ∅ is irrelevant for us
since corecursive algebras and cias, respectively, for H are in bijective correspondence with
those for H ′).

I Definition 26.
(1) By a presentation of H is meant a finitary signature Σ and natural epitransformation

ε : HΣ → H, i.e., every component εX is a surjective map.
(2) An ε-equation is an expression σ(x1, . . . xn) = τ(z1, . . . , zm) where σ is an n-ary operation

symbol and τ an m-ary one such that εX merges the two elements of HΣX where
X = {x1, . . . , xn, z1, . . . , zn}.

I Remark 27. All ε-equations form an equivalence relation. More precisely, for any set X all
ε-equations with variables replaced by elements of X form precisely the kernel equivalence of
εX . Moreover, the elements of HX may be regarded as equivalence classes of the elements
σ(x1, . . . , xn) of HΣX modulo this equivalence.
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I Example 28. The finite power-set functor Pf has a presentation with Σ having a single
n-ary operation for every n, and ε sending σ(x1, . . . , xn) to {x1, . . . , xn}.

The following lemma was proved in [7]. We present a (short) proof since we refer to it later.

I Lemma 29. Every finitary set functor has a presentation ε : HΣ → H, and the category
AlgH is isomorphic to the variety of all Σ-algebras satisfying all ε-equations.

Proof. Define a signature Σ = (Σn)n<ω by Σn = Hn where we regard n as the finite
ordinal {0, . . . , n − 1} for all n. By the Yoneda lemma we have a natural transformation
εX : HΣX → HX assigning to every σ(x1, . . . , xn) represented as a function x : n→ X the
element Hx(σ). Since H is finitary, εX is surjective.

Every H-algebra a : HA → A defines the corresponding Σ-algebra a · εA : HΣA → A

which clearly satisfies all ε-equations. This defines a full embedding of AlgH into AlgHΣ
(which is identity on morphisms). We now easily prove that every Σ-algebra satisfying all
ε-equations has the above form (A, a · εA). Indeed, given aΣ : HΣA → A satisfying all
ε-equations, define a : HA → A by a([σ(a1, . . . , an]) = aΣ(σ(a1, . . . , an)). Since we know
from Remark 27 that aΣ merges all pairs in the kernel of εA, this is well-defined and we
clearly have aΣ = a · εA. Thus, our full embedding defines the desired isomorphism between
H-algebras and Σ-algebras satisfing all ε-equations. J

I Remark 30.
(1) Denote by C1 the constant functor with value 1 = {c}, and by C0.1 its subfunctor with

C0,1∅ = ∅ and C0,1X = 1 else. For every natural transformation α : C0,1 → H there
exists a unique extension to α′ : C1 → H.
Indeed, since H is standard, it preserves the (empty) intersection of the coproduct
injections inl, inr : 1→ 1 + 1. Since H inl(α1(c)) = α1+1(c) = H inr(α1(c)), there exists a
unique element t of H∅ such that the inclusion map v : ∅ → 1 fulfils α1(c) = Hv(t). We
put α′∅(c) = t.

(2) All constants in our presentation of H are explicit. That means that whenever some
n-ary symbol σ has the property that some ε-equation has the form σ(x1, . . . , xn) =
σ(z1, . . . , zn), where the variables xi are pairwise distinct and none of them equals some
zj , then there exists a constant symbol τ in Σ for which we have the following ε-equation:
σ(x1, . . . , xn) = τ . Indeed, for every set X 6= ∅ we have an element

αX = εX(σ(a1, . . . , an)) ∈ HX

independent of the choice of a1, . . . , an in X. This defines a natural transformation
α : C0,1 → H. Let α′ : C1 → H be its extension according to item (1). The element
α′∅(c) of H∅ has, since ε is an epitransformation, the form ε∅(τ) for some nullary symbol
τ . Then the desired ε-equation holds because for X = {x1, . . . , xn} and the unique
empty map u : ∅ → X we have

εX(σ(x1, . . . , xn)) = αX(c) = α′X(c) = Hu ·α′∅(c) = Hu ·ε∅(τ) = εX ·Hu(τ) = εX(τ).

I Definition 31. A presentation ε : HΣ → H is reduced provided that for every ε-equation

σ(x1, . . . , xn) = τ(z1, . . . , zm)

the following hold:
(1) if x1, . . . , xn are pairwise distinct, then they all lie in {z1, . . . , zn}, and
(2) if, moreover, z1, . . . , zn are also pairwise distinct, then σ = τ .
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I Proposition 32. Every finitary set functor has a reduced presentation.

I Notation 33. From now on we assume that a reduced presentation of H is given.
Recall the notation TY , FY and CY from Examples 8 and Notation 10. All these objects

exist since H is finitary (and therefore so are all H(−) + Y ). The corresponding notation
for HΣ is TΣY , FΣY and CΣY . The monad units of T and C are denoted by η and ηC ,
respectively.

As mentioned above, TΣY can be described as the algebra of all Σ-trees over Y . And
CΣY and FΣY are its subalgebras on all trees with finitely many leaves labeled in Y , or all
finite trees, respectively.

Since TY is a corecursive algebra, there exists a unique homomorphism of H-algebras

mY : CY → TY

with mY · ηCY = ηY . The corresponding HΣ-algebra morphism is denoted by

mΣ
Y : CΣY → TΣY.

I Remark 34. In [4] we described FY and TY as the following quotient of the Σ-algebras
FΣY and TΣY , respectively. Recall from Lemma 29 that every H-algebra a : HA→ A may
be regarded as the HΣ-algebra with structure a · εA : HΣA→ A.
(1) FY = FΣY/∼Y , where ∼Y is the congruence of finite application of ε-equations. That

is, the smallest congruence with σ(x1, . . . , xn) ∼Y τ(z1, . . . , zm) for every ε-equation

σ(x1, . . . , xn) = τ(z1, . . . , zm)

over Y . The universal map ηFY : Y → FY is the composition of the one of FΣY with
the canonical quotient map FΣY � FΣY/∼Y .

(2) TY = TΣY/∼∗Y , where ∼∗Y is the congruence of (possibly infinitely many) applications
of ε-equations. The universal map is η̂Y = ε̂Y · ηΣ

Y , where ηΣ
Y : Y → TΣY is the universal

map of the free cia for HΣ on Y and ε̂Y : TΣY � TΣY/∼∗Y is the canonical quotient
map.

The definition of a possibly infinite application of ε-equations is based on the concept of
cutting a Σ-tree at level k: the resulting finite Σ-tree ∂kt is obtained from t by deleting all
nodes of depth larger than k and relabeling all nodes at level k by a symbol ⊥ 6∈ Y . Then
we define, for Σ-trees t and s in TΣY ,

t ∼∗Y s iff ∂kt ∼Y ∪{⊥} ∂ks for every k < ω.

Not surprisingly, CY can be described analogously:

I Proposition 35. The free corecursive H-algebra CY is the quotient of the Σ-algebra CΣY

modulo the application of ε-equations: CY = CΣY/∼∗Y .

Proof. This is based on the following description of CY presented in [3]: denote by ⊕ the
binary coproduct of H-algebras in AlgH. By Lemma 29, this is, equivalently, the coproduct
in the variety of all Σ-algebras satisfying all ε-equations. Then we have

CY = νH ⊕ FY.

Analogously, if � denotes the binary coproduct of Σ-algebras, we of course have

CΣY = νHΣ � FΣY.

For arbitrary H-algebras A and B we know that A ⊕ B is the quotient of A � B modulo
the application of ε-equations. Moreover, we have T = TΣ/∼∗ and FY = FΣY/∼. It follows
immediately that T ⊕ FY = (TΣ � FΣY )/∼∗, as claimed. J



J. Adámek and S. Milius 3:13

I Lemma 36. Suppose that CY is a cia for H. For every equation morphism e : X →
HΣX + Y with the unique solution e‡ : X → TΣY we can form an equation morphism

e = (X e−→ HΣX + Y
εX+ηC

Y−−−−−→ HX + CY ).

Then we have (X e†−→ CY
mY−−→ TY ) = (X e‡−→ TΣY

ε̂Y−−→ TY ).

I Theorem 37. For a finitary set functor H the following conditions are equivalent:
(1) H is a cia functor,
(2) H = H0(−) + Y where H0 preserves countable coproducts and Y is a set, and
(3) H = W × (−) + Y for some sets W and Y .

Proof.
(2) ⇒ (3). Since H is finitary, so is H0, by the description of finitarity following Assump-

tions 25. Therefore, H0 preserves all coproducts. Trnková proved [16, Theorem IX.8],
that every coproduct-preserving set functor preserves colimits, thus it is a left adjoint. It
is well known that the only right adjoint set functors R are the representable ones: for
given L a R, put W = L1, then the elements 1→ RY bijectively correspond to the maps
W → Y , thus, R is naturally isomorphic to Set(W,−). Consequently, H0 is left adjoint
to Set(W,−), hence it is naturaly isomorphic to W × (−).

(3) ⇒ (1). This follows from Corollary 24.
(1) ⇒ (2). Let ε : HΣ → H be a reduced presentation.
(a) We prove below that all arities in Σ are 1 or 0. Let W be the set of all unary symbols

and Y that of all constants. Then HΣX = W ×X + Y . Furthermore, we show that ε
is a natural isomorphism. Indeed, each εX is, besides being surjective, also injective: it
cannot merge distinct elements (w, x) and (w′, x′) of W ×X because this would yield
an ε-equation w(x) = w′(x′). Since the presentation is reduced, this implies w = w′ and
x = x′. Analogously for all other pairs of elements of HΣX.

(b) Assume that some symbol α of Σ has arity at least 2. Then we derive a contradiction
to H being a cia functor. Given a Σ-tree t we call a node r pure if the trees t1, . . . , tn
rooted at the children of r are pairwise distinct. Observe that an ε-equation applicable to
a pure node r must have the form σ(x1, . . . , xn) = τ(y1, . . . , ym) for some τ ∈ Σm, where
x1, . . . , xn are pairwise distinct.
Consider the following equation morphism e : X → HΣX + Y with X = {x1, . . . , xn}
and Y = {y2, . . . , yn}: e(x1) = α(x1, y2, yn) and e(xi) = yi, for i = 2, . . . , n. Then the
unique solution e‡ : X → TΣY assigns to x1 the Σ-tree below:

e‡(x1) =

α

α y2 yn· · ·

y2 yn· · ·...

Next consider the equation morphism e = (X e−→ HΣX + Y
εX+ηC

Y−−−−−→ HX + CY ). Since
CY is a cia, this has a unique solution e† : X → CY . It assigns to x1 an element of
CY which by Proposition 35 has the form e†(x1) = εY (s) for some s ∈ CΣY , where
εY : CΣY � CΣY/∼∗ ∼= CY denotes the canonical quotient map. From Lemma 36 we
know that

ε̂Y (t) = ε̂Y · e‡(x1) = mY · e†(x1) = mY · εY (s).
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Therefore, we obtain t ∼∗Y s.
We derive the desired contradiction by proving that every tree obtained from t by a finite
application of ε-equations has a leaf labeled by y2 at every positive level. From this we
conclude immediately that the same holds for all trees obtained by an infinite application
of ε-equations from t. However, t ∼∗Y s where s has only finitely many leaves labeled by
y2.

(b1) Assume that a single ε-equation is applied to t and let t′ be the resulting tree. Let r
be the node of t at which the application takes place. Then r is not a leaf labeled in
Y ; for recall that all ε-equations have operation symbols on both sides, thus, they are
not applicable to leaves labeled in Y . Therefore, r is a pure node labeled by α. The
ε-equation in question thus has the form α(u1, . . . , un) = τ(z1, . . . , zm) for some τ ∈ Σm
and with the ui pairwise distinct.
If r has depth k, then the tree t′ has label y2 at all levels 1, . . . , k, since those leaves
of t are unchanged. Furthermore, we have u2 = zp for some p = 1, . . . ,m since ε is a
reduced presentation. Therefore, y2 occurs at level k + 1 since the p-th child of r in t′ is
a leaf labeled by y2. For the levels greater than k + 1 we use that u1 = zq holds for some
q = 1, . . . ,m, again because ε is a reduced presentation. Since the first subtree of r in t
is t itself, it follows that the q-th child of r in t′ is t itself. Thus, a label y2 of depth n in
t yields a label y2 of depth k + 1 + n of t′.

(b2) Assume that two ε-equations are applied to t. The resulting tree t′′ can be obtained
from t′ in (b1) by a single application of an ε-equation. Let r′ be the node of t′ at which
the application takes place. We can assume r 6= r′ (for if r = r′ we can obtain t′′ from t

by a single application on an ε-equation; this follows from Remark 27). If r′ does not
lie in the subtree of t′ with root r, then r′ is a pure node labeled by α and we argue as
in (b1).
Suppose therefore that r′ lies in the subtree rooted at r. If this is the q-th subtree
from (b1) above (the one with u1 = zq), then we also argue as in (b1) using that the q-th
subtree is t itself. Otherwise, if r′ lies in any other subtree of r, then the labels y2 of the
q-th subtree are unchanged.
The remaining cases of three and more applications of ε-equations are completely analogous.
This yields the desired contradiction: if t ∼∗ t, then t has label y2 at every level 1, 2, 3, . . .,
thus t ∼∗Y s cannot be true. J

6 Conclusions and Open Problems

For endofunctors H preserving countable coproducts and having a terminal coalgebra we
have described the free corecursive algebra on an object Y as νH +

∐
n<ωH

nY . In addition,
we have shown that H is a cia functor, i.e., every corecursive algebra for H is a cia. For this
we assumed that the base category has well-behaved countable coproducts, i.e., the category
is hyper-extensive. It is an open problem whether our results hold in more general categories,
e.g., in all extensive locally presentable ones.

For accessible functors H on locally presentable categories, the free corecursive algebra
on Y was described in previous work [3] as the coproduct of FY (the free algebra on Y ) and
νH (considered as an algebra) in the category AlgH. If H preserves countable coproducts,
this is quite similar to the above desciption of the free cia, since coproducts of algebras are
then formed on the level of the underlying category and therefore FY =

∐
n<ωH

nY . But
the proof techniques are completely different, and a common generalization of the two results
is open.
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We have also characterized all cia functors among finitary set functors: they are precisely
the functors X 7→W ×X + Y for some sets W and Y . In Example 22 we have seen that the
same result does not hold for all, not necessarily finitary, set functors. But that example
required an assumption about set theory. It is an open problem whether that assumption
was really necessary.

Our results can be stated in terms of corecursive monads [3] and completely iterative
ones [1] as follows: a functor H having a terminal coalgebra νH and preserving countable
coproducts has a free corecursive monad of the form

∐
n<ωH

n(−) + νH, and this is also the
free completely iterative monad on H.
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