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Abstract
Traditionally, networks such as datacenter interconnects are designed to optimize worst-case
performance under arbitrary traffic patterns. Such network designs can however be far from
optimal when considering the actual workloads and traffic patterns which they serve. This insight
led to the development of demand-aware datacenter interconnects which can be reconfigured
depending on the workload.

Motivated by these trends, this paper initiates the algorithmic study of demand-aware net-
works (DANs), and in particular the design of bounded-degree networks. The inputs to the network
design problem are a discrete communication request distribution, D, defined over communicat-
ing pairs from the node set V , and a bound, ∆, on the maximum degree. In turn, our objective
is to design an (undirected) demand-aware network N = (V,E) of bounded-degree ∆, which
provides short routing paths between frequently communicating nodes distributed across N . In
particular, the designed network should minimize the expected path length on N (with respect to
D), which is a basic measure of the efficiency of the network.

We show that this fundamental network design problem exhibits interesting connections to
several classic combinatorial problems and to information theory. We derive a general lower
bound based on the entropy of the communication pattern D, and present asymptotically optimal
network-aware design algorithms for important distribution families, such as sparse distributions
and distributions of locally bounded doubling dimensions.
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1 Introduction

The problem studied in this paper is motivated by the advent of more flexible datacenter
interconnects, such as ProjecToR [16, 17]. These interconnects aim to overcome a fundamental
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5:2 Demand-Aware Network Designs of Bounded Degree

drawback of traditional datacenter network designs: the fact that network designers must
decide in advance on how much capacity to provision between electrical packet switches,
e.g., between Top-of-Rack (ToR) switches in datacenters. This leads to an undesirable
tradeoff [25]: either capacity is over-provisioned and therefore the interconnect expensive
(e.g., a fat-tree provides full-bisection bandwidth), or one may risk congestion, resulting
in a poor cloud application performance. Accordingly, systems such as ProjecToR provide
a reconfigurable interconnect, allowing to establish links flexibly and in a demand-aware
manner. For example, direct links or at least short communication paths can be established
between frequently communicating ToR switches. Such links can be implemented using a
bounded number of lasers, mirrors, and photodetectors per node [17]. First experiments with
this technology demonstrated promising results: although the interconnecting networks is of
bounded degree, short routing paths can be provided between communicating nodes.

The problem of designing demand-aware networks is a fundamental one, and finds
interesting applications in many distributed and networked systems. For example, while
many peer-to-peer overlay networks today are designed towards optimizing the worst-case
performance (e.g., minimal diameter and/or degree), it is an intriguing question whether the
“hard instances” actually show up in real life, and whether better topologies can be designed
if we are given more information about the actual communication patterns these networks
serve in practice.

While the problem is natural, surprisingly little is known today about the design of
demand-aware networks. At the same time, as we will show in this paper, the design of
demand-aware networks is related to several classic combinatorial problems.

Our vision is reminiscent in spirit to the question posed by Sleator and Tarjan over 30
years ago in the context of binary search trees [10, 26]: While there is an inherent lower
bound of Ω(logn) for accessing an arbitrary element in a binary search tree, can we do better
on some “easier” instances? The authors identified the entropy to be a natural metric to
measure the performance under actual demand patterns. We will provide evidence in this
paper that the entropy, in a slightly different flavor, also plays a crucial role in the context of
network designs, establishing an interesting connection.

The Problem: Bounded Network Design. We consider the following network design
problem, henceforth referred to as the Bounded Network Design problem, short BND.
We consider a set of n nodes (e.g., top-of-rack switches, servers, peers) V = {1, . . . , n}
interacting according to a certain communication pattern. The pattern is modelled by D,
a discrete distribution over communication requests defined over V × V . We represent this
distribution using a communication matrixMD[p(i, j)]n×n where the (i, j) entry indicates the
communication frequency, p(i, j), from the (communication) source i to the (communication)
destination j. The matrix is normalized, i.e.,

∑
ij p(i, j) = 1. Moreover, we can interpret

the distribution D as a weighted directed demand graph GD, defined over the same set of
nodes V : A directed edge (u, v) ∈ E(GD) exists iff p(u, v) > 0. We set the edge weight to
the communication probability: w(i, j) = p(i, j).

In turn, our objective is to design an unweighted, undirected Demand-Aware Network (DAN)
defined over the set of nodes V and the distribution D, henceforth denoted as N(D) or
just N when D is clear from the context. The objective is that N(D) optimally serves the
communication requests from D under the constraint that N must be chosen from a certain
family of desired topologies N . In particular, we are interested in sparse networks (i.e.,
having a linear number of edges) with bounded degree ∆ (i.e., nodes have a small number of
lasers [17]), and we denote the family of ∆-bounded degree graphs by N∆.
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Figure 1 Example of the bounded network design problem. (a) A given demand distribution D
(which in this case is symmetric). (b) The demand graph GD (with non-normalized weights). Nodes
1, 3, and 7 have a degree more than 3. (c) An optimal solution DAN N with ∆ = 3. In this case, the
solution is not a subgraph but contains auxiliary edges (e.g., {2, 5}), and EPL(D, N) = 1.19 while
H(X | Y ) = 1.08 (the Shannon entropy to the base 3 is H(X) = 1.68).

Note that the designed network can be seen as “hosting” the served communication
pattern, i.e., the demand graph is embedded on the designed network. Accordingly, we will
sometimes refer to the demand graph as the guest network and to the designed network as
the host network.

Our objective is to minimize the expected path length [1, 2, 24] of the designed host
network N ∈ N : For u, v ∈ V (N), let dN (u, v) denote the shortest path between u and v in
N . Given a distribution D over V × V and a graph N over V , the Expected Path Length
(EPL) of route requests is defined as:

EPL(D, N) = ED[dN (·, ·)] =
∑

(u,v)∈D

p(u, v) · dN (u, v)

Since routing across the host network usually occurs along shortest paths, the expected
path length captures the average hop-count of a route (e.g., latency incurred or energy
consumed along the way).

Succinctly, the Bounded Network Design (BND) problem is to minimize the expected
path length and is defined as follows:

I Definition 1 (Bounded Network Design). Given a communication distribution, D and a
maximum degree ∆, find a host graph N ∈ N∆ that minimizes the expected path length:

BND(D,∆) = min
N∈N∆

EPL(D, N)

See Figure 1 for an example of these definitions.

Our Contributions. This paper initiates the study of a fundamental problem: the design of
demand-aware communication networks. While our work is motivated by recent trends in
datacenter network designs, our model is natural and finds applications in many distributed
and networked systems (e.g., peer-to-peer overlays). The main contribution of this paper is to
establish an interesting connection of the network design problem to the conditional entropy
of the communication matrix. In particular, we present a lower bound on the expected path
length of a network with maximum degree ∆ which is proportional to the conditional entropy
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5:4 Demand-Aware Network Designs of Bounded Degree

of D, H∆(X | Y ) +H∆(Y | X) where ∆ is the base of the logarithm used for calculating the
entropy. While this lower bound can be as high as logn, for many distributions it can be
much lower (even constant). Our main results are presented in Theorem 7 which proves a
matching upper bound for the case when D is a sparse distribution. It is important to note
the real datacenters traffic shows evidence that the demand distributions are indeed sparse
[23, 17]. Additionally Theorem 12 proves a matching upper bound for the case when D is a
regular and uniform (but maybe dense) distribution of a locally bounded doubling dimension.
Also in these two cases the conditional entropy could range from a constant and up to logn.
At the heart of our technical contribution is a novel technique to transform a low-distortion
network of maximum degree ∆ to a low-degree network whose maximum degree equals the
average degree of the original network, while maintaining an expected path length in the
order of the conditional entropy. Moreover, we show an interesting reduction of uniform and
regular distributions to graph spanners in Theorem 8.

Paper Organization. The remainder of this paper is organized as follows. We put our work
into perspective with respect to related work in Section 2 and introduce some preliminaries
in Section 3. We derive lower bounds in Section 4 and present algorithms to design networks
for sparse distributions resp. regular and uniform distributions in Section 5 resp. Section 6.
We conclude our work and outline directions for future research in Section 7. Due to
space constraints, some details are omitted in this paper, and we refer the reader to our
accompanying technical report [3].

2 Putting Things Into Perspective and Related Work

There are at least three interesting perspectives on our problem. The first one arises when
trying to gain some intuition about the problem complexity. If ∆ = n, the problem is simple:
the demand (or guest) graph GD itself can be used as the host graph or DAN N ∈ N∆,
providing an ideal expected path length 1. If a sparse host graph is desired, a star topology
could be used as a DAN to provide an expected path length of at most 2. At the other end of
the spectrum, if ∆ = 2 (and the host network is required to be connected) the DAN N must
be a line or a ring graph. However, the problem of how to arrange nodes on the linear chain
or the ring such that the expected path length is minimized, is already NP-hard: the problem
is essentially a Minimum Linear Arrangment (MinLA) problem [7, 11, 15]. One perspective
to see our contribution is that in this paper, we are interested in what happens between
these extremes, for other values of ∆, in particular for a constant ∆ which guarantees that
our host network will be sparse, i.e., has a linear number of edges. In contrast to the general
arrangement problem which asks for an embedding of the guest graph on a specific and
given host graph, in our network design problem we are free to choose the best host graph
from a given family of graphs (i.e., bounded degree graphs). One might wonder: does this
flexibility make the problem easier? Existing works on low maximum resp. low average
degree networks, e.g., in the context of publish/subscribe overlays [8, 20, 21], do not provide
formal performance guarantees.

Sparse and distance-preserving spanners open a second perspective on our work: intuitively,
a good host graph N for GD “looks similar” to GD. But in contrast to classic spanner
problems in the literature which are primarily concerned with minimizing the worst-case
distortion (resp. the average distortion) among all node pairs [4, 22], we are only interested
in the local distortion. Namely, we aim to find a good “spanner” which preserves locality of
neighborhoods, i.e., 1-hop neighborhoods in the demand graph. Second, unlike classic spanner
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problems but similar to geometric (metric) spanners, the designed network N does not have
to be a subgraph and may include edges which do not exist in the demand network GD, i.e.,
0-entries in the corresponding communication matrix MD. We refer the corresponding edges
as auxiliary edges (a.k.a. shortcut edges [19]). It is easy to see that auxiliary edges can indeed
be required to compute optimal network designs, and yield strictly lower communication
costs than subgraph spanners (e.g. Figure 1). Third, in contrast to the frequently studied
sparse graph spanner problem variants, we require that nodes in the designed network are of
degree at most ∆. Finally, we are not aware of any work studying the relationship between
spanners and entropy. This makes our model fundamentally different from existing models
studied in the literature.

The fact that our matrix represents a distribution provides some interesting structure. In
particular, it leads us to a third connection, namely to information and coding theory. It is
known that the expected path length in binary search trees [26] as well as in network designs
providing local routing [2, 24] is upper bounded by the entropy H(X) (over the (empirical)
distribution of accessed elements X in the data structure). The conditional entropy of the
distribution, H(X|Y ) + H(Y |X), is a lower bound on the expected path length of local
routing tree designs [24] where X, Y are the random variables distributed according to the
marginal distribution of the sources and destinations in D. This bound is tight for the limited
case where D is a product distribution (i.e., p(i, j) = p(i)p(j)). Additionally the optimal
binary search tree can be computed efficiently for every D using dynamic programming [24].
In the current work we extend this line of research by studying more general distributions
and a larger family of host networks.

3 Preliminaries

We start with some notation about D. Let D[i, j] or p(i, j) denote the probability that
source i routes to destination j. Let p(i) denote the probability that i is a source, i.e.,
p(i) =

∑
j p(i, j). Similarly let q(j) denote the probability that j is a destination. Let X,Y

be random variables describing the marginal distribution of the sources and destinations
in D, respectively. Let −→D [i] denote the normalized i’th row of D, that is, the probability
distribution of destinations given that the source is i. Similarly let←−D [j] denote the normalized
j’th column of D, that is the probability distribution of sources given that the destination
is j. Let Yi and Xj be random variables that are distributed according to −→D [i] and ←−D [j],
respectively. We say that D is regular if GD is a regular graph (both in terms of in and out
degrees). We say that D is uniform if for every D[i, j] > 0, D[i, j] = 1

m and m is the number
of edges in GD. We say that D is symmetric if D[i, j] = D[j, i].

We will show that a natural measure to assess the quality of a designed network relates to
the entropy of the communication pattern. For a discrete random variable X with possible
values {x1, . . . , xn}, the entropy H(X) of X is defined as

H(X) =
n∑
i=1

p(xi) log2
1

p(xi)
(1)

where p(xi) is the probability that X takes the value xi. Note that, 0 · log2
1
0 is considered as

0. If p̄ is a discrete distribution vector (i..e, pi ≥ 0 and
∑
i pi = 1) then we may write H(p̄)

or H(p1, p2, . . . pn) to denote the entropy of a random variable that is distributed according
to p̄. If p̄ is the uniform distribution with support s (s being the number of places in the
distribution with pi > 0, i.e., pi = 1/s) then H(p̄) = log s.

DISC 2017



5:6 Demand-Aware Network Designs of Bounded Degree

Using the decomposition (a.k.a. grouping) properties of entropy the following are well-
known [9]:

H(p1, p2, p3 . . . pm) ≥ H(p1 + p2, p3 . . . pm) (2)

H(p1, p2, p3 . . . pm) ≥ (1− p1)H( p2

1− p1
,

p3

1− p1
. . .

pm
1− p1

) (3)

For a joint distribution over X,Y , the joint entropy is defined as

H(X,Y ) =
∑
i,j

p(xi, yj) log2
1

p(xi, yj)
(4)

Also recall the definition of the conditional entropy H(X|Y ):

H(X|Y ) =
∑
i,j

p(xi, yj) log2
1

p(xi | yj)
=

∑
j

p(yj)
∑
i

p(xi | yj) log2
1

p(xi | yj)

=
n∑
j=1

p(yj)H(X|Y = yj) (5)

For X and Y defines as above from D we also have

H(X|Y ) =
n∑
j=1

p(yj)H(X|Y = yj) =
n∑
j=1

q(j)H(←−D [j]) =
n∑
j=1

q(j)H(Xj) (6)

H(Y |X) is defined similarly and we note that it may be the case that H(X|Y ) 6= H(Y |X).
We may simply write H for the entropy if the purpose is given by the context. By default, we
will denote by H the entropy computed using the binary logarithm; if a different logarithmic
basis ∆ is used to compute the entropy, we will explicitly write H∆.

We recall the definition of a graph spanner. Given a graph G = (V,E), a subgraph
G′ = (V,E′) is a t-spanner of G if for every u, v ∈ V , t · dG(u, v) ≥ dG′(u, v) and t is the
distortion of the spanner. We say that G′ = (V,E′) is a graph metric t-spanner if it is not a
subgraph of G, i.e., it may have additional edges that are not in G.

4 A Lower Bound

We now establish an interesting connection to information theory and show that the con-
ditional entropy serves as a natural metric for bounded network designs. In particular, we
prove that the expected path length BND(D,∆) in any demand-aware bounded network
design, is at least in the order of the conditional entropy. Formally:

I Theorem 2. Consider the joint frequency distributions D. Let X, Y be the random
variables distributed according to the marginal distribution of the sources and destinations in
D, respectively. Then

BND(D,∆) ≥ Ω(max(H∆(Y |X), H∆(X|Y ))

Before delving into the proof, let EPL(p̄, T ) denote the expected path length in a tree
T from the root to its nodes where the expectation it taking over a distribution p̄. That is
EPL(p̄, T ) =

∑
i pidT (root, i). We recall the following well-known theorem:

I Theorem 3 ([18], restated.). Let H(p̄) be the entropy of the frequency distribution
p̄ = (p1, p2, . . . , pn). Let T be an optimal binary search tree built for the above frequency
distribution. Then EPL(p̄, T ) ≥ 1

log 3H(p̄).
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Namely, the entropy H(p̄), is a lower bound on the expected path length from the root to
the nodes in the tree. Note that, the proof of Theorem 3 in [18] holds for any optimal binary
tree T , not necessarily a search tree. For higher degree graphs, we can extend the result:

I Lemma 4. Let H∆(p̄) be the entropy (calculated using the logarithm of base ∆) of frequency
distribution p̄ = (p1, p2, . . . , pn). Let T be an optimal ∆-ary tree built for the above frequency
distribution. Then, EPL(p̄, T ) ≥ 1

log(∆+1)H∆(p̄).

The proof almost directly follows from the proof of Theorem 3 in [18], by extending properties
of binary trees to ∆-ary trees, see [3] for details. We now prove the lower bound.

Proof of Theorem 2. The proof idea is to view any network as the union of n optimal trees,
one for each individual node. While the resulting network may violate the degree requirement,
it constitutes a valid lower bound. So we start by finding an optimal structure for each source
node i, according to all its communication destinations −→D [i]: We construct n ∆-ary trees,
and let T i∆ be the optimal tree for source node i built using −→D [i]. From Lemma 4, we have:

EPL(−→D [i], T i∆) =
n∑
j=1

p(j|i)dT i
∆

(i, j) = Ω(H∆(Y | X = i))

where EPL(−→D [i], T i∆) denotes the expected path length of T i∆ given −→D [i] and dT i
∆
denotes

the shortest path in T i∆. Now consider any bounded degree network N∆ and compare it to
the forest T made up of n trees T 1

∆, T
2
∆, . . . , T

n
∆. Then,

EPL(D, N∆) =
n∑
i=1

p(i) · EPL(−→D [i], N∆) ≥
n∑
i=1

p(i) · EPL(−→D [i], T i∆)

≥
n∑
i=1

p(i) ·H∆(Y | X = i) = Ω(H∆(Y |X))

Similarly we can consider a set of trees optimized toward the incoming communication of
node j, ←−D [j], and the marginal destination probability. We show:

EPL(D, N∆) ≥ Ω(H∆(X | Y ))

Hence the theorem follows. J

5 Network Design for Sparse Distributions

We now present families of distributions which enable DANs that match the lower bound.
Our approach will be based on replacing neighborhoods with near optimal binary (or ∆-ary)
trees. Following the lower bound of Lemma 4, it is easy to show a matching upper bound
(for a constant ∆).

I Lemma 5. Let p̄ be a probability distribution on a set of node destinations (sources) V,
and let u be a single source (destination) node. Then one can design a tree T with u as a root
node with degree one, connected to a ∆-ary tree over V such that the expected path length
from u to all destinations (or from all sources to u) is:

EPL(p̄, T ) =
∑
i

pi · dT (u, i) ≤ O(H∆(p̄)) (7)

DISC 2017



5:8 Demand-Aware Network Designs of Bounded Degree

Proof. The proof follows by designing a Huffman ∆-ary code over p̄ (with expected code
length less than H∆(p̄) + 1 [9]) and using it to build a rooted ∆-ary tree. While the nodes in
the Huffman code are tree leaves, we can move them up to become internal nodes, which
only improves the expected path length. J

5.1 Tree Distributions

A most fundamental class of distributions for which we can construct optimal network designs
is based on trees.

I Theorem 6. Let D be a communication request distribution such that GD is a tree (i.e.,
ignoring the edge direction, GD forms a tree). Let X, Y be the random variables of the
sources and destinations in D, respectively. Then, it is possible to generate a DAN N with
maximum degree 8, such that

EPL(D, N) ≤ O(H(Y | X) +H(X | Y ))

This is asymptotically optimal.

Proof. We generate N as follows. Consider an arbitrary node as the root of the tree GD, call
this tree TD, and consider the parent-child relationship implied by the root. Let π(i) denote
the parent of node i. Let −→c i denote the communication distribution from vi to its children
(not including its single parent) and −→D [i] denote the communication distribution from i to
its neighbors (children and parent). Let pπi = −→D [i][π(i)] denote the corresponding entry in
−→
D [i] for the parent of i. From entropy Eq. (3), we have that (1 − pπi )H(−→c i) ≤ H(−→D [i]).
Similarly we define ←−c i and

←−
D [i] as the communication distribution to vi, from its children

and neighbors respectively.

The construction has two phases. In the first phase we replace outgoing edges. For each
node i replace the edges between i and its children with a binary tree according to −→c i and
the method of [18] (or Lemma 5 for a general ∆) for creating a near optimal binary tree. Let
−→
B i denote this tree and recall that EPL(−→c i,

−→
B i) ≤ O(H(−→c i)). Note that every node i may

appear in at most two trees −→B i and
−→
B π(i); in

−→
B i its degree is one and in −→B π(i) its degree is

at most 3, so the outgoing degree of each node is at most 4 after this phase.

In the second phase we take care of the remaining incoming edges from children to parents.
For each node i replace the edges from its children to it with a binary tree according to ←−c i
and the method of [18] for creating a near optimal binary tree. Let ←−B i denote this tree and
recall that EPL(←−c i,

←−
B i) ≤ O(H(←−c i)). Note that every node i may appear in at most two

trees ←−B i and
←−
B π(i); in

←−
B i i’s degree is one and in ←−B π(i) i’s degree is at most 3. Thus, the

incoming degree of each node is bounded by 4 after this phase.

Now we bound EPL(D, N) by bounding the expected path lengths in the corresponding
binary trees of each node, first considering all edges from parent to children and then all
edges from children to parent. Let p(i) and q(i) denote the probabilities that node i will be
a source and a destination of a communication request, respectively. Then:
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EPL(D, N) ≤
∑

(u,v)∈D

p(u, v)dN (u, v)

=
∑

(π(i),i)∈TD

p(π(i), i)dN (π(i), i) +
∑

(i,π(i))∈TD

p(i, π(i))dN (i, π(i))

=
n∑
i=1

p(i)EPL(−→c i,
−→
B i) +

n∑
i=1

q(i)EPL(←−c i,
←−
B i)

≤
n∑
i=1

p(i)H(−→D [i]) +
n∑
i=1

q(i)H(←−D [i]) = H(Y | X) +H(X | Y )

This matches our lower bound in Theorem 2. J

5.2 General Sparse Distributions
Asymptotically optimal demand-aware networks can even be designed for general sparse
distributions.

I Theorem 7. Let D be a communication request distribution where ∆avg is the average
degree in GD (so the number of edges m = ∆avg·n

2 ). Let X, Y be the random variables of the
sources and destinations in D, respectively. Then, it is possible to generate a DAN N with
maximum degree 12∆avg, such that

EPL(D, N) ≤ O(H(Y | X) +H(X | Y )) (8)

This is asymptotically optimal when ∆avg is a constant.

Proof. Recall that GD (for short G) is a directed graph and define in-degree and out-degree
in the canonical way. Let the (undirected) degree of a node, be the sum of its in-degree and
out-degree and denote the average degree as ∆avg. Denote the n/2 nodes with the lowest
degree in G as low degree nodes and the rest as high degree nodes. Note that each low degree
node has a degree at most 2∆avg and both its in-degree and out-degree must be low. A node
with out-degree (in-degree) larger than 2∆avg is called a high out-degree (high in-degree) node
(some nodes are neither low or high degree nodes).

The construction of N will be done in two phases. In the first phase, we consider only
(directed) edges (u, v) between a high out-degree u and a high in-degree node v. We subdivide
each such edge with two edges that connect u to v via a helping low degree node `, i.e.,
removing the directed edge (u, v) and adding the edges (u, `) and (v, `). Note that there are
at most m such edges, so we can distribute the help between low degree nodes in such a way
that each low degree node helps at most ∆avg such edges. Call the resulting graph G′.

Accordingly, we also create a new matrix D′ which, initially, is identical to D. Then for
each (u, v) and ` as above we set D′(u, v) = 0, D′(u, `) = D(u, l) + D(u, v) and D′(`, v) =
D(l, v) +D(u, v). Note that D′ is not a distribution matrix anymore, as the sum of all the
entries is more than one, but it has the following property: For each high degree node i, we
have H(

−→
D′[i]) ≤ H(−→D [i] and H(

←−
D′[i]) ≤ H(←−D [i]) (see Eq. (2)).

In the second phase, we construct N from G′. Consider each node i with high out-degree
and create a nearly optimal binary tree −→B i according to

−→
D′[i] using the method of [18]. Add

an edge from i to the root of −→B i and delete all the out-edges from i from G′. Similarly
consider each node j with high in-degree and create a nearly optimal binary tree←−B j according
to D′[i] using the method of [18]. Add an edge from j to the root of ←−B j and delete all the
in-edges of j from G′. This completes the construction of N .
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We first bound the maximum degree in N . First consider a low degree node `, helping an
edge (u, v), i.e., u is high out-degree and v is high-indegree. So ` is part of both u’s and v’s
binary tree, hence `’s degree increases by at most 6 (two times degree 3 for being an internal
node). Note that ` needs to help at most ∆avg edges itself. For each of these ∆avg edges, `’s
degree will be at most 6, resulting in a degree of 6∆avg. Since `’s degree was at most 2∆avg,
in the worst case, ` was associate with 2∆avg high in-degree or out-degree nodes, i.e., ` will
be present in all these 2∆avg trees, which results in another 6∆avg degrees for `. In total, `’s
degree is 12∆avg. If a node h has both high out-degree and high in-degree, then its degree
will be two: h is connected to the root of the tree created of its out-edges and to the root of
the tree created of its in-edges. If a node u is only a high out-degree node, its degree in N is
bounded by 6∆avg + 1 (and similarly for a node u which is only a high in-degree node). If a
node is neither high nor low degree, then its degree in N is bounded by 12∆avg (originally it
was up to 4∆avg in G′). We now bound EPL(D, N). Recall that from Lemma 5 and Eq. (2),
we have,

EPL(
−→
D′[i],−→B i) ≤ O(H(Y | X = i))

and

EPL(
←−
D′[j],←−B j) ≤ O(H(X | Y = j))

For each request (i, j) in D there are two possibilities for the route on N : either the edge
(i, j) ∈ N is a direct route, or the route goes via −→B i or

←−
B j or both. Let O and I be the set

of high out-degree and in-degree nodes, respectively. Then:

EPL(D, N) =
∑

(u,v)∈D

p(u, v)dN (u, v)

≤
∑

(i,j)/∈O∪I

p(u, v) +
∑
i∈O

p(i)EPL(−→D [i]),−→B i) +
∑
j∈I

q(j)EPL(←−D [j])←−B j)

=
∑
i/∈O

p(i) +
∑
j /∈I

q(j) +
∑
i∈O

p(i)EPL(−→D [i]),−→B i) +
∑
j∈I

q(j)EPL(←−D [j])←−B j)

≤ O(H(X | Y ) +H(Y | X))

This matches our lower bound in Theorem 2. J

6 Regular and Uniform Distributions

Another large family of distributions for which demand-aware networks can be designed are
regular and uniform distributions D. While it is easy to see that both conditions can be
relaxed such that the supported distributions can be “nearly regular” and “nearly uniform”,
for ease of presentation, we keep the conditions strict in what follows.

We first establish an interesting connection to spanners. As we will see, this connection
will provide a simple and powerful technique to design a wide range of demand-aware networks
meeting the conditional entropy lower bound.

I Theorem 8. Let D be an arbitrary (possibly dense) regular and uniform request distribution.
It holds that if we can find a constant and sparse (i.e., constant distortion, linear sized)
spanner for GD, we can design a constant degree DAN N providing an expected path length of

EPL(D, N) ≤ O(H(Y | X) +H(X | Y )) (9)

This is asymptotically optimal.
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In other words, for regular and uniform distributions, the network design problem boils
down to finding a constant1 sparse spanner: as we will see, we can automatically transform
this spanner into an efficient network (which may contain auxiliary edges). The remainder of
this section is devoted to the proof of the theorem.

Assume that D is r-regular and uniform. Recall that in this case H(Y | X) = H(X |
Y ) = log r, so BND(D,∆) ≥ Ω(H(Y | X)) where ∆ is a constant. We now describe how to
transform a constant sparse (but potentially irregular) spanner for GD into a constant-degree
host network N with EPL(D, N) ≤ O(log r). This will be done using a similar degree
reduction technique as discussed earlier (in the proof of Theorem 7).

I Lemma 9. Let G be a graph of maximum degree ∆max and an average degree ∆avg.
Then, we can construct a graph G′ with maximum degree 8∆avg which is a graph metric
log ∆max-spanner of G, i.e., dG′(u, v) ≤ 2 log ∆max · dG(u, v).

Proof. Let us call the n/2 nodes with the lowest degree in G the low degree nodes and the
remaining nodes high degree nodes. By the pigeon hole principle, each low degree node has a
degree at most 2∆avg. The construction of G′ proceeds in two phases. In the first phase we
take every edge between high degree nodes u, v and subdivide it with two edges that connect
u to v via a helping low degree node `, i.e., removing the edge (u, v) and adding the edges
(u, `) and (v, `). Note that there are at most m edges connecting high degree nodes so we
can distribute the help between low degree nodes such that each low degree node helps to at
most ∆avg such edges.

In the second phase we consider each high degree node u and replace the set of edges
between u and its neighbors, Γ(u), with a balanced binary tree that connects u as the root
and Γ(u) as remaining nodes of the tree. Denote as Bu this tree and note that the height of
Bu is at most log(|Γ(u)|+ 1). We leave edges between low degree nodes as in G.

Let us analyze the degrees in G′. Since every high degree node u in G′ only connects to
low degree nodes, it is only a member of Bu and its degree reduces to 2 in G′. Now consider
a low degree node `: for each edge (u, v) it helps, ` participates in Bu and Bv. Hence, its
degree increases by at most 6 in G′ compared to G. Overall, for helping high degree nodes,
the degree of ` can increase by 6∆avg. Together with its original neighbors from G, the
degree of ` in G′ can be at most 8∆avg.

Next consider the distortion of G′. The distortion between neighboring low degree nodes
is one. The distortion between neighboring high degree nodes is at most twice log ∆max and
the distortion between a neighboring high and low degree is at most log ∆max.

So, dG′(u, v) ≤ 2 log ∆max · dG(u, v) for all u, v in G′. J

We will apply Lemma 9 to prove Theorem 8.

Proof of Theorem 8. Let S be a constant and sparse spanner of GD (G could be either a
subgraph or a metric spanner of max degree asymptotically not larger than GD) of degree at
most r. Lemma 9 then tells us how to transform S to a DAN N of degree ∆avg. Since S is a
constant spanner there is a constant c such that,

EPL(D, S) =
∑

(u,v)∈D

p(u, v) · dS(v, v) = c (10)

1 To be precise, a spanner with constant average distortion will be sufficient (see [3] for details). However,
for simplicity, we leave it as a constant spanner.
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Since S has maximum degree r, according to Lemma 9, it has a graph metric spanner N
such that, the distance of any source-destination pair of G(D) in N is at most 2 log r times
their distance in S. Hence:

EPL(D, N) =
∑

(u,v)∈D

p(u, v) · dN (u, v) ≤
∑

(u,v)∈D

p(u, v) · dS(u, v) · 2 log r

≤ log r · EPL(D, S) = O(log r) = O(H(Y | X))

The last equality holds since D is r-regular and uniform. The bound is asymptotically
optimal when ∆ is a constant: it matches our lower bound in Theorem 2. J

Theorem 8 allows us to simplify the design of asymptotically optimal networks for
uniform and regular distributions D where GD has a constant sparse spanner. In particular,
the approach can be used to design optimal networks for the following large families of
distributions which are known to have a constant and sparse graph spanners.

I Corollary 10. Let D describe a uniform and regular communication request distribution.
Then, it is possible to generate a constant degree DAN N such that

EPL(D, N) ≤ O(H(Y | X) +H(X | Y )) (11)

in the following scenarios:
If, for a constant c ≥ 1, GD has a minimum degree ∆ ≥ n 1

c .2

If GD forms a hypercube with n logn edges.
If GD forms a (possibly dense) chordal graph.

See [3] for the proof.
We round off our study of uniform and regular distributions by considering one more

interesting family of (possibly very dense) distributions: distributions D which describe
a bounded and local doubling dimension, note that this family is more general than the
standard bounded doubling dimension graphs which are sparse.

First, recall that a metric space (V, d) has a constant doubling dimension if and only
if there exists a constant λ such that every ball of radius r in V can be covered by λ

balls of half the radius r/2, for all r ≥ 1. In general, the smallest λ which satisfies this
property for a metric space is called doubling constant and log2 λ is called the doubling
dimension [6, 12, 13, 14]. A metric space is called bounded (a.k.a. constant or low) doubling
dimension if λ is a constant. There has been a wide range of work on spanners for bounded
doubling dimension metrics [5, 6, 13, 14]. However, if the metric is imposed by a graph
metric (via shortest paths) then a bounded doubling dimension implies that the graph is
nearly regular, of bounded (constant) degree and sparse. Theorem 7 already solved the case
of sparse GD, even for non-uniform and irregular distributions.

In the following, however, we are interested in a more general notion of doubling dimen-
sion, which allows a higher density, unbounded degree: we call it locally-bounded doubling
dimension:

IDefinition 11 (Locally-Bounded Doubling Dimension (LDD)). GD implied by the distribution
D has a locally-bounded doubling dimension if and only if there exists a constant λ such that

2 In this case the constant in the O notation depends linearly on c.
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the 2-hop neighbors of any node u are covered by at most λ 1-hop neighbors. Formally, for
each u ∈ V , there exists a set of nodes y1, y2, ...yλ, such that:

B(u, 2) ⊆
λ⋃
i=1

B(yi, 1)

where B(u, r) are the set of nodes that are at distance at most r-hops from u in GD.

Clearly, every bounded doubling dimension graph is also of locally-bounded doubling
dimension, but the converse is not true. In particular, the latter enables graphs which could
be dense, with unbound degree, and possibly with irregularity of degree.

In the remainder of this section, we will prove the following theorem.

I Theorem 12. Let D describe a uniform and regular communication request distribution of
locally-bounded doubling dimension. Then it is possible to design a constant degree DAN N
such that

EPL(D, N) ≤ O(H(Y | X) +H(X | Y )) (12)

This is asymptotically optimal.

Proof. Again, our proof strategy is to employ Theorem 8. Accordingly, we show that a
constant sparse spanner exists for locally-bounded doubling dimension networks. In particular,
we will design this spanner based on an ε-net construction. We first recall the definition of
ε-nets [6].

I Definition 13 (ε-net). A subset V ′ of V is an ε-net for a graph G = (V,E) if it satisfies
the following two conditions:
1. for every u, v ∈ V ′, dG(u, v) > ε

2. for each w ∈ V , there exists at least one u ∈ V ′ such that, dG(u,w) ≤ ε

Let GD = (V,E) be a locally-bounded doubling dimension network. We now first
construct a spanner S′ of GD which is a subgraph of GD, using the following (ε = 2)-net:
we sort all nodes according to decreasing (remaining) degrees, and iteratively select the
high-degree nodes into the 2-net one-by-one and remove their 2-neighborhoods. Clearly, after
this process, each node is either part of the 2-net or has a 2-net node at distance at most
2-hops, and we have computed a legal 2-net.

To form the spanner S, we next arbitrarily match each node u not in the 2-net to one of
its nearest 2-net nodes v, and select the edges along a shortest path from u to v into the
spanner S. This results in a forest of connected components (2-layered stars). We call these
connected components clusters and the corresponding nodes in the 2-net cluster heads. We
denote the cluster associated to the net node u by Cl(u).

We next connect the connected clusters to each other, in a sparse manner. Towards this
end, we connect each pair of clusters, with an arbitrary single edge, if they contain at least
one pair of communicating nodes in GD. We can claim the following.

I Lemma 14. S is a constant and sparse spanner of GD (with distortion 9) .

Proof. Let (u, v) be an edge in GD and u ∈ Cl(u), v ∈ Cl(v). By construction, there are
nodes x ∈ Cl(u) and y ∈ Cl(v) that are connected by an edge in S, and hence there is a
path u,C(u), x, y, C(v), v in S. Therefore, dS(u, v) ≤ dS(u,Cl(u))+dS(Cl(u), x)+dS(x, y)+
dS(y, Cl(v)) + dS(Cl(v), v) ≤ 9.
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The spanner is also sparse: in a nutshell, due to the 2-net properties, we know that
the distance between communicating cluster heads is at most 5: since in a locally doubling
dimension graph the number of cluster heads at distance 5 is bounded, only a small number
of neighboring clusters will communicate. More formally, after associating each node to some
unique cluster, we have a linear number of edges in the spanner. Next we bound the number
of outgoing edges from each cluster. Let (u, v) be such an edge where u ∈ Cl(u), v ∈ Cl(v).
Let the cluster heads of Cl(u) and Cl(v) be i and j, respectively. By construction i and
j are at most at distance 5 in GD, i.e., dGD (i, j) ≤ 5. So, if we can bound the number of
2-net nodes which lie within 5 hops from some net node i, it will give us a bound on the
number of edges which we add between Cl(u) and other clusters. According to Definition 11,
all the two hop neighbors of i can be covered within one hop neighbors of λ nodes, where
λ is the corresponding doubling constant. If we consider two hop neighbors of all these λ
many nodes, they cover all the 3 hop neighbors of i. To cover the 2 hop neighbors of each of
these nodes, we again require one hop neighbors of λ nodes. So, to cover all 3 hop neighbors
of i, we require at most λ2 one hop neighbors. Inductively, by repeating this argument, we
require one hop neighbors of at most λ4 nodes to cover all the 5 hop neighbors of i. Since
we constructed a 2-net, each of these λ4 balls with radius one contains at most one 2-net
node. Hence there are at most λ4 2-net nodes which are at a distance 5 hops or less from i.
Consequently, there are at most λ4 inter-cluster edges associated to some cluster Cl(u), or
cluster head i. Since there can not be more than linear number of clusters, hence the number
of edges in S′ is also linear. J

Using Lemma 14 we can directly use Theorem 8 and conclude the proof of Theorem 12. J

In fact, it turns out that if we consider a metric spanner, and by using auxiliary edges, we
can improve the above distortion and constract better constant sparse spanner S′. The idea
is to add inter-cluster edges only between the cluster heads. This will reduce the distortion to
5 while keeping the same number to total edges. The degree of each node in S′ will increase
by at most a constant, λ4. Adjusting Theorem 8 respectively to support metric spanners
(and only a subgraph spanner) will enable us to use S′ instead of S.

7 Conclusion

This paper initiated the study of a fundamental network design problem. While our work is
motivated in particular by emerging technologies for more flexible datacenter interconnects
as well as by peer-to-peer overlays, we believe that our model is very natural and of interest
beyond this specific application domain considered in this paper. For example, the design
of a sparse, bounded-degree and distance-preserving network can also be understood from
the perspective of graph sparsification [27]: the designed network can be seen as a compact
representation of the original network.

The subject of bounded network design offers several interesting avenues for future
research. In particular, while we presented asymptotically optimal network design algorithms
for a wide range of distributions and while we believe that the entropy is the right measure
to assess network designs, there remain several (dense) distributions for which the quest
for optimal network designs remains open, perhaps also requiring us to explore alternative
flavors of graph entropy.
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