
Reuse, Don’t Recycle: Transforming Lock-Free
Algorithms That Throw Away Descriptors∗†

Maya Arbel-Raviv‡1 and Trevor Brown2

1 Technion, Computer Science Department, Haifa, Israel
mayaarl@cs.technion.ac.il

2 Technion, Computer Science Department, Haifa, Israel
me@tbrown.pro

Abstract
In many lock-free algorithms, threads help one another, and each operation creates a descriptor
that describes how other threads should help it. Allocating and reclaiming descriptors intro-
duces significant space and time overhead. We introduce the first descriptor abstract data type
(ADT), which captures the usage of descriptors by lock-free algorithms. We then develop a
weak descriptor ADT which has weaker semantics, but can be implemented significantly more
efficiently. We show how a large class of lock-free algorithms can be transformed to use weak
descriptors, and demonstrate our technique by transforming several algorithms, including the
leading k-compare-and-swap (k-CAS) algorithm. The original k-CAS algorithm allocates at
least k + 1 new descriptors per k-CAS. In contrast, our implementation allocates two descriptors
per process, and each process simply reuses its two descriptors. Experiments on a variety of work-
loads show significant performance improvements over implementations that reclaim descriptors,
and reductions of up to three orders of magnitude in peak memory usage.

1998 ACM Subject Classification D.1.3 Concurrent Programming

Keywords and phrases Concurrency, data structures, lock-free, synchronization, descriptors

Digital Object Identifier 10.4230/LIPIcs.DISC.2017.4

1 Introduction

Many concurrent data structures use locks, but locks have downsides, such as susceptibility to
convoying, deadlock and priority inversion. Lock-free data structures avoid these downsides,
and can be quite efficient. They guarantee that some process will always makes progress,
even if some processes halt unexpectedly. This guarantee is typically achieved with helping,
which allows a process to harness any time that it would otherwise spend waiting for another
operation to complete. Specifically, whenever a process p is prevented from making progress
by another operation, it attempts to perform some (or all) of the work of the other operation,
on behalf of the process that started it. This way, even if the other process has crashed, its
operation can be completed, so that it no longer blocks p.

In simple lock-free data structures (e.g., [27, 13, 22, 25]), a process can determine how to
help an operation that blocks it by inspecting a small part of the data structure. In more
complex lock-free data structures [12, 16, 26, 10], processes publish descriptors for their

∗ This work was supported by the Israel Science Foundation (grant 1749/14), the Natural Sciences and
Engineering Research Council of Canada, and Global Affairs Canada.

† A full version of the paper is available at http://www.cs.utoronto.ca/~tabrown/desc/fullpaper.pdf.
‡ Maya Arbel-Raviv is supported in part by the Technion Hasso Plattner Institute Research School.

© Maya Arbel-Raviv and Trevor Brown;
licensed under Creative Commons License CC-BY

31st International Symposium on Distributed Computing (DISC 2017).
Editor: Andréa W. Richa; Article No. 4; pp. 4:1–4:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/132422723?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.DISC.2017.4
http://www.cs.utoronto.ca/~tabrown/desc/fullpaper.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


4:2 Reuse, Don’t Recycle: Transforming Lock-Free Algorithms

operations, and helpers look at these descriptors to determine how to help. A descriptor
typically encodes a sequence of steps that a process should follow in order to complete the
operation that created it.

Since lock-free algorithms cannot use mutual exclusion, many helpers can simultaneously
help an operation, potentially long after the operation has terminated. Thus, to avoid
situations where helpers read inconsistent data in a descriptor and corrupt the data structure,
each descriptor must remain consistent and accessible until no helper will ever access it again.
This leads to wasteful algorithms which allocate a new descriptor for each operation.

In this work, we introduce two simple abstract data types (ADTs) that capture the
way descriptors are used by wasteful algorithms (in Section 2). The immutable descriptor
ADT provides two operations, CreateNew and ReadField, which respectively create and
initialize a new descriptor, and read one of its fields. The mutable descriptor ADT extends
the immutable descriptor ADT by adding two operations: WriteField and CASField. These
allow a helper to modify fields of the descriptor (e.g., to indicate that the operation has been
partially or fully completed).

The natural way to implement the immutable and mutable descriptor ADTs is to have
CreateNew allocate memory and initialize it, and to have ReadField, WriteField and CASField
perform a read, write and CAS, respectively. Every implementation of one of these ADTs must
eventually reclaim the descriptors it allocates. Otherwise, the algorithm would eventually
exhaust memory. We briefly explain why reclaiming descriptors is expensive.

In order to safely free a descriptor, a process must know that the descriptor is no longer
reachable. This means no other process can reach the descriptor by following pointers in
shared memory or in its private memory. State of the art lock-free memory reclamation
algorithms such as hazard pointers [23] and DEBRA+ [6] can determine when no process has
a pointer in its private memory to a given object, but they typically require the underlying
algorithm to identify a time t after which the object is no longer reachable from shared
memory. In an algorithm where each operation removes all pointers to its descriptor from
shared memory, t is when O completes. However, in some algorithms (e.g., [9]), pointers to
descriptors are “lazily” cleaned up by subsequent operations, so t may be difficult to identify.
The overhead of reclaiming descriptors comes both from identifying t, and from actually
running a lock-free memory reclamation algorithm.

Additionally, in some applications, such as embedded systems, it is important to have a
small, predictable number of descriptors in the system. In such cases, one must use memory
reclamation algorithms that aggressively reclaim memory to minimize the number of objects
that are waiting to be reclaimed at any point in time. Such algorithms incur high overhead.
For example, hazard pointers can be used to maintain a small memory footprint, but a
process must perform costly memory fences every time it tries to access a new descriptor.

To circumvent the aforementioned problems, we introduce a weak descriptor ADT (in
Section 3) that has slightly weaker semantics than the mutable descriptor ADT, but can be
implemented without memory reclamation. The crucial difference is that each time a process
invokes CreateNew to create a new descriptor, it invalidates all of its previous descriptors.
An invocation of ReadField on an invalid descriptor fails and returns a special value ⊥.
Invocations of WriteField and CASField on invalid descriptors have no effect. We believe the
weak descriptor ADT can be useful in designing new lock-free algorithms, since an invocation
of ReadField that returns ⊥ can be used to inform a helper that it no longer needs to continue
helping (making further accesses to the descriptor unnecessary).

We also identify a class of lock-free algorithms that use the descriptor ADT, and which
can be transformed to use the weak descriptor ADT (in Section 3.1). At a high level,
these are algorithms in which (1) each operation creates a descriptor and invokes a Help



M. Arbel-Raviv and T. Brown 4:3

function on it, and (2) ReadField, WriteField and CASField operations occur only inside
invocations of Help. Intuitively, the fact that these operations occur only in Help makes
it easy to determine how the transformed algorithm should proceed when it performs an
invalid operation: the operation being helped must have already terminated, so it no longer
needs help. We demonstrate our approach by transforming a wasteful implementation of a
double-compare-single-swap (DCSS) primitive [14].

We then present an extension to our weak descriptor ADT, and show how algorithms
that perform ReadField operations outside of Help can be transformed to use this extension
(in Section 4). We demonstrate our approach by transforming a wasteful implementation of a
k-compare-and-swap (k-CAS) primitive [14]. In the full paper, we also transform the LLX and
SCX primitives of Brown et al. [9], and provide proofs for all of our transformations. These
primitives can be used to implement a wide variety of advanced lock-free data structures.
For example, LLX and SCX have been used to implement lists, chromatic trees, relaxed AVL
trees, relaxed (a, b)-trees, relaxed b-slack trees and weak AVL trees [10, 7, 15].

We use mostly known techniques to produce an efficient, provably correct implementation
of our extended weak descriptor ADT. The high level idea is to (1) store a sequence number
in each descriptor, (2) replace pointers to descriptors with tagged sequence numbers, which
contain a process name and a sequence number, and (3) increment the sequence number in a
descriptor each time it is reused. With this implementation, the transformed algorithms for
k-CAS, and LLX and SCX, have some desirable properties. In the original k-CAS algorithm,
each operation attempt allocates at least k + 1 new descriptors. In contrast, the transformed
algorithm allocates only two descriptors per process, once, at the beginning of the execution,
and these descriptors are reused. This entirely eliminates dynamic allocation and memory
reclamation for descriptors, and results in an extremely small descriptor footprint.

We present extensive experiments on a 64-thread AMD system and a 48-thread Intel
system (in Section 5). Our results show that transformed implementations always perform
at least as well as their wasteful counterparts, and significantly outperform them in some
workloads. In a k-CAS microbenchmark, our implementation outperformed wasteful im-
plementations using fast distributed epoch-based reclamation [6], hazard pointers [23] and
read-copy-update (RCU) [11] by up to 2.3x, 3.3x and 5.0x, respectively.

The crucial observation in this work is that, in algorithms where descriptors are used only
to facilitate helping, a descriptor is no longer needed once its operation has terminated. This
allows a process to reuse a descriptor as soon as its operation finishes, instead of allocating
a new descriptor for each operation, and waiting considerably longer (and incurring much
higher overhead) to reclaim it using standard memory reclamation techniques. The challenge
in this work is to characterize the set of algorithms that can benefit from this observation,
and to design and prove the correctness of a transformation that takes such algorithms and
produces new algorithms that simply reuse a small number of descriptors.

2 Wasteful Algorithms

In this section, we describe two classes of lock-free wasteful algorithms, and give descriptor
ADTs that capture their behaviour. First, we consider algorithms with immutable descriptors,
which are not changed after they are initialized. We then discuss algorithms with mutable
descriptors, which are modified by helpers.

For the sake of illustration, we start by describing one common way that lock-free wasteful
algorithms are implemented. Consider a lock-free algorithm that implements a set of high-
level operations. Each high-level operation consists of one or more attempts, which either

DISC 2017



4:4 Reuse, Don’t Recycle: Transforming Lock-Free Algorithms

succeed, or fail due to contention. Each high-level operation attempt accesses a set of objects
(e.g., individual memory locations or nodes of a tree). Conceptually, a high-level operation
attempt locks a subset of these objects and then possibly modifies some of them. These locks
are special: instead of providing exclusive access to a process, they provide exclusive access
to a high-level operation attempt. Whenever a high-level operation attempt by a process
p is unable to lock an object because it is already locked by another high-level operation
attempt O, p first helps O to complete, before continuing its own attempt or starting a new
one. By helping O complete, p effectively removes the locks that prevent it from making
progress. Note that p is able to access objects locked for a different high-level operation
attempt (which is not possible in traditional lock-based algorithms), but only for the purpose
of helping the other high-level operation attempt complete.

We now discuss how helping is implemented. Each high-level operation or operation
attempt allocates a new descriptor object, and fills it with information that describes any
modifications it will perform. This information will be used by any processes that help
the high-level operation attempt. For example, if the lock-free algorithm performs its
modifications with a sequence of CAS steps, then the descriptor might contain the addresses,
expected values and new values for the CAS steps.

A high-level operation attempt locks each object it would like to access by publishing
pointers to its descriptor, typically using CAS. Each pointer may be published in a dedicated
field for descriptor pointers, or in a memory location that is also used to store application
values. For example, in the BST of Ellen et al., nodes have a separate field for descriptor
pointers [12], but in Harris’ implementation of multi-word CAS from single-word CAS,
high-level operations temporarily replace application values with pointers to descriptors [14].

When a process encounters a pointer ptr to a descriptor (for a high-level operation
attempt that is not its own), it may decide to help the other high-level operation attempt
by invoking a function Help(ptr). Typically, Help(ptr) is also invoked by the process that
started the high-level operation. That is, the mechanism used to help is the same one used
by a process to perform its own high-level operation attempt.

Wasteful algorithms typically assume that, whenever an operation attempt allocates
a new descriptor, it uses fresh memory that has never previously been allocated. If this
assumption is violated, then an ABA problem may occur. Suppose a process p reads an
address x and sees A, then performs a CAS to change x from A to C, and interprets the
success of the CAS to mean that x contained A at all times between the read and CAS.
If another process changes x from A to B and back to A between p’s read and CAS, then
p’s interpretation is invalid, and an ABA problem has occurred. Note that safe memory
reclamation algorithms will reclaim a descriptor only if no process has, or can obtain, a
pointer to it. Thus, no process can tell whether a descriptor is allocated fresh or reclaimed
memory. So, safe memory reclamation will not introduce ABA problems.

2.1 Immutable descriptors
We give a straightforward immutable descriptor ADT that captures the way that descriptors
are used by the class of wasteful algorithms we just described. A descriptor has a set of fields,
and each field contains a value. The ADT offers two operations: CreateNew and ReadField.
CreateNew takes, as its arguments, a descriptor type and a sequence of values, one for each
field of the descriptor. It returns a unique descriptor pointer des that has never previously
been returned by CreateNew. Every descriptor pointer returned by CreateNew represents a
new immutable descriptor object. ReadField takes, as its arguments, a descriptor pointer
des and a field f , and returns the value of f in des. We require the immutable descriptor
ADT operations to be lock-free, so they can be used to implement lock-free data structures.



M. Arbel-Raviv and T. Brown 4:5

1 DCSS(a1, e1, a2, e2, n2) :
2 des := CreateNew(DCSSdes, a1, e1, a2, e2, n2)
3 fdes := flag(des)
4 loop
5 r := CAS(a2, e2, fdes)
6 i f r is flagged then DCSSHelp(r)
7 else exit loop
8 i f r = e2 then DCSSHelp(fdes)
9 return r

11 DCSSRead(addr) :
12 loop
13 r := ∗addr
14 i f r is flagged then DCSSHelp(r)
15 else exit loop
16 return r

17 type DCSSdes :
{ADDR1, EXP1, ADDR2, EXP2, NEW2}

21 DCSSHelp(fdes) :
22 des := unflag(fdes)
23 a1 := ReadField(des, ADDR1)
24 a2 := ReadField(des, ADDR2)
25 e1 := ReadField(des, EXP1)
26 i f ∗a1 = e1 then
27 n2 := ReadField(des, NEW2)
28 CAS(a2, fdes, n2)
29 else
30 e2 := ReadField(des, EXP2)
31 CAS(a2, fdes, e2)

Figure 1 Code for the DCSS algorithm of Harris et al. [14] using the immutable descriptor ADT.

Example Algorithm: DCSS. We use the double-compare single-swap (DCSS) algorithm
of Harris et al. [14] as an example of a lock-free algorithm that fits the preceding descrip-
tion. Its usage of descriptors is easily captured by the immutable descriptor ADT. A
DCSS(a1, e1, a2, e2, n2) operation does the following atomically. It checks whether the values
in addresses a1 and a2 are equal to a pair of expected values, e1 and e2. If so, it stores the
value n2 in a2 and returns e2. Otherwise it returns the current value of a2.

Pseudocode for the DCSS algorithm appears in Figure 1. At a high level, DCSS creates
a descriptor, and then attempts to lock a2 by using CAS to replace the value in a2 with a
pointer to its descriptor. Since the DCSS algorithm replaces values with descriptor pointers,
it needs a way to distinguish between values and descriptor pointers (in order to determine
when helping is needed). So, it steals a bit from each memory location and uses this bit to
flag descriptor pointers.

We now give a more detailed description. DCSS starts by creating and initializing a new
descriptor des at line 2. It then flags des at line 3. We call the result fdes a flagged pointer.
DCSS then attempts to lock a2 in the loop at lines 4-7. In each iteration, it tries to store
its flagged pointer in a2 using CAS. If the CAS is successful, then the operation attempt
invokes DCSSHelp to complete the operation (at line 8). Now, suppose the CAS fails. Then,
the DCSS checks whether its CAS failed because a2 contained another DCSS operation’s
flagged pointer (at line 6). If so, it invokes DCSSHelp to help the other DCSS complete,
and then retries its CAS. DCSS repeatedly performs its CAS (and helping) until the DCSS
either succeeds, or fails because a2 did not contain e2.

DCSSHelp takes a flagged pointer fdes as its argument, and begins by unflagging fdes (to
obtain the actual descriptor pointer for the operation). Then, it reads a1 and checks whether
it contains e1 (at line 26). If so, it uses CAS to change a2 from fdes to n2, completing
the DCSS (at line 28). Otherwise, it uses CAS to change a2 from fdes to e2, effectively
aborting the DCSS (at line 31). Note that this code is executed by the process that created
the descriptor, and also possibly by several helpers. Some of these helpers may perform a
CAS at line 26 and some may perform a CAS at line 28, but only the first of these CAS
steps can succeed.

When a program uses DCSS, some addresses can contain either values or descriptor
pointers. So, each read of such an address must be replaced with an invocation of a function
called DCSSRead. DCSSRead takes an address addr as its argument, and begins by reading

DISC 2017



4:6 Reuse, Don’t Recycle: Transforming Lock-Free Algorithms

addr (at line 13). It then checks whether it read a descriptor pointer (at line 14) and, if so,
invokes DCSSHelp to help that DCSS complete. DCSSRead repeatedly reads and performs
helping until it sees a value, which it returns (at line 16).

2.2 Mutable descriptors
In some more advanced lock-free algorithms, each descriptor also contains information about
the status of its high-level operation attempt, and this status information is used to coordinate
helping efforts between processes. Intuitively, the status information gives helpers some idea
of what work has already been done, and what work remains to be done. Helpers use this
information to direct their efforts, and update it as they make progress. For example, the
state information might simply be a bit that is set (by the process that started the high-level
operation, or a helper) once the high-level operation succeeds.

As another example, in an algorithm where high-level operation attempts proceed in
several phases, the descriptor might store the current phase, which would be updated by
helpers as they successfully complete phases. Observe that, since lock-free algorithms cannot
use mutual exclusion, helpers often use CAS to avoid making conflicting changes to status
information, which is quite expensive. Updating status information may introduce contention.
Even when there is no contention, it adds overhead. Lock-free algorithms typically try to
minimize updates to status information. Moreover, status information is usually simplistic,
and is encoded using a small number of bits.

Status information might be represented as a single field in a descriptor, or it might be
distributed across several fields. Any fields of a descriptor that contain status information
are said to be mutable. All other fields are called immutable, because they do not change
during an operation.

Mutable descriptor ADT. We now extend the immutable descriptor ADT to provide
operations for changing (mutable) fields of descriptors. The mutable descriptor ADT offers
four operations: CreateNew, WriteField, CASField and ReadField. The semantics for
CreateNew and ReadField are the same as in the immutable descriptor ADT. WriteField
takes, as its arguments, a descriptor pointer des, a field f and a value v. It stores v in field
f of des. CASField takes, as its arguments, a descriptor pointer des, a field f , an expected
value exp and a new value v. Let vf be the value of f in des just before the CASField. If
vf = exp, then CASField stores v in f . CASField returns vf . As in the immutable descriptor
ADT, we require the operations of the mutable descriptor ADT to be lock-free.

Example Algorithm: k-CAS. A k-CAS(a1, ..., ak, e1, ..., ek, n1, ..., nk) operation atomically
does the following. First, it checks if each address ai contains its expected value ei. If so, it
writes a new value ni to ai for all i and returns true. Otherwise it returns false.

The k-CAS algorithm of Harris et al. [14] is an example of a lock-free algorithm that has
descriptors with mutable fields. At a high level, a k-CAS operation O starts by creating a
descriptor that contains its arguments. It then tries to lock each location ai for the operation
O by changing the contents of ai from ei to des, where des is a pointer to O’s descriptor.
If it successfully locks each location ai, then it changes each ai from des to ni, and returns
true. If it fails because ai is locked for another operation, then it helps the other operation
to complete (and unlock its addresses), and then tries again. If it fails because ai contains an
application value different from ei, then the k-CAS fails, and unlocks each location aj that it
locked by changing it from des back to ej , and returns false. (The same thing happens if O

fails to lock ai because the operation has already terminated.)



M. Arbel-Raviv and T. Brown 4:7

In addition to the arguments to its k-CAS operation, a k-CAS descriptor contains a 2-bit
state field that initially contains Undecided and is changed to Succeeded or Failed depending
on how the operation progresses. This state field is used to coordinate helpers.

Let p be a process performing (or helping) a k-CAS operation O that created a descriptor
d. If p fails to lock some address ai in d, then p attempts to change the state of d using
CAS from Undecided to Failed. On the other hand, if p successfully locks each address in
d, then p attempts to change the state of d using CAS from Undecided to Succeeded. Since
the state field changes only from Undecided to either Failed or Succeeded, only the first CAS
on the state field of d will succeed. The k-CAS implementation then uses a lock-free DCSS
primitive (the one presented in Section 2.1) to ensure that p can lock addresses for O only
while d’s state is Undecided. This prevents helpers from erroneously performing successful
CAS steps after the k-CAS operation is already over.

Recall that the DCSS algorithm allocates a descriptor for each DCSS operation. A
k-CAS operation performs potentially many DCSS operations (at least k for a successful
k-CAS), and also allocates its own k-CAS descriptor. The k-CAS algorithm need not be
aware of DCSS descriptors (or of the bit reserved in each memory location by the DCSS
algorithm to flag values as DCSS descriptor pointers), since it can simply use the DCSSRead
procedure described above whenever it accesses a memory location that might contain a
DCSS descriptor. However, the k-CAS algorithm performs DCSS on the state field of a
k-CAS descriptor, which is accessed using the k-CAS descriptor’s ReadField operation. To
allow DCSS to access the state field, we must modify DCSS slightly. First, instead of passing
an address a1 to DCSS, we pass a pointer to the k-CAS descriptor and the name of the state
field. Second, we replace the read of addr1 in DCSS with an invocation of ReadField.

Since k-CAS descriptor pointers are temporarily stored in memory locations that normally
contain application values, the k-CAS algorithm needs a way to determine whether a value
in a memory location is an application value or a k-CAS descriptor pointer. In the DCSS
algorithm, the solution was to reserve a bit in each memory location, and use this bit to
flag the value contained in the location as a pointer to a DCSS descriptor. Similarly, the
k-CAS algorithm reserves a bit in each memory location to flag a value as a k-CAS descriptor
pointer. The k-CAS and DCSS algorithms need not be aware of each other’s reserved bits,
but they should not reserve the same bit (or else, for example, a DCSS operation could
encounter a k-CAS descriptor pointer, and interpret it as a DCSS descriptor pointer).

When the k-CAS algorithm is used, some memory addresses may contain either values or
descriptor pointers, so reads of such addresses must be replaced by a k-CASRead operation.
This operation reads an address, and checks whether it contains a k-CAS descriptor pointer.
If so, it helps the k-CAS operation to complete, and tries again. Otherwise, it returns the
value it read. For further details on the k-CAS algorithm, refer to [14].

3 Weak descriptors

In this section we present a weak descriptor ADT that has weaker semantics than the mutable
descriptor ADT, but can be implemented more efficiently (without requiring any memory
reclamation for descriptors). We identify a class of algorithms that use the mutable descriptor
ADT, and which can be transformed to use the weak descriptor ADT, instead.

We first discuss a restricted case where operation attempts only create a single descriptor,
and we give an ADT and transformation for that restricted case. (In the next section, we
describe how the ADT and transformation can be modified slightly to support operation
attempts that create multiple descriptors.)

DISC 2017



4:8 Reuse, Don’t Recycle: Transforming Lock-Free Algorithms

The weak descriptor ADT is a variant of the mutable descriptor ADT that allows some
operations to fail. To facilitate the discussion, we introduce the concept of descriptor validity.
Let des be a pointer returned by a CreateNew operation O by a process p, and d be the
descriptor pointed to by des. In each configuration, d is either valid or invalid. Initially,
d is valid. If p performs another CreateNew operation O′ after O, then d becomes invalid
immediately after O′ (and will never be valid again).

We say that a ReadField(des, ...), WriteField(des, ...) or CASField(des, ...) operation is
performed on a descriptor d, where des is a pointer to d. An operation on a valid (resp.,
invalid) descriptor is said to be valid (resp., invalid). Invalid operations have no effect on any
base object, and return a special value ⊥ (which is never contained in a field of any descriptor)
instead of their usual return value. We say that a CreateNew operation O is performed on
a descriptor d if O returns a pointer to d. Observe that a CreateNew operation is always
valid. We say that a process p owns a descriptor d if it performed a CreateNew operation
that returned a pointer des to d.

The semantics for CreateNew are the same as in the mutable descriptor ADT. The
semantics for the other three operations are the same as in the mutable descriptor ADT,
except that they can be invalid. As in the previous ADTs, these operations must be lock-free.

3.1 Transforming a class of algorithms to use the weak descriptor ADT
We now formally define a class of lock-free algorithms that use the mutable descriptor ADT,
and can easily be transformed so that they use the weak descriptor ADT, instead. We
say that a step s of an execution is nontrivial if it changes the state of an object o in
shared memory, and trivial otherwise. In particular, all invalid operations are trivial, and an
unsuccessful CAS or a CAS whose expected and new values are the same are both trivial. In
the following, we abuse notation slightly by referring interchangeably to a descriptor and a
pointer to it.

I Definition 1. Weak-compatible algorithms (WCA) are lock-free wasteful algorithms that
use the mutable descriptor ADT, and have the following properties:
1. Each high-level operation attempt O by a process p may create (and initialize) a single

descriptor d. Inside O, p may perform at most one invocation of a function Help(d) (and
p may not invoke Help(d) outside of O).

2. A process may help any operation attempt O′ by another process by invoking Help(d′)
where d′ is the descriptor that was created by O′.

3. If O terminates at time t, then any steps taken in an invocation of Help(d) after time t

are trivial (i.e., do not change the state of any shared object, incl. d).
4. While a process q 6= p is performing Help(d), q cannot change any variables in its private

memory that are still defined once Help(d) terminates (i.e., variables that are local to the
process q, but are not local to Help).

5. All accesses (read, write or CAS) to a field of d occur inside either Help(d) or O.

At a high level, properties 1 and 2 of WCA describe how descriptors are created and
helped. Property 4 intuitively states that, whenever a process q finishes helping another
process perform its operation attempt, q knows only that it finished helping, and does
not remember anything about what it did while helping the other process. In particular,
this means that q cannot pay attention to the return value of Help. We explain why this
behaviour makes sense. If q creates a descriptor d as part of a high-level operation attempt
O and invokes Help(d), then q might care about the return value of Help, since it needs
to compute the response of O. However, if q is just helping another process p’s high-level



M. Arbel-Raviv and T. Brown 4:9

operation attempt O, then it does not care about the response of Help, since it does not
need to compute the response of O. The remaining properties, 3 and 5, allow us to argue
that the contents of a descriptor are no longer needed once the operation that created it has
terminated (and, hence, it makes sense for the descriptor to become invalid). In Section 4,
we will study a larger class of algorithms with a weaker version of property 5.

The transformation. Each algorithm in WCA can be transformed in a straightforward way
into an algorithm that uses the weak descriptor ADT as follows. Consider any ReadField or
CASField operation op performed by a high-level operation attempt O in an invocation of
Help(d), where d was created by a different high-level operation attempt O′. Note that op is
performed while O is helping O′. After op, a check is added to determine whether op was
invalid, in which case p returns from Help immediately. (In this case, Help does not need to
continue, since op will be invalid only if O′ has already been completed by the process that
owns d or a helper.)

Reading immutable fields efficiently. If an invocation of Help(des) accesses many immut-
able fields of a descriptor, then we can optimize it by replacing many ReadField operations
with a single, more efficient operation. Details appear in the full paper.

4 Extended Weak Descriptors

In this section, we describe an extended version of the weak descriptor ADT, and an extended
version of the transformation in Section 3.1. This extended transformation weakens property 5
of WCA so that ReadField operations on a descriptor d can also be performed outside of
Help(d). At a high level, we handle ReadField operations performed outside of Help as follows.
For ReadFields performed inside Help, we have seen that we can simply stop helping when ⊥
is returned. However, for ReadFields performed outside of Help, it is not clear, in general,
how we should respond if ⊥ is returned. Intuitively, the goal is to find a value that ReadField
can return so that the algorithm will behave the same way as it would if the descriptor were
still valid. In some algorithms, just knowing that an operation has been completed gives us
enough information to determine what a ReadField operation should return (as we will see
below).

Extended weak descriptor ADT. This ADT is the same as the weak descriptor ADT,
except that ReadField is extended to take, as an additional argument, a default value dv

that is returned instead of ⊥ when the operation is invalid. Observe that the weak descriptor
ADT is a special case of the extended weak descriptor ADT where each argument dv to an
invocation of ReadField is ⊥.

The extended transformation. CASField and WriteField operations are handled the same
way as in the WCA transformation. However, an invocation of ReadField(des, f) is handled
differently depending on whether it occurs inside an invocation of Help(des). If it does, it is
replaced with an invocation of ReadField(des, f,⊥) followed by the check, as in the WCA
transformation. If not, it is replaced with an invocation of ReadField(des, f, dv), where the
choice of dv is specific to the algorithm being transformed.

Let A be any algorithm that uses mutable descriptors, and satisfies properties 1-4 of WCA
algorithms (see Definition 1), as well as a weaker version of property 5, called property 5′,
which states: every write or CAS to a field of a descriptor d must occur in an invocation

DISC 2017



4:10 Reuse, Don’t Recycle: Transforming Lock-Free Algorithms

of Help(d). Let e be an execution of A and let e′ be an execution that is the same as e,
except that one (arbitrary) descriptor d becomes invalid at some point t after the high-level
operation attempt O that created d terminates. (When we say that d becomes invalid at
time t, we mean that after t, each invocation of ReadField(d, f, dv) that is performed outside
of Help(d) returns its default value dv.)

Let O′ be any high-level operation attempt in e′ which, after t, performs ReadField on
d outside of Help(d). We say that an extended transformation is correct for A if, for all
choices of e, e′, d, t, and O′, the exact same changes are performed by O′ in e and e′ to any
variables that are still defined once O′ terminates (i.e., variables that are local to the process
performing O′, but are not local to O′, and variables in shared memory), and O′ returns the
same response in both executions. An algorithm A is an extended weak-compatible algorithm
(and is in the class EWCA) if there is an extended transformation that is correct for A.

Multiple descriptors per operation attempt. In some lock-free algorithms, an operation
can create several different types of descriptors, and invoke different Help procedures. For
simplicity, we think of there being a single Help procedure that checks the type of the descriptor
passed to it, and behaves differently for different types. To support such algorithms, we
make the following minor changes. We redefine CreateNew so it only invalidates previous
descriptors of the same type. We also update Property 1 as follows: Each high-level operation
attempt O by a process p may create a sequence D of descriptors, each with a unique type.
Inside O, p may perform at most one invocation of a function Help(d) for each d ∈ D (and
may not invoke Help(d) outside of O). Details appear in the full paper.

Example Algorithm: k-CAS. In this section, we explain how the extended transformation
is applied to the k-CAS algorithm presented in Section 2.2. Note that no invocations of
ReadField on a DCSS descriptor des are performed outside of HelpDCSS(des). There is only
one place in the algorithm where an invocation I of ReadField on a k-CAS descriptor des

is performed outside of Help(des) (the Help procedure for k-CAS). Specifically, I reads the
state field of a k-CAS descriptor inside the modified version of HelpDCSS. Recall that the
k-CAS algorithm passes a k-CAS descriptor pointer and the name of the state field as the
first argument to DCSS, and the DCSS algorithm is modified to use ReadField (at line 26
of Figure 1) to read this state field. We choose the default value dv = Succeeded for this
invocation of ReadField. We explain why this extended transformation is correct.

When I is performed at line 26 of DCSSHelp (in Figure 1), its response is compared with
e1, which contains Undecided. If I returns Undecided, then the CAS at line 28 is performed,
and the process p performing I returns from HelpDCSS. Otherwise, the CAS at line 31 is
performed, and p returns from HelpDCSS.

Suppose I is invalid. Then, we know the k-CAS operation attempt that created des has
been completed. We use the following algorithm specific knowledge. After a k-CAS operation
attempt has completed, its k-CAS descriptor has state Succeeded or Failed (and is never
changed back to Undecided). (This can be determined by inspection of the code.) Thus, if I

were valid, its response would not be Undecided, and p would perform the CAS at line 31
and return from HelpDCSS. Since dv = Succeeded, p does exactly the same thing when I is
invalid. (Note that the exact value of state is unimportant. It is only important that it is
not Undecided.)

Example Algorithm: LLX and SCX. In the full paper, we also transform a wasteful
implementation of the LLX and SCX primitives of Brown et al. [9].



M. Arbel-Raviv and T. Brown 4:11

Implementing the extended weak descriptor ADT. We give a brief high-level overview,
here. Details appear in the full paper. It uses largely known techniques (similar to [21]), and
is not the main contribution of this work. Each process p uses a single descriptor object DT,p

in shared memory to represent all descriptors of type T that it ever creates. The descriptor
object DT,p conceptually represents p’s current descriptor of type T . At different times in an
execution, DT,p represents different abstract descriptors created by p. We store a sequence
number in DT,p that is incremented every time p performs CreateNew(T,−). Instead of
using traditional descriptor pointers, we represent each descriptor pointer as a pair of fields
stored in a single word. These fields contain the name of the process who owns the descriptor,
and a sequence number that indicates which invocation of CreateNew conceptually created
this descriptor. When a descriptor pointer is passed to an operation O on the abstract
descriptor, O compares the sequence number in des with the current sequence number in
DT,p to determine whether the operation is valid or invalid. Thus, incrementing the sequence
number in DT,p effectively makes all abstract descriptors of type T that were previously
created by p invalid. Mutable fields are stored in a single word alongside a sequence number,
so they can be updated with CAS, preventing invalid operations from making changes. (If
the mutable fields and a sequence number cannot fit in one word, then one can use multiple
words and attach the sequence number to each word.)

5 Experiments

Our experiments were run on two large-scale systems. The first is a 2-socket Intel E7-4830
v3 with 12 cores per socket and 2 hyperthreads (HTs) per core, for a total of 48 threads.
Each core has a private 32KB L1 cache and 256KB L2 cache (which is shared between HTs
on a core). All cores on a socket share a 30MB L3 cache. The second is a 4-socket AMD
Opteron 6380 with 8 cores per socket and 2 HTs per core, for a total of 64 threads. Each
core has a private 16KB L1 data cache and 2MB L2 cache (which is shared between HTs on
a core). All cores on a socket share a 6MB L3 cache.

Since both machines have multiple sockets and a non-uniform memory architecture
(NUMA), in all of our experiments, we pinned threads to cores so that the first socket is
filled first, then the second socket is filled, and so on. Furthermore, within each socket, each
core has one thread pinned to it before hyperthreading is engaged. Consequently, our graphs
clearly show the effects of hyperthreading and NUMA.

Both machines have 128GB of RAM. Each runs Ubuntu 14.04 LTS. All code was
compiled with the GNU C++ compiler (G++) 4.8.4 with build target x86_64-linux-gnu and
compilation options -std=c++0x -mcx16 -O3. Thread support was provided by the POSIX
Threads library. We used the Performance Application Programming Interface (PAPI)
library to collect statistics from hardware counters to determine cache miss rates, stall times,
etc. We used the scalable allocator jemalloc 4.2.1, which greatly improved performance.

k-CAS microbenchmark. In order to compare our reusable descriptor technique with al-
gorithms that reclaim descriptors, we implemented k-CAS with several memory reclamation
schemes. Specifically, we implemented a lock-free memory reclamation scheme that aggress-
ively frees memory called hazard pointers [23], a (blocking) epoch-based reclamation scheme
called DEBRA [6], and reclamation using the read-copy-update (RCU) primitives [11] (also
blocking). We use Reuse as shorthand for our reusable descriptor based algorithm, and
DEBRA, HP and RCU to denote the other algorithms.

DISC 2017



4:12 Reuse, Don’t Recycle: Transforming Lock-Free Algorithms

2x 24-thread Intel E7-4830 v3
2-CAS 16-CAS

A
rr
ay

siz
e

226
A
rr
ay

siz
e

220
A
rr
ay

siz
e

214
4x 16-thread AMD Opteron 6380

2-CAS 16-CAS

A
rr
ay

siz
e

226
A
rr
ay

siz
e

220
A
rr
ay

siz
e

214

Figure 2 Results for a k-CAS microbenchmark. The x-axis represents the number of concur-
rent threads. The y-axis represents operations per microsecond.

The paper by Harris et al. also describes an optimization to reduce the number of DCSS
descriptors that are allocated by embedding them in the k-CAS descriptor. We applied this
optimization, and found that it did not significantly improve performance. Furthermore, it
complicated reclamation with hazard pointers. Thus, we did not use this optimization.

Methodology. We compared our implementations of k-CAS using a simple array-based
microbenchmark. For each algorithm A ∈ {Reuse, DEBRA, HP, RCU}, array size S ∈
{214, 220, 226} and k-CAS parameter k ∈ {2, 16}, we run ten timed trials for several thread
counts n. In each trial, an array of a fixed size S is allocated and each entry is initialized to
zero. Then, n concurrent threads run for one second, during which each thread repeatedly
chooses k uniformly random locations in the array, reads those locations, and then performs
a k-CAS (using algorithm A) to increment each location by one.

As a way of validating correctness in each trial, each thread keeps track of how many
successful k-CAS operations it performs. At the end of the trial, the sum of entries in the
array must be k times the total number of successful k-CAS operations over all threads.

Results. The results for this benchmark appear in Figure 2. Error bars are not drawn on
the graphs, since more than 97% of the data points have a standard deviation that is less
than 5% of the mean (making them essentially too small to see).

Overall, Reuse outperforms every other algorithm, in every workload, on both machines.
Notably, on the Intel machine, its throughput is 2.2 times that of the next best algorithm
at 48 threads with k = 16 and array size 226. On the AMD machine, its throughput is 1.7
times that of the next best algorithm at 64 threads with k = 16 and array size 220.



M. Arbel-Raviv and T. Brown 4:13

On the Intel machine, with k = 2, NUMA effects are quite noticeable for Reuse in the
jump from 24 to 32 threads, as threads begin running on the second socket. According the
statistics we collected with PAPI, this decrease in performance corresponds to an increase in
cache misses. For example, with k = 2 and an array of size 226 in the Intel machine, jumping
from 24 threads to 25 increases the number of L3 cache misses per operation from 0.7 to 1.6
(with similar increases in L1 and L2 cache misses and pipeline stalls). We believe this is due
to cross-socket cache invalidations.

From the three graphs for k = 2 on Intel, we can see that the effect is more severe with
larger absolute throughput (since the additive overhead of a cache miss is more significant).
Conversely, the effect is masked by the much smaller throughput of the slower algorithms,
and by the substantially lower throughputs in the k = 16 case, except when the array is of
size 214. In the array of size 214, contention is extremely high, since each of the 48 threads
are accessing 16 k-CAS addresses, each of which causes contention on the entire cache line
of 8 words, for a total of 6144 array entries contended at any given time. Thus, cache
misses become a dominating factor in the performance on two sockets. These effects were
not observed on the AMD machine. There, the number of cache misses is not significantly
different when crossing socket boundaries, which suggests a robustness to NUMA effects that
is not seen on the Intel machine.

Interestingly, absolute throughputs on the AMD machine are larger with array size 220

than with sizes 214 and 226. This is because the 220 array size represents a sweet spot with
less contention than the 214 size and better cache utilization than the 226 size. For example,
with 64 threads and k = 16, Reuse incurred approximately 50% more cache misses with size
226 than with size 220, and approximately 50% of operations helped one another with size
214, whereas less than 1% of operations helped one another with size 220.

Note, however, that this is not true on the Intel machine. There, 226 is almost always as
fast as 220, because of the very large shared L3 cache (which is 5x larger than on the AMD
machine). This is reflected in the increased number of cycles where the processor is stalled
(e.g., waiting for cache misses to be served) when moving from size 220 to 226. On the Intel
machine, stalled cycles increase by 85% per operation, whereas on the AMD machine they
increase by a whopping 450% per operation.

Several additional experiments appear in the full paper, including empirical studies of
memory usage, and of the performance of a transformed LLX and SCX implementation.

6 Related Work

Several papers have presented universal constructions or strong primitives for non-blocking
algorithms in which operations create descriptors [17, 2, 1, 24, 14, 20, 18, 21, 3, 9]. A subset
of these algorithms employ ad-hoc techniques for reusing descriptors [17, 2, 1, 24, 21, 20, 18].
The rest assume descriptors will be allocated for each operation and eventually reclaimed.

Most of the ad-hoc techniques for reusing descriptors have significant downsides. Some
are complex and tightly integrated into the underlying algorithm, or rely on highly specific
algorithmic properties (e.g., that descriptors contain only a single word). Others use
synchronization primitives that atomically operate on large words, which are not available
on modern systems, and are inefficient when implemented in software. Yet others introduce
high space overhead (e.g., by attaching a sequence number to every memory word). Some
techniques also incur significant runtime overhead (e.g., by invoking expensive synchronization
primitives just to read fields of a descriptor). Furthermore, these techniques give, at best,
a vague idea of how one might reuse descriptors for arbitrary algorithms, and it would be
difficult to determine how to use them in practice. Our work avoids all of these downsides,
and provides a concrete approach for transforming a large class of algorithms.

DISC 2017



4:14 Reuse, Don’t Recycle: Transforming Lock-Free Algorithms

Barnes [4] introduced a technique for producing non-blocking algorithms that can be more
efficient (and sometimes simpler) than the universal constructions described above. With
Barnes’ technique, each operation creates a new descriptor. Creating a new descriptor for
each operation allows his technique to avoid the ABA problem while remaining conceptually
simple. Each operation conceptually locks each location it will modify by installing a pointer
to its descriptor, and then performs it modifications and unlocks each location. Barnes’
technique is the inspiration for the class WCA. Many algorithms have since been introduced
using variants of this technique [14, 12, 3, 16, 26, 9, 10]. Several of these algorithms are
quite efficient in practice despite the overhead of creating and reclaiming descriptors. Our
technique can significantly improve the space and time overhead of such algorithms.

Recent work has identified ways to use hardware transactional memory (HTM) to reduce
descriptor allocation [8, 19]. Currently, HTM is supported only on recent Intel and IBM
processors. Other architectures, such as AMD, SPARC and ARM have not yet developed
HTM support. Thus, it is important to provide solutions for systems with no HTM support.
Additionally, even with HTM support, our approach is useful. Current (and likely future)
implementations of HTM offer no progress guarantees, so one must provide a lock-free fallback
path to guarantee lock-free progress. The techniques in [8, 19] accelerate the HTM-based
code path(s), but do nothing to reduce descriptor allocations on the fallback path. In some
workloads, many operations run on the fallback path, so it is important for it to be efficient.
Our work provides a way to accelerate the fallback path, and is orthogonal to work that
optimizes the fast path.

The long-lived renaming (LLR) problem is related to our work (see [5] for a survey), but
its solutions do not solve our problem. LLR provides processes with operations to acquire
one unique resource from a pool of resources, and subsequently release it. One could imagine
a scheme in which processes use LLR to reuse a small set of descriptors by invoking acquire
instead of allocating a new descriptor, and eventually invoking release. Note, however, that a
descriptor can safely be released only once it can no longer be accessed by any other process.
Determining when it is safe to release a descriptor is as hard as performing general memory
reclamation, and would also require delaying the release (and subsequent acquisition) of a
descriptor (which would increase the number of descriptors needed). In contrast, our weak
descriptors eliminate the need for memory reclamation, and allow immediate reuse.

7 Conclusion

We presented a novel technique for transforming algorithms that throw away descriptors
into algorithms that reuse descriptors. Our experiments show that our transformation yields
significant performance improvements for a lock-free k-CAS algorithm. Furthermore, our
transformation reduces peak memory usage by nearly three orders of magnitude over the next
best implementation. We believe our transformation can be used to improve the performance
and memory usage of many other algorithms that throw away descriptors. Moreover, we
hope that our extended weak descriptor ADT will aid in the design of more efficient, complex
algorithms, by allowing algorithm designers to benefit from the conceptual simplicity of
throwing away descriptors without paying the practical costs of doing so.

Acknowledgments. We thank Faith Ellen for her gracious help in proving correctness for
our transformations, and her insightful comments. Some of this work was done while Trevor
was a student at the University of Toronto, and while Maya was visiting him there.



M. Arbel-Raviv and T. Brown 4:15

References
1 Yehuda Afek, Dalia Dauber, and Dan Touitou. Wait-free made fast. In Proceedings of

STOC’95, pages 538–547, 1995.
2 James H. Anderson and Mark Moir. Universal constructions for multi-object operations.

In Proceedings of PODC’95, pages 184–193, 1995.
3 Hagit Attiya and Eshcar Hillel. Highly concurrent multi-word synchronization. Theoretical

Computer Science, 412(12):1243–1262, 2011.
4 Greg Barnes. A method for implementing lock-free shared-data structures. In Proceedings

of SPAA’93, pages 261–270, 1993.
5 Alex Brodsky, Faith Ellen, and Philipp Woelfel. Fully-adaptive algorithms for long-lived

renaming. Distributed Computing, 24(2):119, 2011.
6 Trevor Brown. Reclaiming memory for lock-free data structures. In Proceedings of

PODC’15, pages 261–270, 2015.
7 Trevor Brown. Techniques for Constructing Efficient Data Structures. PhD thesis, Univer-

sity of Toronto, 2017.
8 Trevor Brown. A template for implementing fast lock-free trees using HTM. In Proceedings

of PODC’17, pages 293–302, 2017.
9 Trevor Brown, Faith Ellen, and Eric Ruppert. Pragmatic primitives for non-blocking data

structures. In Proceedings of PODC’13, pages 13–22, 2013.
10 Trevor Brown, Faith Ellen, and Eric Ruppert. A general technique for non-blocking trees.

In Proceedings of PPoPP’14, pages 329–342, 2014.
11 Mathieu Desnoyers, Paul E. McKenney, Alan S. Stern, Michel R. Dagenais, and Jonathan

Walpole. User-level implementations of Read-Copy Update. IEEE Transactions on Parallel
and Distributed Systems, 23(2):375–382, 2012.

12 Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. Non-blocking
binary search trees. In Proceedings of PODC’10, pages 131–140, 2010.

13 Timothy L. Harris. A pragmatic implementation of non-blocking linked-lists. In Proceedings
of DISC’01, pages 300–314, 2001.

14 Timothy L. Harris, Keir Fraser, and Ian A. Pratt. A practical multi-word compare-and-
swap operation. In Proceedings of DISC’02, pages 265–279, 2002.

15 Meng He and Mengdu Li. Deletion without rebalancing in non-blocking binary search trees.
In Proceedings of OPODIS’16, pages 34:1–34:17, 2017.

16 Shane V. Howley and Jeremy Jones. A non-blocking internal binary search tree. In Pro-
ceedings of SPAA ’12, pages 161–171, 2012.

17 Amos Israeli and Lihu Rappoport. Disjoint-access-parallel implementations of strong shared
memory primitives. In Proceedings of PODC’94, pages 151–160, 1994.

18 Prasad Jayanti and Srdjan Petrovic. Efficiently implementing a large number of LL/SC
objects. In Proceedings of OPODIS’05, pages 17–31, 2005.

19 Yujie Liu, Tingzhe Zhou, and Michael Spear. Transactional acceleration of concurrent data
structures. In Proceedings of SPAA’15, pages 244–253, 2015.

20 Victor Luchangco, Mark Moir, and Nir Shavit. Nonblocking k-compare-single-swap. Theory
of Computing Systems, 44(1):39–66, January 2009.

21 Virendra Jayant Marathe and Mark Moir. Toward high performance nonblocking software
transactional memory. In Proceedings of PPoPP’08, pages 227–236, 2008.

22 Maged M. Michael. High performance dynamic lock-free hash tables and list-based sets. In
Proceedings of SPAA’02, pages 73–82, 2002.

23 Maged M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects. IEEE
Trans. Parallel Distrib. Syst., 15(6):491–504, June 2004.

24 Mark Moir. Practical implementations of non-blocking synchronization primitives. In
Proceedings of PODC ’97, pages 219–228, 1997.

DISC 2017



4:16 Reuse, Don’t Recycle: Transforming Lock-Free Algorithms

25 Aravind Natarajan and Neeraj Mittal. Fast concurrent lock-free binary search trees. In
Proceedings of PPoPP ’14, pages 317–328, 2014.

26 Niloufar Shafiei. Non-blocking patricia tries with replace operations. In Proceedings of
ICDCS’13, pages 216–225, 2013.

27 John D. Valois. Lock-free linked lists using compare-and-swap. In Proceedings of PODC’95,
pages 214–222, 1995.


	Introduction
	Wasteful Algorithms
	Immutable descriptors
	Mutable descriptors

	Weak descriptors
	Transforming a class of algorithms to use the weak descriptor ADT

	Extended Weak Descriptors
	Experiments
	Related Work
	Conclusion

