
Improved Deterministic Distributed Construction
of Spanners∗

Ofer Grossman1 and Merav Parter2

1 MIT, CSAIL, Cambridge, USA
ofer.grossman@gmail.com

2 Weizmann Institute of Science, Rehovot, Israel
merav.parter@weizmann.ac.il

Abstract
Graph spanners are fundamental graph structures with a wide range of applications in distributed
networks. We consider a standard synchronous message passing model where in each round
O(logn) bits can be transmitted over every edge (the CONGEST model).

The state of the art of deterministic distributed spanner constructions suffers from large
messages. The only exception is the work of Derbel et al. [9], which computes an optimal-sized
(2k − 1)-spanner but uses O(n1−1/k) rounds.

In this paper, we significantly improve this bound. We present a deterministic distributed
algorithm that given an unweighted n-vertex graph G = (V,E) and a parameter k > 2, constructs
a (2k− 1)-spanner with O(k · n1+1/k) edges within O(2k · n1/2−1/k) rounds for every even k. For
odd k, the number of rounds is O(2k · n1/2−1/(2k)). For the weighted case, we provide the first
deterministic construction of a 3-spanner with O(n3/2) edges that uses O(logn)-size messages
and Õ(1) rounds. If the vertices have IDs in [1,Θ(n)], the spanner is computed in only 2 rounds!

1998 ACM Subject Classification G.2.2 Graph Algorithms

Keywords and phrases spanners, clustering, deterministic algorithms

Digital Object Identifier 10.4230/LIPIcs.DISC.2017.24

1 Introduction & Related Work

Graph spanners are fundamental graph structures that are used as a key building block
in various communication applications, e.g., routing, synchronizers, broadcasting, distance
oracles, and shortest path computations. For this reason, the distributed construction of
sparse spanners has been studied extensively [2, 5, 6, 7, 8, 9, 15]. The standard setting is a
synchronous message passing model where per round each node can send one message to
each of its neighbors. Of special interest is the case where the message size is limited to
O(logn) bits, a.k.a. the CONGEST model.

The common objective in distributed computation of spanners is to achieve the best-
known existential size-stretch trade-off as fast as possible: It is folklore that for every graph
G = (V,E), there exists a (2k − 1)-spanner H ⊆ G with O(n1+1/k) edges. Moreover, this
size-stretch tradeoff is believed to be optimal, following the girth conjecture of Erdős.

Designing deterministic algorithms for local problems has been receiving a lot of attention
since the foundation of the area in 1980’s. Towards the end of this section, we elaborate
more on the motivation for studying deterministic algorithms in the distributed setting.

∗ A full version of the paper is available at https://arxiv.org/abs/1708.01011.

© Ofer Grossman and Merav Parter;
licensed under Creative Commons License CC-BY

31st International Symposium on Distributed Computing (DISC 2017).
Editor: Andréa W. Richa; Article No. 24; pp. 24:1–24:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/132422722?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.DISC.2017.24
https://arxiv.org/abs/1708.01011
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 Improved Deterministic Distributed Construction of Spanners

State of the art for deterministic distributed constructions of spanners. Whereas there
are efficient randomized constructions for spanners, as the reader will soon notice, the state
of the art for distributed deterministic spanner constructions suffers from large message
sizes: Derbel and Gavoille [5] construct constant stretch spanners with o(n2) edges and O(nε)
rounds for any constant ε, using messages of size O(n). Derbel, Gavoille and Peleg improved
this result and presented in [6] a construction of an O(k)-spanner with O(kn1+1/k) edges
in O(logk−1 n) rounds. This was further improved in the seminal work of Derbel, Gavoille,
Peleg, and Viennot [7], which provides a deterministic k-round algorithm for constructing
(2k− 1)-spanners with optimal size. However, again the algorithm uses messages of size O(n).
Using large messages is indeed inherent to all known efficient deterministic techniques, which
are mostly based on network decomposition and graph partitioning. In the conventional
approaches of network decomposition, the deterministic algorithms for spanners usually
require a vertex to learn the graph topology induced by its O(1)-neighborhood. This cannot
be done efficiently with small messages.

As Pettie [15] explicitly noted, all these constructions have the disadvantage of using large
messages. Derbel et al. [8] also pointed out that constructing sparse spanners deterministically
with small message sizes remains open.

The state of the art when using small messages. There are only two exceptions for this
story. Barenboim et al. [1] showed a construction of O(logk−1 n) spanner with O(n1+1/k)
edges in O(logk−1 n) rounds. Hence, whereas the runtime is polylogarithmic, the stretch-size
tradeoff of the output spanner is quite far from the optimal one.

We are then left with only one previous work that fits our setting, due to Derbel,
Mosbah and Zemmari [9]. They provide a deterministic construction of an optimal-size
(2k − 1)-spanner but using O(n1−1/k) rounds.

The state of the art in other distributed settings. Turning to randomized constructions,
perhaps one of the most well known approaches to construct a spanner is given by Baswana
and Sen [2], which we review soon. Recently, [3] showed that the Baswana-Sen algorithm can
be derandomized in the congested clique model of communication in which every pair of nodes
(even non-neighbors in the input graph) can exchange O(logn) bits per round. Note that
this model is much stronger than the standard model in which only neighboring vertices can
communicate. Indeed the algorithm of [3] requires a global evaluation of the random seed, thus
implementing this algorithm in the standard CONGEST model requires Ω(diam(G) +n1−1/k)
rounds where diam(G) is the diameter of the graph. Hence, deterministic construction of
spanners in the CONGEST model calls for new ideas!

Before we proceed with introducing our main contribution, we make a short pause to
further motivate the study of deterministic distributed algorithms.

A note on deterministic distributed algorithms. Much effort has been invested in design-
ing deterministic distributed algorithms for local problems. Examples include MIS (maximal
independent set), vertex coloring, edge coloring and and matching. Until recently, a determin-
istic poly-log n round algorithm was known only for the maximal matching problem (see [13]
and a recent improvement by [10]). In a recent breakthrough [11], a polylogarithmic solution
was provided also for the (2∆−1) edge coloring1. Aside from the general theoretical question,

1 Where ∆ is the maximum degree in the graph.

O. Grossman and M. Parter 24:3

the distributed setting adds additional motivation for studying deterministic algorithms (as
nicely noted in [10]). First, in the centralized setting, if the randomized algorithm ends with
an error, we can just repeat. In the distributed setting, detecting a global failure requires
communicating to a leader, which blows up the runtime by a factor of network diameter.
Second, for problems as MIS, [4] showed that improving the randomized complexity requires
an improvement in the deterministic complexity.

Wheres most results for deterministic local problems are for the LOCAL model, which
allows unbounded messages; the size of messages that are sent throughout the computation
is a second major attribute of distributed algorithms. It is therefore crucial to study
the complexity of local problems under bandwidth restrictions. Surprisingly, most of the
algorithms for local problems already use only small messages. The problem of spanners is
distinguished from these problems, and in fact, spanners is the only setting we are aware of,
in which all existing deterministic algorithms use large messages. Hence, the main challenge
here is in the combination of deterministic algorithms with congestion constraints.

1.1 Our Contribution

Our main result is:

I Theorem 1. For every n-vertex unweighted graph G = (V,E) and even k, there exists
a deterministic distributed algorithm that constructs a (2k − 1)-spanner with O(k · n1+1/k)
edges in O(2k · n1/2−1/k) rounds using O(logn)-size messages2.

A key element in our algorithm is the construction of sparser spanners for unbalanced
bipartite graph. This construction might become useful in other spanner constructions.

I Lemma 2 (Bipartite Spanners). Let G = (A ∪B,E) be an unweighted bipartite graph, with
|A| ≤ |B|. For even k ≥ 4, one can construct (in the CONGEST model) a (2k − 1) spanner
H with |E(H)| = O(k|A|1+2/k + |B|) edges within O(|A|1−2/k) rounds3.

Turning to weighted graphs, much less in known about the deterministic construction of
spanners in the distributed setting. The existing deterministic constructions of optimal-sized
(2k − 1)-spanners (even in the LOCAL model) are restricted to unweighted graphs, already
for k = 2. If the edge weights are bounded by some number W , there is a simple reduction4
to the unweighted setting, at the cost of increasing the stretch by a factor of (1 + ε) and the
size of the spanner by a factor of log1+εW . Hence, already in the LOCAL model and k = 2,
we only have a (3 + ε) spanner with Õ(n3/2) edges. Whereas our general approach does not
support the weighted case directly, our algorithm for 3-spanners does extend for weighted
graphs. Hence, we give here the first deterministic construction with nearly tight tradeoff
between the size, stretch and runtime.

I Theorem 3 (3-Spanners for Weighted Graphs). For every n-vertex weighted graph G =
(V,E), there exists a deterministic distributed algorithm that constructs a 3-spanner with
O(n3/2) edges in O(logn) rounds using O(logn)-size messages. If vertices have IDs in the
range of [1, O(n)], it can be done in two rounds.

2 For odd k, we obtain a similar theorem, but with O(2k · n1/2−1/(2k)) rounds.
3 Hence, yielding an improved edge bound, for |A| ≤ n(k+1)/(k+2).
4 Apply the algorithm for unweighted graphs separately for every weight scale ((1 + ε)i, (1 + ε)i+1].

DISC 2017

24:4 Improved Deterministic Distributed Construction of Spanners

1.2 Our Approach and Key Ideas in a Nutshell
For the sake of discussion, let k = O(1) throughout this section.

A brief description of the randomized construction by Baswana-Sen. A clustering C =
{C1, . . . , C`} is a collection of vertex disjoint sets which we call clusters. Every cluster has
some a special vertex which we call the cluster center. In the high level, the Baswana-Sen
algorithm computes k levels of clustering C0, . . . , Ck−1 where each clustering Ci is obtained
by sampling the cluster center of each cluster in Ci−1 with probability n−1/k. Each cluster
C ∈ Ci has in the spanner H, a BFS tree of depth i rooted at the cluster center spanning5 all
the nodes of C. The vertices that are not incident to the sampled clusters become unclustered.
For each unclustered vertex v, the algorithm adds one edge to each of the clusters incident to
v in Ci−1. This randomized construction is shown to yield a spanner with O(kn1+1/k) edges
in expectation and it can be implemented in O(k2) rounds6. Note that the only randomized
step in Baswana-Sen is in picking the cluster centers of the ith clustering. That is, given the
n1−(i−1)/k cluster centers Zi−1 of the clusters in Ci−1, it is required to pick n−1/k fraction of
it, to be centers of the clusters in Ci−1.

The brute-force deterministic solution in O(n) rounds. A brute-force approach to pick
the new cluster centers of Ci is to iterate over the clusters in Ci−1 one by one, checking if
they satisfy some expansion criteria. Informally, the expansion is measured by the number
of vertices in the ith-neighborhood of the cluster center (i.e., number of vertices that can be
covered7 by the cluster center in case it proceeds to the ith level). If the expansion is large
enough, the current cluster “expands” (i.e., covers vertices up to distance i), and joins the
ith-level of the clustering Ci. Since in the first level there are O(n) clusters (each vertex forms
a singleton cluster), this approach gives an O(n)-round algorithm. With some adaptations,
this approach can yield an improved O(n1−1/k) round algorithm (as in [9]).

Our O(n1/2−1/k)-round deterministic solution. Inspired by the randomized construction
of Baswana-Sen and the work of Derbel, Gavoille, and Peleg [6], we present a new approach
for constructing spanners, based on two novel components which we discuss next.

1.2.1 Key Idea (I): Grouping Baswana-Sen Clusters into Superclusters
Our approach is based on adding an additional level of clustering on top of Baswana-Sen
clustering. We introduce the novel notion of a supercluster – a subset of Baswana-Sen clusters
that are close to each other in G. In every level i ≤ k/2, we group the O(n1−i/k) clusters of
Ci into O(

√
n) superclusters, each containing O(n1/2−i/k) clusters which are also close to each

other in G. Specifically, the superclusters have the following useful structure: cluster-centers
of the same supercluster are connected in G by a constant depth tree (i.e., the weak diameter
of the superclusters is O(1)), and the trees of different superclusters are edge-disjoint.

Unlike the brute-force O(n)-round algorithm mentioned above, our algorithm iterates
over superclusters rather than clusters. We define the neighborhood of the supercluster to be
all vertices that belong to – or have a neighbor in– one of the clusters of that supercluster.
The expansion of the supercluster is simply the size of this neighborhood. The importance

5 The vertices of the tree are precisely the vertices of the cluster.
6 With some care, we believe the algorithm can also be implemented in O(k) rounds
7 We say the a vertex is covered by a cluster-center if it gets into its cluster.

O. Grossman and M. Parter 24:5

of having this specific structure in each supercluster is that it allows the superclusters to
compute their expansion in O(1) rounds8. The faith of the superclusters (i.e., whether
they continue on to the next level of clustering), in our algorithm, is determined by their
expansion. If the expansion of a supercluster is sufficiently high, all the cluster centers of
that supercluster join the next level i of the clustering. Otherwise, all these clusters are
discarded from the clustering. As we will show in depth, the algorithm makes sure that at
most O(n1/2−1/k) superclusters pass this “expansion test” and the remaining superclusters
with low-expansion are handled using our second key tool as explained next.

1.2.2 Key Idea (II): Better Spanners for Unbalanced Bipartite Graphs
In our spanner construction, each supercluster with low-expansion has additional useful
properties: it has |A| = O(

√
n) vertices and only |B| = O(n1/2+1/k) many “actual” neighbors9.

We then apply Lemma 2 on these superclusters by computing the (2k − 1)-spanner for each
of these bipartite graphs obtained taking the vertices of the supercluster to be on one side of
the bipartition, A, and their “actual” neighbors on the other side B. Since there are O(n1/2)
superclusters, this adds O(n1/2+1/k · n1/2) = O(n1+1/k) edges to the spanner.

Finally to provide a good stretch in the spanner for all the edges in G between vertices
of the same supercluster10, we simply recurse inside each supercluster– this can be done
efficiently since the superclusters are vertex disjoint (as they contain sets of vertex disjoint
clusters), and each of supercluster has O(

√
n) vertices.

Roadmap. The structure of the paper is as follows. We start by considering in Section
3 the simplified case of 3-spanners (hence k = 2) and present a deterministic construction
with O(logn) rounds. Section 4 considers the general case of k > 2. In Sec. 4.1, we first
describe an O(n1−1/k)-round algorithm that already contains some of the ideas of the final
algorithm. Then, before presenting the algorithm, we describe the two key tools that it uses.
For didactic reasons, in Sec. 4.2, we first describe the construction of sparser spanners for
unbalanced bipartite graphs. Only later 4.3, we present the new notion of superclusters.
Finally, in Sec. 4.4, we show how these tools can be used to construct (2k − 1)-spanners for
graphs of low diameter. The extension for general graphs is deferred to the full version [12].

2 Preliminaries, Notation and Model

Notations and Definitions. We consider an undirected unweighted n-vertex graph G =
(V,E) where V represents the set of processors and E is the set of links between them.
Let diam(H) be the diameter of the subgraph H ⊆ G. We denote the diameter of G by
D = diam(G). For u, v ∈ V (G) and a subgraph H, let dist(u, v,H) denote the u − v

distance in the subgraph H ⊆ G. When H = G, we omit it and write dist(u, v). Let
Γ(u) = {v | (u, v) ∈ E} be the set of u’s neighbors in G and Γ+(u) = Γ(u) ∪ {u}. For a
subset of the vertices V ′ ∈ V , let Γ(V ′, G) =

⋃
u∈V ′ Γ(u) and Γ+(V ′, G) = Γ(V ′, G) ∪ V ′.

Let Γi(v) = {u | dist(u, v) ≤ i}, for a subset V ′, Γi(V ′) is defined accordingly.
For a subgraph H ⊆ G, let E(v,H) = {(u, v) ∈ E(H)} be the set of edges incident to v

in the subgraph H and let deg(v,H) = |E(v,H)| denote the degree of node v in G. For a set

8 using the collection of edge disjoint O(1)-depth trees that connect their cluster centers.
9 This term is informal, the actual neighbors are the vertices that are no longer clustered by the current

clustering.
10 Vertices whose clusters belong to the same supercluster.

DISC 2017

24:6 Improved Deterministic Distributed Construction of Spanners

of vertices C, let G(C) be the induced graph of G on C. We say the a tuple (a, b) > (c, d) if
a > c or a = c but b > d.

Spanners and Clustering. A subgraph H ⊆ G is a (2k − 1)-spanner if dist(u, v,H) ≤
(2k − 1)dist(u, v,G) for every u, v ∈ V . Given a graph G, a subgraph H, and an edge
e = (u, v) in G, we define the stretch of e in H to be the length of the shortest path from u

to v in H. If no such path exists, we say that the stretch is infinite. We say that an edge
e = (u, v) is taken care of in H if dist(u, v,H) ≤ (2k − 1).

A cluster is a connected set C of vertices of the original graph. Often, a cluster will have
one of its vertices s ∈ C be the cluster center. The ID of the cluster is the ID of its center.
Two clusters C1 and C2 are neighbors if Γ(C) ∩ C ′ 6= ∅. For a subset of vertices S ⊆ V , the
diameter of the subset is simply the diameter of the induced graph G on S.

Ruling Sets. An (α, β)-ruling set with respect to G and V ′ ⊆ V is a subset U ⊆ V ′

satisfying the following: (I) All pairs u, v ∈ U satisfy dist(u, v) ≥ α, (II) For all v ∈ V ′,
there exists a u ∈ U such that dist(u, v) ≤ β.

The Communication Model. We use a standard message passing model, the CONGEST
model [14], where the execution proceeds in synchronous rounds and in each round, each
node can send a message of size O(logn) to each of its neighbors. In this model, local
computation is done for free at each node and the primary complexity measure is the number
of communication rounds. Each node holds a processor with a unique and arbitrary ID of
O(logn) bits. Throughout, we assume that the nodes know a constant approximation on the
number of nodes n, same holds also for the randomized algorithm of Baswana-Sen11.

3 3-Spanners in Õ(1) Rounds

The key building block of the algorithm is the construction of a linear sized 3-spanner for a√
n× n bipartite graph. A similar idea already appeared in [6], but using O(n)-bit messages.

The core construction: 3-spanners for unbalanced bipartite graphs

I Lemma 4. Let G = (A,B,E) be a (possibly weighted) bipartite graph where |A| = O(
√
n),

|B| = O(n), and each vertex knows whether it is in A or in B. Then one can construct (in
the CONGEST model) a 3-spanner H with O(n) edges within two rounds.

Algorithm Bipartite3Spanner first forms |A| vertex-disjoint star clusters (clusters of radius 1),
each centered at a vertex of A. To do that, every vertex vb ∈ B picks one of its neighbors
va ∈ Γ(vb) ∩A to be its cluster center and sends the ID of its chosen neighbor va to all of its
neighbors. We write c(vb) = va to denote that the cluster center of vb is va.

All edges (vb, c(vb)) are added to the spanner H. At this point, the graph contains O(
√
n)

clusters centered at the vertices in A. We say that two stars S1 and S2 are neighbors if the
center of S1 has a neighbor in S2, or vice-versa. Note that because the graph is bipartite,
this is the only possible connection between clusters. Then, for each vertex ua in A, and
each neighboring star-cluster u′a, the vertex ua adds to the spanner H one edge to one of its
neighbors in the cluster of u′a. For a complete description of the algorithm see Alg. 1.

11 In Baswana-Sen, each center samples itself with probability n−1/k, which requires knowing n.

O. Grossman and M. Parter 24:7

Algorithm 1 Bipartite3Spanner(G = (A ∪B,E)) for |A| = O(
√
n) and |B| = O(n).

1: H ← ∅
2: Each vertex vb ∈ B selects an arbitrary neighboring vertex va ∈ A, assigns c(vb) = va and send c(vb)

to all its neighbors. It adds the edge (vb, c(vb)) to H.
3: Each vertex ua ∈ A does the following (in parallel):
4: for each ID va received do
5: Pick a single neighbor vb satisfying c(vb) = va. Add the edge (ua, vb) to H.

To adapt the algorithm for the weighted case, we simply let each vb ∈ B pick its closest
neighbor in A. In addition, each vertex ua connects to its closest neighbor in each star of u′a.
It is easy to see that the algorithm takes 2 rounds. In the full version [12], we show:

I Lemma 5. The output H of Alg. Bipartite3Spanner is a 3-spanner with O(n) edges.

Constructing 3-spanners for general graphs in O(log n) rounds. Let Vh = {v ∈ V |
deg(v,G) ≥

√
n} be the set of high degree vertices in G and let V` = V \Vh be the remaining

low-degree vertices. First, the algorithm adds to the spanner H, all the edges of the low-degree
vertices V`. Then, it proceeds by partitioning (in a way that will be described later) the
high-degree vertices Vh into t = O(

√
n) balanced sets V1, . . . , Vt. This partition gives rise to

t bipartite
√
n× n graphs Bi obtained by taking Vi to be on one side of the partition and

V \ Vi on the other side. We describe the partitioning procedure in Lemma 6. We can then
apply Algorithm Bipartite3Spanner to construct 3-spanners for all these subgraphs in parallel.
Finally, we simply add to H, all the internal edges Vi × Vi for every i, again adding total of
t ·O(n) edges.

Algorithm Improved3Spanner

(S0) Handling Low-Degree Vertices: Add to H all edges in (V` × V) ∩ E(G).
(SI) Balanced Partitioning of High-Degree Vertices Vh: Partition the
high-degree vertices of V into Θ(

√
n) sets V1, . . . , Vt each with O(

√
n) vertices.

(SII) Taking care of edges Vi × (V \ Vi), for every i ∈ {1, . . . , t}:
Define Bi = (Vi, V \ Vi) for every i ∈ {1, . . . , t}.
Construct a 3-spanner Hi ⊆ Bi by applying Algorithm Bipartite3Spanner on each
of the Bi graphs in parallel, for every i.

(SIII) Taking care of edges Vi × Vi, i ∈ {1, . . . , t}: Add to H all edges in
Vi × Vi for every i ∈ {1, . . . , t}.

Note that eventhough the bipartite graphs Bi are not vertex disjoint, each edge belongs to
at most two such graphs, and hence we can construct the 3-spanners for all Bi in parallel. It
is also easy to see that the final spanner has O(n3/2) edges.

The only missing piece at that point concerns the computation of partitioning Vh.

Balanced partitioning of Vh in O(log n) rounds. The partition procedure starts by com-
puting (4, O(logn))-ruling set R ⊆ V for the high-degree vertices Vh. We will use the
following lemma that uses standard technique for constructing (t, t logn)-ruling sets.

I Lemma 6. Given a graph G = (V,E) and a subset Vh ∈ V of the vertices, one can compute
in O(logn) rounds in the CONGEST model, a (4, O(logn))-ruling set U ⊆ Vh with respect to
G and the high-degree vertices Vh.

DISC 2017

24:8 Improved Deterministic Distributed Construction of Spanners

We now view each of the vertices r ∈ R as a center of a cluster of diameter O(logn): let each
high-degree vertex join the cluster of the vertex closest to it in R, breaking ties based on IDs.
Since every vertex in Vh is at distance O(logn) from R, all the vertices Vh will be clustered
within O(logn) rounds. Each vertex r in R can then partition the vertices of its cluster into
subsets of size b

√
nc, and an additional leftover subset of size at most

√
n (this can be done

using balanced partitioning lemma, Lemma 9). We now claim that this partition is balanced.
Clearly, all sets are of size O(

√
n), so we just show that there O(

√
n) subsets. Since every

r ∈ R is high-degree and since every two vertices in R are at distance at least 4, we have that
|R| = O(

√
n). For each r ∈ R, there is at most one subset of size less than b

√
nc. Therefore,

there are O(
√
n) subsets of size less than b

√
nc. All other subsets are of size b

√
nc. However,

there can be at most O(
√
n) disjoint subsets of size b

√
nc, hence there are O(

√
n) subsets in

total, as desired.
We conclude by showing:

I Lemma 7 (3-Spanner Given Partition). Given a (possibly weighted) n-vertex graph G =
(V,E) with a vertex-partition V1, V2, . . . , Vt such that |Vi| = O(

√
n) and t = O(

√
n), one can

construct a 3-spanner H of size O(n3/2) in 2 rounds in the CONGEST model.

Finally, if the vertices IDs are bounded, two rounds are sufficient to construct the spanner.

I Theorem 8 (Small IDs). Given a graph G = (V,E) where the IDs of the vertices have
log(n) +O(1) bits, one can construct a 3-spanner H of G with |H| = O(n3/2) edges in two
rounds in the CONGEST model.

4 (2k − 1) Spanners

The structure of Baswana-Sen clustering. At the heart of the algorithm is a construction
of (k − 1)-levels of clustering C0, . . . , Ck−1. The initial clustering C0 = {{v}, v ∈ V } simply
contains n singleton clusters. For every i, each cluster C ∈ Ci has a cluster center z and we
denote by Zi the collection of cluster centers. We define Vi =

⋃
z∈Zi

Γi(z). A vertex v is
i-clustered if v ∈ Vi, otherwise it is i-unclustered. Hence Vi is the set of clustered vertices
appearing in the clusters of Ci. The algorithm consists of k− 1 steps where at the end of step
i ∈ {1, . . . , k − 1}, we have an ith-level clustering Ci = {C1, . . . , C`} and a partial spanner
Hi that satisfies the following: (P1) The clustering Ci contains ` = O(n1−i/k) clusters. (P2)
For each cluster Cj ∈ Ci with a center zj , the subgraph Hi contains a BFS tree Ti(C) of
depth at most i that spans all the vertices of C (i.e., the vertices of Ti(C) are precisely C)
and (P3) For every u ∈ Vi−1 \ Vi, and every v ∈ Γ(u), dist(u, v,Hi) ≤ 2k − 1.

High-Level Description of Phase i in Baswana-Sen Algorithm

(SI) Selecting O(n1−i/k) cluster centers Zi ⊆ Zi−1. In the randomized
algorithm, this is done by sampling each center in Zi−1 independently with
probability n−1/k. The i-clustered vertices are Vi = Γ+

i (Zi).
(SII) Taking care of unclustered vertices Vi−1 \ Vi. That is, taking care of
the vertices that stopped being clustered at that point.
(SIII) Forming the clusters of Ci around Zi. This is done by letting each
u ∈ Vi join the cluster of its closest center in Zi breaking tie based on ID’s. The
latter can be implemented in O(i) rounds of constructing BFS trees of depth i from
all centers Zi while breaking ties appropriately.

O. Grossman and M. Parter 24:9

At the final phase of Baswana-Sen, there are O(n1/k) clusters in Ck−1 and at that point,
each vertex v ∈ V adds one edge to each of its neighboring clusters in Ck−1.

Note that the only step that uses randomness in this algorithm is sub-step (SI), and
the other two sub-steps (SII-SIII) and the final phase are completely deterministic. Our
challenge is to implement sub-step (SI) deterministically in a way that in sub-step (SII) we
do not add too many edges to the spanner. The algorithms presented from now on, will
simulate the ith phase of Baswana-Sen only without using randomness. Sub-step (SIII) and
the final phase will be implemented exactly as in Baswana-Sen.

4.1 Take (I): O(n1−1/k)-Round Algorithm NaiveSpanner
It is easy to see that 0th-level clustering containing n singleton clusters satisfies properties
(P1-P3). To simulate the ith phase of Baswana-Sen algorithm, we employ O(i · n1−i/k)
deterministic rounds: Initially, we unmark all the vertices and over time, some of the
vertices will get marked (i.e., indicating that they are i-clustered). The procedure consists of
O(n1−i/k) steps where at each step, we look at the remaining set Z ′i−1 of cluster centers in
Zi−1 that have not yet been added to Zi. Let U be the current set of unmarked vertices and
let C′i−1 ⊆ Ci−1 be the corresponding clusters of Z ′i−1. For each cluster C ∈ Ci−1, define its
unmarked neighborhood by ΓU (C) =

⋃
u∈C Γ(u) ∩ U and its current unmarked-degree by

degU (C) = |ΓU (C)|. We say that cluster C is a local-maxima in its unmarked neighborhood
if it has the maximum tuple (lexicographically) (degU (C), ID(C)) among all other clusters
C ′ that have mutual unmarked neighbors (i.e., ΓU (C) ∩ ΓU (C ′) 6= ∅).

Phase i of Algorithm NaiveSpanner

(SI) Defining the centers Zi.
Set Z ′i−1 ← Zi−1, U = V and for O(n1−i/k) steps do the following:

Every center z ∈ Z ′i−1 of cluster C computes degU (C).
Every center z ∈ Z ′i−1 whose cluster C has the maximum tuple (degU (C), ID(C))
in its unmarked neighborhood, degU (C), joins Zi only if degU (C) ≥ ni/k.
Remove from Z ′i the centers z ∈ C that join Zi and mark ΓU (C).

(SII) Taking care of unclustered vertices.
Let C′i−1 be the clusters whose centers did not join Zi.
For every unmarked vertex u, add one edge per neighboring cluster in C′i−1.

(SIII) Forming the Ci clusters centered at Zi. As in Baswana-Sen.

Sketch of the Analysis. The key part to notice is that by picking the local-maxima clusters,
we have that for any two cluster-centers z1 ∈ C1, z2 ∈ C2 that join Zi, their unmarked
neighborhoods ΓU (C1),ΓU (C2) are vertex disjoint, hence Zi contains O(n1−i/k) centers; in
addition, after O(n1−i/k) steps, the clusters of all remaining centers have O(ni/k) unmarked
neighbors. Hence, at step (SII), total of O(n1−(i−1)/k) · O(ni/k) = O(n1+1/k) edges are
added to the spanner. Turning to runtime, we claim that each of the O(n1−i/k) steps can
be implemented in O(i) rounds. Since each cluster C ∈ Ci−1 is connected i G by a depth-i
tree, and since trees of different clusters are vertex-disjoint, computing the unmarked degree
degU (C) of each cluster C can be done in O(i) rounds; To avoid the double of counting of
unmarked vertices that have many neighbors at the same cluster, each unmarked vertex
respond to only one its neighbors in each cluster. Similarly, also selecting the local maxima
clusters can be done in O(i) rounds. We note that the time complexity of the algorithm is
O(n1−1/k), as opposed to O(n), since after O(n1−1/k) iterations of finding clusters of locally
maximal unmarked degree, all remaining clusters will have low unmarked degree, and can

DISC 2017

24:10 Improved Deterministic Distributed Construction of Spanners

be dealt with in parallel in O(1) rounds, by adding an edge to every unmarked neighbor.
Towards speeding up this algorithm, we now introduce our key technical tools.

A remark regarding step (SII). Let V ′i = Vi−1 \Vi be the set of newly unclustered vertices.
In Baswana-Sen algorithm, step (SII) takes care of all the edges in V ′i × V . That is, the
edges added to the spanner H at that stage provide that dist(u, v,H) ≤ 2i − 1 for every
(u, v) ∈ (V ′i ∈ V) ∩ E. Most of the algorithms we present in this paper, have a weaker but
sufficient guarantee when implementing step (SII). In particular, we only add edges between
the remaining unmarked vertices and the remaining clusters whose centers did not join Zi.
We now show why it is sufficient. Consider an edge (u, v) ∈ E. Let iu be the largest level of
the clustering such that u is iu-clustered, define the same for v. Without loss of generality,
assume that iv ≤ iu.
Case (1): iu = k − 1: Let C be the cluster of u in Ck−1. Since in the last step, v adds one

edge to Γ(u) ∩ C, the claim holds.
Case (2): iu ≤ k − 2: Consider phase (iu + 1) where the clustering Ciu+1 is constructed

given Ciu .
By definition, in step (SII) of phase (iu + 1) we have that the vertex v is unmarked and the
vertex u belongs to a remaining cluster C ∈ Ciu . Since every unmarked vertex adds one edge
to each remaining cluster, we have that v added one edge to C ∩ Γ(v). The claim follows.

4.2 Key Tool (I): Sparser Spanner for Unbalanced Bipartite Graphs
In this section, we consider Lemma 2. Similarly to the construction of 3-spanners in Section 3,
a key ingredient in our algorithm is the construction of sparser spanners for unbalanced A×B
bipartite graphs for |A| ≤ |B|. The algorithm of [6] constructs a (2k − 1) spanners for these
bipartite graphs with O(|A||B|2/k) edges in the LOCAL model, using large messages. Our
algorithm is slower than that of [6], but has the benefit of obtaining a sparser (2k−1)-spanner
with only O(k|A|1+2/k + |B|) edges and while using O(logn)-bit messages.

The high-level strategy of Alg. SparserBipartiteSpanner is to first compute |A| star clusters
(clusters of radius 1) by letting each vertex of B join an arbitrary neighbor in A. Hence, after
one step of clustering, we have |A| clusters rather than O(n1−1/k) clusters is in Baswana-Sen.
We then consider star graph GS obtained contracting each star into a vertex, and essentially
apply Alg. NaiveSpanner on the star-graph GS to construct a (k− 1)-spanner HS ⊆ GS with
O(|A|1+2/k) edges within O(k|A|1−2/k) rounds. To get a (2k − 1) spanner H ⊆ G from HS ,
for every star-edge (Si, Sj) ∈ HS , add a single edge in (S1 × S2) ∩E to H. Finally, adding
the star edges to the spanner, gives a total of O(|A|1+2/k + |B|) edges. Simulating Alg.
NaiveSpanner on the star-graph in the CONGEST model requires some effort. The description
of Alg. SparserBipartiteSpanner and its analysis is in the full version [12].

4.3 Key Tool (II): Superclustering – Grouping Baswana-Sen Clusters
Why Superclusters? In this section, we describe the main tool that allows us to speed
up Alg. NaiveSpanner by a factor of

√
n. The idea is to group the n1−i/k clusters in the

ith-clustering Ci into
√
n superclusters, each containing O(n1/2−i/k) clusters. Then, instead of

iterating over clusters one by one (as in Alg. NaiveSpanner), we iterate over the superclusters.
Each time, either all the cluster centers of a given supercluster join the next level of clustering,
or none of them join. As will be shown later, in order to construct the ith-clustering Ci,
it will be sufficient for our algorithm to consider n1/2−1/k superclusters (and not all

√
n

superclusters), hence yielding the round complexity of O(n1/2−1/k) (for fixed k). For a
supercluster to compute the number of its (unmarked) neighbors, all cluster centers in a given

O. Grossman and M. Parter 24:11

supercluster should be able to communicate efficiently. For that purpose, we make sure that
the cluster centers in each supercluster are connected by an O(2k)-depth tree12, and that the
trees of different superclusters are edge-disjoint. These trees will be used for communication
purposes, and will allow us to aggregate information to leaders of all superclusters in parallel.

Defining the Superclusters. Let Ci be a collection of O(n1−i/k) i-clusters. A super-
cluster SCi,j = {Cj1 , . . . , Cj`

} is a collection of clusters from Ci. A Superclustering SCi =
{SCi,1, . . . , SCi,p} is a covering partition of all clusters from Ci. That is,

⋃p
j=1 SCi,j = Ci, and

the superclusters are cluster-disjoint (every cluster in Ci belongs to exactly one supercluster).
To select the cluster centers of level i, the algorithm constructs in each phase i ∈ {1, . . . , k/2}
a superclustering SCi which satisfies some helpful properties. We call a superclustering
satisfying these properties a nice superclustering. Before defining the properties of a nice
supercluster, we introduce some notation. For a supercluster SCi,j =

{
Cj1 , . . . , Cjp

}
, let

V (SCi,j) =
⋃
C∈SCi,j

C be the set of all vertices in its clusters and NV (SCi,j) = |V (SCi,j)|
be the number of vertices in the supercluster SCi,j . Also, let NC(SCi,j) denote the number
of clusters that the supercluster SCi,j contains. A supercluster SCi,j with only one cluster
(i.e., NC(SCi,j) = 1) is called a singleton. In addition, a singleton supercluster is called a
small-singleton if NV (SCi,j) ≤

√
n (otherwise, if NV (SCi,j) >

√
n, it is a large-singleton).

Our (2k− 1)-spanner construction is based upon the construction of superclusters with some
nice useful properties, as defined next.

Nice Superclustering. A superclustering SCi = {SCi,1, . . . , SCi,`} is nice if it contains
` = O(

√
n) superclusters, and each of these superclusters SCi,j ∈ SCi satisfies the following:

(N0) Singleton: If NV (SCi,j) = Ω(
√
n), then NC(SCi,j) = 1.

Every non-singleton supercluster SCi,j (i.e., every supercluster containing at least two
clusters) satisfies:
(N1) Cluster Balance: NC(SCi,j) = O(n1/2−i/k), and
(N2) Vertex Balance: NV (SCi,j) = O(

√
n).

(N3) Connectivity: In the graph G, each SCi,j ∈ SCi has a tree T (SCi,j) of depth13 O(2k).
In addition, the trees T (SCi,1), . . . , T (SCi,`) are edge-disjoint.

Intuitive discussion of these properties. Property (N0) implies that if a supercluster has
many vertices (more than

√
n), then it is a singleton supercluster. Property (N1) implies

that non-singleton superclusters with at least two clusters are balanced with respect to the
number of clusters from Ci that they contain. Since there are O(n1−i/k) clusters in the ith
clustering, dividing it “fairly” between

√
n superclusters yields this bound. Property (N2)

also implies a balance among non-singleton superclusters, but this time with respect to the
number of vertices. Finally, Property (N3) provides the existence of a O(2k)-depth tree that
connects the cluster centers of that supercluster. This “weird” looking depth of O(2k) shows
up when computing the 0th-level superclustering for general graphs (for graphs of constant
diameter a much simpler construction exists). In particular, it shows up in Step (SI) of
Alg. ConsZeroSuperclustering [12]. Finally, (N4) requires these trees to be edge-disjoint to
allow communication within different superclusters, in parallel without congestion. As will

12 This bound arises in the algorithm for graphs with general diameter, in the full version, and will be
discussed later on.

13 When the diameter of the original graph G is O(1), the diameter of T (SCi,j) = O(1). The term O(2k)
appears when dealing with graphs of large diameter, as described in the full version.

DISC 2017

24:12 Improved Deterministic Distributed Construction of Spanners

be shown in the next subsection, to satisfy Properties (N1) and (N2), the construction of
the ith-level of superclustering requires to partition both the vertices and the clusters into
balanced the

√
n superclusters. The key tool to achieve it is the following:

The Balanced Partitioning Lemma. The input to the partitioning lemma is a vertex-
weighted tree T , where every vertex v in T has a non-negative weight w(v) and in addition,
we are given a bound B on the allowed total weight of each tree. The goal is to partition the
tree into edge-disjoint subtrees, such that, all but one of the subtrees have a weight in [B, 2B].
The lemma achieves this but with some subtle specification. It partitions the vertices of
the tree T into p disjoint sets: V̂ (T0), V̂ (T1), . . . , V̂ (Tp). The total weight of each set V̂ (Ti),
except for at most one, V̂ (T0), is bounded by [B, 2B]. Hence, the partition respects the
weight bound. Next, each set V̂ (Ti) is connected by a subtree Ti ⊆ T . The important feature
of these trees Ti is that they might contain an additional vertex v ∈ V (T) \ V̂ (Ti). This
additional vertex v, if exists, is the root of Ti and it is essential to connect the vertices in
V̂ (Ti). Intuitively, this additional vertex helps us to communicate between the vertices of
V̂ (Ti). Even though the trees Ti are not vertex disjoint, they are shown to be edge disjoint,
which is sufficient for our applications.

I Lemma 9 (Balanced Partitioning Lemma). In O(diam(T)) rounds, one can construct
subtrees T0, T1, . . . , Tp ⊆ T, with roots r(T0), r(T1), . . . r(Tp) and corresponding disjoint vertex
sets V̂ (T0), V̂ (T1), . . . , V̂ (Tp) such that
(D1) The V̂ (Ti) sets are vertex disjoint and

⋃p
i=1 V̂ (Ti) = V (T).

(D2) W (Ti) ∈ [B, 2B] for every i ≥ 1, and W (T0) ≤ 2B where W (Ti) =
∑
u∈V̂ (Ti) w(u).

(D3) V (Ti) = V̂ (Ti) ∪ r(Ti).
(D4) All T0, . . . , Tp are edge-disjoint and with diameter at most diam(T).
Intuitively, the important vertex set of the tree Ti is the set of vertices V̂ (Ti) and hence the
weight of the tree in Property (D2) is defined by summing over all these vertices (instead of
summing over all vertices in the tree). Property (D3) implies that the tree Ti might contain,
in addition to V̂ (Ti), also an additional vertex – its root – that allows the connectivity of the
set V̂ (Ti) in Ti. The full proof of Lemma 9 appears in [12]. In the common application of this
lemma, the tree T is a tree that connects the cluster-centers of a given supercluster, these
cluster-centers are given a weight (e.g., the size of their cluster) and the remaining vertices
in T are given a zero weight. The bound corresponds to the maximum allowed number of
clusters (or vertices) in the supercluster (as in Section 4.3, (N2,N3)).

4.4 Take (II): (2k − 1)-Spanners in O(2k · n1/2−1/k) Rounds

We first consider the construction for graphs with constant diameter. At the end of the
section, we discuss the extension for general graphs with arbitrary diameter. Recall that for
i ≤ k/2, Ci is a clustering that contains O(n1−i/k) vertex-disjoint clusters centered at the
vertices Zi. The set of i-clustered vertices Vi are in Γi(Zi).

The first part of the algorithm contains k/2 phases. In each phase i ∈ {1, . . . , k/2}, we
are given a (i− 1)th nice superclustering SCi−1 (whose superclusters contain the clusters of
Ci−1) and the current spanner H. We then construct the ith nice superclustering SCi and
add edges to H in order to take care of the newly unclustered vertices in Vi−1 \ Vi. At the
end of the first part, we have a (k/2)th superclustering SCk/2 with O(

√
n) clusters. At that

point, the number of clusters is small enough, and so Alg. NaiveSpanner can be applied.

O. Grossman and M. Parter 24:13

Constructing the 0th-level superclustering SC0 in O(diam(G)) rounds. To compute
SC0, we apply the Partitioning Lemma 9 on a BFS tree T rooted at some arbitrary vertex
(e.g., of maximum ID) using weights of w(v) = 1 for each v ∈ V and bound B = O(

√
n).

This partitions the vertices into Θ(
√
n) subsets Si, each of size O(

√
n). Each such subset

Si = {vi,0, . . . , vi,`} defines a supercluster SC0,i = {{vi0}, . . . , {vi,`}} containing the singleton
clusters of Si’s vertices. By that, we get O(

√
n) superclusters SC0 = {SC0,1, . . . , SC0,

√
n}.

By the partitioning lemma, we also have a tree Ti for each SC0,i, satisfying Prop. (N3).

The ith phase of Algorithm ImprovedSpanner for i ∈ {1, . . . , k/2}. At the beginning
of the phase, we are given the (i− 1)th-clustering Ci−1 grouped into the nice superclustering
SCi−1. Our first goal is to use the superclustering SCi−1 to define the set of new O(n1−i/k)
cluster centers Zi. The high-level idea here is to implement Alg. NaiveSpanner on each
supercluster rather than on each cluster. Given a set U of unmarked vertices and a supercluster
SC ∈ SCi−1, define its unmarked neighborhood and unmarked degree by

ΓU (SC) =
⋃

v∈V (SC)

(Γ+(v) ∩ U) and degU (SC) = |ΓU (SC)| . (1)

Similarly to before, we say that a supercluster SC is a local-maxima in its unmarked
neighborhood, if for every other SC ′ such that ΓU (SC) ∩ ΓU (SC ′) 6= ∅, it holds that

(degU (SC), ID(SC)) > (degU (SC ′), ID(SC ′)).

We say that supercluster SC has low-expansion if degU (SC) ≤ n1/2+1/k. Otherwise, it
has high-expansion. Note that unlike the previous algorithms presented before, here the
expansion threshold n1/2+1/k is independent14 of the level i.

Step (S1) of phase i: Selecting the centers Zi. Selecting the O(n1−i/k) cluster centers
of Zi is done in O(n1/2−1/k) iterations. We start by unmarking all vertices. At each iteration,
we have a set U of remaining unmarked vertices and a subset of remaining superclusters
SC′i−1 of superclusters whose cluster centers have not yet been added to Zi. All superclusters
SC ∈ SC′i−1 compute their unmarked degree degU (SC) in parallel. (This can be done in
O(i · 2k) rounds thanks to Prop. (N3) in Section 4.3).

I Definition 10 (Successful Supercluster). A supercluster SC that is local-maxima in its
unmarked neighborhood and has high-expansion, that is degU (SC) ≥ n1/2+1/k, is called a
successful supercluster.

It is easy to see that the leader (vertex v of maximum ID in V (SC)) of every supercluster
SC can verify in O(i · 2k) rounds whether it is a local-maxima in its unmarked neighborhood.

In the algorithm, each successful supercluster SC adds all its cluster centers to Zi, and
mark all the vertices in ΓU (SC). This continues for O(n1/2−1/k) iterations.

As we will show in the analysis section, since the unmarked neighborhoods of successful
superclusters are disjoint and large, there are at most O(n1/2−1/k) such superclusters. In
addition, by Prop. (N2), each supercluster has O(n1/2−(i−1)/k) clusters, overall |Zi| =
O(n1/2−(i−1)/k · n1/2−1/k) = O(n1−i/k) as desired.

14 The intuition is that in each level i, the superclusters have at most
√
n vertices, and we say that it has

high expansion if the size of its neighborhood size is factor n1/k larger.

DISC 2017

24:14 Improved Deterministic Distributed Construction of Spanners

Step (S2) of phase i: Taking care of unclustered vertices. After O(n1/2−1/k) steps of
computing successful superclusters, all remaining superclusters SC have low-expansion with
respect to the remaining unmarked vertices U ′. That is, degU (SC) ≤ n1/2−1/k. First, we
take care of the singleton superclusters.

(S2.1): Singleton supercluster SC with low-expansion. Each unmarked vertex u ∈ U ′
add to H an edge to one of its neighbor in Γ(u)∩V (SC). Since there are O(

√
n) superclusters,

each with degU
′
(SC) ≤ n1/2+1/k, overall we add O(n1+1/k) such edges.

(S2.2): Non-singleton superclusters SC with low-expansion. Here, the construction of
sparser spanners for bipartite graphs comes into play (see Sec. 4.2). Recall that by Prop.
(N2), NV (SC) = O(

√
n) vertices. Let ΓU ′,−(SC) = ΓU ′(SC) \ V (SC) be the unmarked

neighbors of SC excluding the vertices of the supercluster SC. Since SC has low-expansion,
it also holds that |ΓU ′,−(SC)| = O(n1/2−1/k). For every such supercluster SC, we consider
the bipartite graph B(SC) = (V (SC),ΓU ′,−(SC)), and apply Alg. SparserBipartiteSpanner
to compute for it a (2k − 1)-spanner H(SC) ⊆ B(SC) with O(n1/2+1/k) edges (see Lemma
2). This is done for all the graphs B(SC) in parallel.

Note that the graphs B(SC) are not necessarily vertex disjoint since an unmarked vertex
can appear in several such graphs. The key observation that allows the parallel computation
of all these spanners, is that every edge (u, v) can belong to at most two bipartite graphs,
say, B(SC) and B(SC ′), where SC, SC ′ is the supercluster of u, v respectively15. Overall,
since there are O(

√
n) superclusters, this adds O(n1/2 · n1/2+1/k) = O(n1+1/k) edges.

Finally, it remains to take care of all edges between vertices belonging to the same
supercluster. Note that in Alg. NaiveSpanner, there was no need for such a step since all
vertices belonging to the same cluster are connected in H by an i-depth BFS tree rooted at
the cluster center. However, in our setting, vertices that belong to different clusters of the
same superclusters might still have large stretch (as cluster centers of the same supercluster
might be at distance O(2k) in G). At that point, we use the fact that all superclusters are
vertex disjoint and each contains O(

√
n) vertices. We then recursively apply the algorithm

ImprovedSpanner on each of these superclusters in parallel. That is, we apply ImprovedSpanner
on the induced subgraph on V (SC) for every such supercluster SC.

Note that since in each phase we unmark all the vertices, unclustered vertices can become
clustered again and in particular, edges between newly unclustered vertices and clustered
vertices will be taken care of later on. This completes the description of the second step.

Steps (SIII) and (SIV): Defining ith-clustering and the ith-superclustering. The clusters
Ci centered at the cluster centers Zi computed at step (SI) are computed exactly as in Baswana-
Sen Algorithm. The depth i-trees of these clusters are added to the spanner. The main
challenge here is to re-group the new O(n1−i/k) clusters into O(

√
n) superclusters, in a way

that satisfies all the properties of the nice superclustering mentioned in Section 4.3.
Our starting point is as follows: we have a collection ofO(n1/2−1/k) successful superclusters

SC ∈ SCi−1 whose cluster centers joined Zi. Since SCi−1 is nice, by Prop. (N3), each such
supercluster SC has a tree T (SC) of depth O(2k) that spans all its cluster centers.

First, we let each cluster C ∈ Ci with Ω(
√
n) vertices, to define its own singleton

superclusters. Since clusters are vertex disjoint, there are O(
√
n) such superclusters. It now

remains to re-group the remaining clusters of Ci into O(
√
n) superclusters.

15 Recall that the superclusters share no vertex in common.

O. Grossman and M. Parter 24:15

For each successful supercluster SC, we now consider only its centers of clusters with
O(
√
n) vertices. First, we consider Property (N1) and use Lemma 9 with the tree T (SC),

weights w(z) = 1 for every cluster-center z of SC (only those that have O(
√
n) vertices in

their cluster) and bound B = O(n1/2−i/k). All other vertices v′ in T (SC) have w(v′) =
0 (in particular, the centers z of clusters in SC which have been turned into singleton
superclusters, we set w(z) = 0). By Prop. (N2) for SCi−1, we know that SC ∈ SCi−1 has
O(n1/2−(i−1)/k) cluster centers. Hence, the partition procedure will partition each of these
superclusters into O(n1/k) superclusters SC1, . . . , SC`. In addition, by Lemma 9(D5), all
these resulting superclusters SCj are equipped with edge-disjoint trees T (SCj) of diameter
O(2k). Since there are O(n1/2−1/k) successful superclusters, overall after this partition there
are O(n1/2−1/k) ·O(n1/k) superclusters.

We then turn to property (N3), and farther partition the superclusters to obtain a balance
partition of the vertices into superclusters. For that purpose, for each supercluster SC ′
(obtained from the step above), we again apply the Partitioning Lemma on T (SC ′). This
time we use B =

√
n and the weight w(z) of each cluster center z in SC ′ is the number of

vertices in its cluster C, that is w(z) = |C| (for clusters v′ which have turned into singleton
superclusters, or any other non-center vertex in T (SC ′), we set w(v′) = 0). Since the vertices
of superclusters are disjoint, this step increase the number of superclusters only by an additive
O(
√
n) term. Hence, overall the number of superclusters is kept bounded by O(

√
n). This

completes the description of the ith phase of Alg. ImprovedSpanner.

The terminating step k/2. At the (k/2)th step we have O(
√
n) superclusters, each contain-

ing O(1) clusters, hence overall we have O(
√
n) clusters. Now we can afford using Algorithm

NaiveSpanner (described near the beginning of Section 4), which iterates over the clusters
one by one. This completes the description of the algorithm for graph with diam(G) = O(1).
The analysis of stretch, size and round complexity is in the full version [12].

Extension for general graphs of diameter diam(G). The only step that requires adapta-
tion is that of constructing the 0th-level superclustering SC0.

I Lemma 11. [12] One can construct in O(2k · n1/2−1/k) rounds, nice superclustering
SC0 = {SC0,1, . . . , SC0,p} along with a subgraph H ′ with O(kn1+1/k) edges such that for
every vertex u not participating in the clusters of these superclusters SC0,j ∈ SC0, it holds
that dist(u, v,H ′) ≤ 2k − 1 for every v ∈ Γ(u).

References
1 Leonid Barenboim, Michael Elkin, and Cyril Gavoille. A fast network-decomposition al-

gorithm and its applications to constant-time distributed computation. TCS, 2016.
2 Surender Baswana and Sandeep Sen. A simple and linear time randomized algorithm

for computing sparse spanners in weighted graphs. Random Structures & Algorithms,
30(4):532–563, 2007.

3 Keren Censor-Hillel, Merav Parter, and Gregory Schwartzman. Derandomizing local dis-
tributed algorithms under bandwidth restrictions. CoRR, abs/1608.01689, 2016.

4 Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An exponential separation between
randomized and deterministic complexity in the local model. In FOCS, 2016.

5 Bilel Derbel and Cyril Gavoille. Fast deterministic distributed algorithms for sparse span-
ners. Theoretical Computer Science, 2008.

6 Bilel Derbel, Cyril Gavoille, and David Peleg. Deterministic distributed construction of
linear stretch spanners in polylogarithmic time. In DISC, pages 179–192. Springer, 2007.

DISC 2017

24:16 Improved Deterministic Distributed Construction of Spanners

7 Bilel Derbel, Cyril Gavoille, David Peleg, and Laurent Viennot. On the locality of distrib-
uted sparse spanner construction. In PODC, pages 273–282, 2008.

8 Bilel Derbel, Cyril Gavoille, David Peleg, and Laurent Viennot. Local computation of
nearly additive spanners. In DISC, 2009.

9 Bilel Derbel, Mohamed Mosbah, and Akka Zemmari. Sublinear fully distributed partition
with applications. Theory of Computing Systems, 47(2):368–404, 2010.

10 Manuela Fischer and Mohsen Ghaffari. Deterministic distributed matching: Simpler, faster,
better. arXiv preprint arXiv:1703.00900, 2017.

11 Manuela Fischer, Mohsen Ghaffari, and Khun Fabian. Deterministic distributed edge-
coloring via hypergraph maximal matching. arXiv preprint arXiv:1704.02767, 2017.

12 Ofer Grossman and Merav Pater. Improved deterministic distributed construction of span-
ners. arXiv preprint arXiv:1708.01011, 2017.

13 Michal Hanckowiak, Michal Karonski, and Alessandro Panconesi. On the distributed com-
plexity of computing maximal matchings. SIDMA, 15(1):41–57, 2001.

14 David Peleg. Distributed Computing: A Locality-sensitive Approach. SIAM, 2000.
15 Seth Pettie. Distributed algorithms for ultrasparse spanners and linear size skeletons. Dis-

tributed Computing, 22(3):147–166, 2010.

	Introduction & Related Work
	Our Contribution
	Our Approach and Key Ideas in a Nutshell
	Key Idea (I): Grouping Baswana-Sen Clusters into Superclusters
	Key Idea (II): Better Spanners for Unbalanced Bipartite Graphs

	Preliminaries, Notation and Model
	3-Spanners in Õ(1) Rounds
	(2k-1) Spanners
	Take (I): O(n1-1/k)-Round Algorithm NaiveSpanner
	Key Tool (I): Sparser Spanner for Unbalanced Bipartite Graphs
	Key Tool (II): Superclustering – Grouping Baswana-Sen Clusters
	Take (II): (2k-1)-Spanners in O(2kcdot n1/2-1/k) Rounds

