
Recoverable FCFS Mutual Exclusion with
Wait-Free Recovery

Prasad Jayanti∗1 and Anup Joshi†2

1 6211 Sudikoff Lab for Computer Science, Dartmouth College, Hanover, NH,
USA
prasad@cs.dartmouth.edu

2 6211 Sudikoff Lab for Computer Science, Dartmouth College, Hanover, NH,
USA
anupj@cs.dartmouth.edu

Abstract
Traditional mutual exclusion locks are not resilient to failures: if there is a power outage, the
memory is wiped out. Thus, when the system comes back on, the lock will have to be restored
to the initial state, i.e., all processes are rolled back to the Remainder section and all variables
are reset to their initial values. Recently, Golab and Ramaraju showed that we can improve this
state of the art by exploiting the Non-Volatile RAM (NVRAM). They designed algorithms that,
by maintaining shared variables in NVRAM, allow processes to recover from crashes on their
own without a need for a global reset, even though a crash can wipe out the local memory of a
process.

We present a Recoverable Mutual Exclusion algorithm using the commonly supported CAS
primitive. The main features of our algorithm are that it satisfies FCFS, it ensures that each
process recovers in a wait-free manner, and in the absence of failures, it guarantees a worst-case
Remote Memory Reference (RMR) complexity of O(lgn) on both Cache Coherent (CC) and
Distributed Shared Memory (DSM) machines, where n is the number of processes for which the
algorithm is designed. This bound matches the Ω(lgn) RMR lower bound by Attiya, Hendler,
and Woelfel for Mutual Exclusion algorithms that use comparison primitives.

1998 ACM Subject Classification D.1.3 Concurrent Programming

Keywords and phrases concurrent algorithm, synchronization, mutual exclusion, recovery, fault
tolerance, non-volatile main memory, shared memory, multi-core algorithms

Digital Object Identifier 10.4230/LIPIcs.DISC.2017.30

1 Introduction

Recent research has focused on exploiting non-volatile main memory to design algorithms that
can tolerate process crashes. The underlying idea of these algorithms is that upon a crash a
process executes a recovery code that consults the shared state stored in the non-volatile
main memory and brings the system back to a usable state. Due to an explicit recovery
procedure to emerge out of a crash, these algorithms are called recoverable algorithms. We
present a recoverable algorithm for the FCFS Mutual Exclusion problem.

∗ The first author is grateful for the generous support of James Frank Family Professorship.
† The second author is grateful for the support of Dartmouth Fellowship.

© Prasad Jayanti and Anup Joshi;
licensed under Creative Commons License CC-BY

31st International Symposium on Distributed Computing (DISC 2017).
Editor: Andréa W. Richa; Article No. 30; pp. 30:1–30:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/132422714?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.DISC.2017.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


30:2 Recoverable FCFS Mutual Exclusion with Wait-Free Recovery

Let us recall the traditional (non-recoverable) mutual exclusion problem [2], which captures
the requirements of a system of processes that share an exclusive resource – a resource that
can be accessed by only one process at a time. Specifically, we consider a system consisting
of n > 1 asynchronous processes, where each process cycles through four sections of code –
Remainder, Try, Critical Section (CS), and Exit. Initially, all processes are in the Remainder
section. When a process gets interested in accessing the resource, it executes the Try section,
where it competes with other processes for exclusive access to the resource. When the Try
section terminates, the process moves to CS, where it actually accesses the resource. When
the process no longer needs the resource, it executes the Exit section to relinquish its access
to the resource. A standard version of the mutual exclusion problem is to come up with code
for the Try and Exit sections so that the following properties are ensured:
(i) mutual exclusion: at most one process is in the CS at any time;
(ii) bounded exit: every process completes the exit section in a bounded number of its steps;

and
(iii) starvation freedom: if a process is in the Try section, it eventually enters the CS (under

the assumptions that every process that enters the CS eventually leaves the CS, and no
process permanently stops taking steps while in the Try or Exit sections).

We could additionally require the fairness property FCFS [8] which, informally, states that
processes enter the CS in the order in which they request the CS. A mutual exclusion lock is
a solution to the mutual exclusion problem.

A traditional mutual exclusion lock cannot gracefully tolerate failures. In particular, if a
process crashes, its memory – including its Program Counter – can lose their contents. As
a result, when a process restarts after a crash, it cannot tell where in the algorithm it had
failed and from where and how to resume its execution. Thus, process crashes can render a
lock permanently unusable. One solution would be a global reset: to recover from a crash,
roll back all processes to the Remainder section and set all variables to their initial values.
There are two disadvantages to such a global reset. First, if the crash occurs while a process
is in the CS and while the data structures manipulated in the CS are in an inconsistent state,
the inconsistency will persist even after the reset. Second, a local failure (e.g., the crash of a
single process) causes the reset of the entire system, which can be unacceptable in very large
systems where the probability that some process or the other crashes is non-negligible.

It would be ideal if the lock can be designed so that the failure of some processes do
not affect other processes and even the failed processes, when they eventually restart, can
proceed as if they had never failed. Golab and Ramaraju’s recoverable mutual exclusion
algorithm [4] shed some light on how one might realize this goal by cleverly exploiting hybrid
architectures [10] that use NVRAM (nonvolatile random access memory) technology for
shared memory. When a process crashes, all its local variables are wiped out. So, when a
process restarts after a crash, the general idea for an algorithm is that the process could
consult the non-volatile shared memory to reconstruct its lost state and then resume its
execution of the algorithm from the point where it crashed, making it seem like the crash
never occurred. For instance, if a process crashes while in the CS, after restart a recovery
procedure could put the process right back in the CS, making the crash appear simply like a
long delay.

Ensuring such seamless recovery while also guaranteeing efficiency is where the intellectual
challenge lies. At first glance it might seem that if each process stores its state in the non-
volatile memory after every step, then when restarting after a crash, the process should
be able to easily restore its state, thereby rendering the design of a recoverable algorithm
easy. This strategy however falls short because, even with such a laborious storing of its
state, when a process attempts to restore its state after a crash, if the stored value for its



P. Jayanti and A. Joshi 30:3

program counter is k, it cannot distinguish whether it had crashed before or after executing
the instruction at k. This seemingly small ambiguity makes the design of an algorithm
challenging. To appreciate this fact, a reader familiar with the MCS lock should imagine the
plight of a recovering process that crashed right after the initial swap operation.

We present an implementation of a recoverable lock using CAS that has the following
merits:
(i) it satisfies FCFS,
(ii) its recovery is wait-free, and
(iii) it has a Remote Memory Reference (RMR) complexity of O(f + lgn) on both Cache

Coherent (CC) and Distributed Shared Memory (DSM) machines, where n is the number
of processes for which the lock is designed and f is the number of times a process crashes
between the time it invokes and exits the lock.

The wait-free recovery of our algorithm ensures that when a process that crashes in the CS
subsequently restarts, it gets back into the CS in a bounded number of its own steps, i.e.,
without any waiting whatsoever, regardless of however many other processes have failed or
are slow. Attiya, Hendler, and Woelfel proved a lower bound that the RMR complexity is
Ω(lgn) for even a non-recoverable CAS-based lock [1]. Thus, our algorithm adds only O(1)
RMRs per crash. It would be interesting to resolve if the O(f + lgn) complexity of our
algorithm is optimal.

In comparison, Golab and Ramaraju’s locks [4] do not satisfy FCFS and, except for their
tournament based algorithm, they do not have wait-free recovery. Ramaraju’s lock [11]
satisfies FCFS, but it works only on CC machines and uses the memory-to-memory swap
primitive, which is not supported on any of the current multiprocessors. Golab and Hendler
adapt the MCS lock in three different ways to implement recoverable locks. Two of their
locks, although not claimed in their paper, appear to satisfy FCFS. One of these two works
only on CC machines; further, even a process that crashes just once can incur Ω(n) RMRs
in the worst case (but on the positive side a process that does not crash incurs at most O(1)
RMRs). The other algorithm of theirs that satisfies FCFS uses a double word primitive,
which is not supported on any of the current multiprocessors.

Recoverable algorithms are typically designed by adapting existing (non-recoverable)
mutual exclusion algorithms. Golab and Ramaraju’s recoverable algorithms [4] adapt Yang
and Anderson’s tournament algorithm [12]. Ramaraju’s [11] and Golab and Hendler’s
recoverable algorithms [3] adapt Mellor-Crummey and Scott’s algorithm [9]. Our algorithm
in this paper adapts Jayanti’s mutual exclusion algorithm [7].

2 Model and Specification

The system consists of n processes named 1, 2, . . . , n and atomic shared variables that support
read, write, and compare&swap operations. Each process has five sections of code – Remainder,
Recover, Try, CS, and Exit. A recoverable mutual exclusion algorithm specifies the code for
Recover, Try, and Exit sections of all processes, and the initial values for all local and shared
variables. We make no assumptions about the Remainder section and CS other than that
none of the shared and local variables of the mutual exclusion algorithm are modified by
these sections. All processes are initially in the Remainder section.

2.1 Configuration and step
A configuration of the system is specified by the values of all shared variables and the states
of the n processes, where the state of a process p is in turn specified by the value of PCp

DISC 2017



30:4 Recoverable FCFS Mutual Exclusion with Wait-Free Recovery

(p’s program counter) and the values of p’s local variables. The configuration changes when
a process takes a step. There are two types of steps that a process can take – normal step or
crash step – explained as follows.

A normal step by a process p from a configuration C causes p to perform the instruction
that PCp points to in C. We assume that in a normal step p performs a single operation
on a single shared variable, and p’s state changes based on the value returned by the
shared variable. A special case occurs if p is in the Remainder section: if p is in the
Remainder section in a configuration C, a normal step by p from C causes p to transfer
control to the Recover section and execute the first instruction of the Recover section.
The flow of control from other sections is modeled as usual. If p is in the Try section,
after a normal step p either remains in Try or moves to CS. If p is in the CS, after a
normal step p moves to the Exit section. If p is in the Exit section, after a normal step p
either remains in Exit or moves to the Remainder section. If p is in the Recover section,
after a normal step p can be in any of the sections, and the exact rules are specified in
Section 2.4.
A crash step models a process crash. We only model process crashes that occur outside
the Remainder section. Specifically, if a process p is in the Recover, Try, CS, or Exit
sections in a configuration C, then a crash step by p from C sets PCp to the Remainder
section and sets all the local variables of p to arbitrary values. (The crash step does not
affect any shared variables since they are assumed to reside in the non-volatile memory,
which is unaffected by the crash failures of processes.)

2.2 Execution and Attempt
From the above, we see that a step is determined by which process takes the step and whether
the step is normal or crash. Thus, a step is an element of {1, 2, . . . , n} × {normal, crash}. A
schedule is any finite or infinite sequence of steps. An execution corresponding to a schedule
σ = s1, s2, . . . is C0, s1, C1, s2, C2, . . ., where C0 is the initial configuration specified by the
mutual exclusion algorithm, C1 is the configuration after step s1, C2 is the configuration
after steps s1 and s2, and so on.

Let E be an execution and s be a step by a process p from a configuration C in E. We
say p initiates an attempt in step s if p is in the Remainder section in C and p’s latest step
before s is a normal step. We say p completes an attempt in step s′ if s′ is a normal step by p
that moves p to the Remainder section. An attempt by p in E is a fragment of E that starts
with an attempt initiation step s by p and ends with p’s earliest attempt completion step s′

that follows s. We say p is active in a configuration C if C occurs in an attempt by p. It is
important to note that p might visit the Remainder section multiple times during an attempt
because of its crash steps; thus, p can be active even when it is in the Remainder section.

2.3 Basic properties
Mutual exclusion, bounded exit, and starvation-freedom are properties normally required
of any algorithm. The last two properties require suitable adaptation from how they are
normally stated for the failure-free setting.
Mutual Exclusion: An algorithm satisfies Mutual Exclusion if at most one process is in the

CS in every configuration of every execution.
Bounded Exit: The bounded exit property stipulates that a process be able to relinquish its

access to the CS without being obstructed by other processes. Formally, an algorithm
satisfies Bounded Exit if there is an integer b such that, for all executions E and for all



P. Jayanti and A. Joshi 30:5

processes p, if p is in the Exit section in any configuration in E and the subsequent steps
of p in E are normal steps, then p moves to the Remainder section in at most b of its
own steps.

Starvation Freedom: Intuitively, starvation-freedom requires that every process that initiates
an attempt eventually enters the CS. However, it is impossible to satisfy this condition
unless each process that enters the CS eventually gives up the CS, no process fails infinitely
many times in an attempt, and no active process permanently stops taking steps. The
last condition means that if a process crashes, it must eventually restart and perform
normal steps. We formalize starvation-freedom as follows.
An execution E is fair if, for all processes p, we have:
(i) if p is in the CS and does not crash while there, then p subsequently enters the Exit

section;
(ii) p has only a finite number of crash steps in any one attempt; and
(iii) if p initiates an attempt then either p completes that attempt or p has an infinite

number of normal steps.
An algorithm satisfies Starvation Freedom if in every fair execution every process that
initiates an attempt enters the CS in that attempt.

2.4 Well-formedness: how control transfers upon crash and restart
We know from the definition of a normal step that control moves from the Remainder section
to the Recover section when a process initiates a new attempt or when a process restarts
after a crash during an ongoing attempt. Control moves out of the Recover section either
because the process crashes (and the crash step moves the control to Remainder) or because
the process eventually completes the Recover section at some normal step. In the latter case,
where control moves to is governed by the following expectations:
(i) a process must enter the CS in each of its attempts,
(ii) if a process enters the Recover section because of a crash in the CS, then the Recover

section will put the process right back in the CS, and
(iii) if a process enters the Recover section because of a crash in the Exit section, the Recover

section can put the process back in the Exit section, bypassing the Try and CS.
More specifically, let s be a normal step by p in which p completes the Recover section, and
s′ be the latest step by p before s in which p initiates an attempt or p crashes outside of the
Recover section (i.e., in Try, CS, or Exit). Then, the rules for where the control moves to
after step s are as follows:

If s′ is an attempt initiation step, then s moves control to Try section or CS.
Informally, if p enters the Recover section from the Remainder section due to an attempt
initiation step, when control transfers out of the Recover section eventually due to a
normal step, it transfers to Try section or CS.
If s′ is a crash step while p is in Try section, then s moves control to Try section or CS.
Informally, if p crashes in the Try section and subsequently enters the Recover section,
when control transfers out of the Recover section eventually due to a normal step, it
transfers to Try section or CS.
If s′ is a crash step while p is in CS, then s moves control to CS.
Informally, if p crashes in the CS and subsequently enters the Recover section, when
control transfers out of the Recover section eventually due to a normal step, it transfers
to CS.
If s′ is a crash step while p is in Exit, then s moves control to CS, Exit section, or
Remainder section.

DISC 2017



30:6 Recoverable FCFS Mutual Exclusion with Wait-Free Recovery

Informally, if p crashes in the Exit section and subsequently enters the Recover section,
when control transfers out of the Recover section eventually due to a normal step, it
transfers to CS, Exit section, or Remainder section.

An execution E is well-formed if all of the above rules are met in E. An algorithm
satisfies Well-formedness if every execution of the algorithm is well-formed.

2.5 Critical Section Reentry

Suppose that a process p crashes while in the CS. Well-formedness guarantees that, once
p restarts, Recover section puts p back in the CS. Since the data structures that p was
manipulating in the CS could be in an inconsistent state at the time of p’s crash, it is
important that no other process visits the CS between p’s crash in the CS and its subsequent
reentry into the CS. Golab and Ramaraju captured this requirement through a property that
they called Critical Section Reentry (CSR), stated as follows.

An algorithm satisfies Critical Section Reentry if, for all executions E, if a process p
crashes inside the CS, then no other process enters the CS before p reenters the CS.

2.6 Wait-free Recovery

Intuitively, the purpose of the Recover section is to enable a process that is restarting after a
crash to repair its state and resume from where it was before the crash. It is desirable if a
process can do this recovery without being obstructed by other processes, neither by their
relative speeds nor by their crashes. Accordingly, we define:

An algorithm satisfies Wait-free Recovery if there is a bound b such that, for all executions
E and for all processes p, if p is in the Recover section in a configuration C of E and the
subsequent steps of p in E are normal steps, then p moves out of the Recover section in at
most b of its own steps.

Wait-free recovery, together with well-formedness, yields two significant benefits:
1. When a process that crashed in the CS restarts, it gets back into the CS in a bounded

number of its own steps, regardless of whether other processes are slow, fast, or have
crashed.

2. Similarly, when a process that crashed in the Exit restarts, it gets back into the CS or
Exit in a bounded number of its own steps, which means that it can complete the protocol
without any obstruction from others.

Furthermore, Wait-free Recovery implies Critical Section Reentry, as shown below.

I Lemma 1. Wait-free Recovery, together with Well-Formedness and Mutual Exclusion,
implies Critical Section Reentry.

Proof. Suppose that p crashes inside the CS at some time t. When p subsequently restarts,
Well-Formedness and Wait-free Recovery ensure that p will reenter the CS at some time t′.
Assume, for a contradiction, that Critical Section Reentry is violated because some process q
gets into the CS at some time τ such that t < τ < t′. Let C be the configuration at time
τ . In C, q is in the CS and p is in the Remainder or Recover sections. If p alone takes
steps from C, then Well-Formedness and Wait-free Recovery ensure that p will enter the CS,
thereby violating Mutual Exclusion. J



P. Jayanti and A. Joshi 30:7

2.7 FCFS
Intuitively, FCFS (First Come First Served) requires that processes enter the CS in the order
in which they request the CS [8]. For the traditional model where processes are assumed
not to crash, Lamport [8] formalized this intuition by (i) stipulating that the Try section
be structured as a bounded section of code, called the doorway, followed by the rest of the
Try section code that he called the waiting room, and (ii) requiring that if a process p is in
the waiting room in an attempt A before a process p′ initiates an attempt A′, then p′ does
not enter the CS in attempt A′ before p enters the CS in attempt A. For the traditional
model where processes are assumed not to crash, an equivalent formulation that avoids this
syntactic separation of Try into doorway and waiting room would be as follows:

An algorithm satisfies FCFS if there is a bound b such that, for all executions E and
for all attempts A and A′ in E, if A is an attempt by p, A′ is an attempt by p′, and p
executes b steps in attempt A before p′ initiates attempt A′, then p′ does not enter
the CS in attempt A′ before p enters the CS in attempt A.

In the current setting, in order to get to the CS, a process needs to execute not only
the Try section, but also the Recover section where the attempt is initiated. Therefore,
formulating FCFS via doorway and waiting room is cumbersome. Consequently, we have
chosen to adapt the above stated alternative specification to the current setting. Two issues
arise in this exercise, as we discuss below.

A process that initiates an attempt might crash before completing the b steps required
to establish its “priority”. Therefore, to prohibit p′ from entering the CS before p, the
specification should require that p completes b consecutive normal steps before p′ initiates
its attempt.
A process might enter and leave the CS multiple times within the same attempt if it
crashes repeatedly. In particular, if a process leaves the CS and crashes in the Exit
section, subsequent execution of the Recover section can put the process back in the CS.
Therefore, the final phrase in the FCFS specification that states “p′ does not enter the
CS in attempt A′ before p enters the CS in attempt A” is revised to “p′ does not enter
the CS in attempt A′ before p first enters the CS in attempt A”.

Putting these elements together, the final specification of FCFS is as follows. Below, when
we say “p performs b consecutive normal steps in attempt A before p′ initiates attempt A′”
we mean that the sequence of steps that p performs in attempt A (before p′ initiates A′)
includes b consecutive steps all of which are normal.

An algorithm satisfies FCFS if there is a bound b such that, for all executions E and for
all attempts A and A′ in E, if A is an attempt by p, A′ is an attempt by p′, and p performs b
consecutive normal steps in attempt A before p′ initiates attempt A′, then p′ does not enter
the CS in attempt A′ before p first enters the CS in attempt A.

2.8 RMR complexity
An operation by a process p on a shared variable X is considered a Remote Memory Reference
(RMR) if it involves traversing the processor-memory interconnect. On a Cache-Coherent
(CC) machine, a read of X by p counts as an RMR if X was not in p’s cache (in which case
the read brings X into p’s cache), and a non-read operation on X by p always counts as an
RMR and removes X from all caches. On a Distributed Shared Memory (DSM) machine,
shared memory is partitioned and each process hosts a partition. An operation by p on X,
whether a read or a non-read, is counted as remote if and only if X is not in p’s partition.

DISC 2017



30:8 Recoverable FCFS Mutual Exclusion with Wait-Free Recovery

For mutual exclusion algorithms that are designed to run on a CC or a DSM machine, the
standard performance metric is the RMR complexity, which is the worst case number of
RMRs that a process performs in a single attempt. Unlike in a non-recoverable algorithm
where a process executes the Try and Exit sections exactly once in an attempt, a process in
the current setting can execute the Recover, Try, and Exit sections an unbounded number of
times within the same attempt because of its repeated crashes during the attempt. Therefore,
we express the RMR complexity of an attempt in terms of n and f , where n is the number
of processes for which the algorithm is designed and f is the number of times the process
crashes during the attempt.

2.9 Specification of Recoverable Mutual Exclusion
The recoverable mutual exclusion problem is to design an algorithm that satisfies Mutual
Exclusion, Well-Formedness, Starvation Freedom, Bounded Exit, and Critical Section Reentry.
We solve this problem with an algorithm that additionally satisfies FCFS and Wait-free
Recovery.

3 Important differences with prior works

Golab and Ramaraju’s work [4] is the first to explore the use of non-volatile memory to help
processes recover from crash when solving mutual exclusion. The subsequent work by Golab
and Hendler [3] uses the same model. Our model and specification differs from these in two
significant ways.

In Golab and Ramaraju’s model, the Recover section always puts a process p in Try,
thereby causing p to execute Try, CS, and Exit sections in that order each time it restarts
after a crash. Consequently, even if the crash occurs after p has completed the CS, when
p restarts, it is forced to compete once more for the CS (in the Try section). In contrast,
in our model the Recover section can put p in any of the sections. In particular, if p
crashes while in the Exit section, when p later restarts, the Recover section will put p
directly in CS, Exit, or Remainder, bypassing the needless repetition of Try.
The properties of wait-free recovery and well-formedness that we have defined differentiate
our two works, and have significant implication to how quickly a process can recover
after a crash. For instance, suppose that a process p crashes while in the CS. When
p subsequently restarts, our well-formedness and wait-free recovery properties together
ensure that p will get back into CS in a bounded number of its own steps, i.e., without
any waiting whatsoever regardless of however many other processes crashed or are slow.
In contrast, Golab and Ramaraju’s specification does not have such a guarantee.

We note that, given an algorithm A designed for our model, it is straightforward to
transform it into an algorithm A′ that conforms with Golab and Ramaraju’s model: if the
Recover section in A puts a process in Exit section, then the Recover section in A′ will make
p complete the Exit code (within the Recover section itself) and then send it to Try section.

4 An auxiliary min-array object

Our recoverable FCFS mutual exclusion algorithm, presented in the next section, relies on a
special object O that we call a min-array. A min-array O has n locations, one per process,
and supports two types of operations:
(i) write(v), which when executed by process p sets O[p] to v, and
(ii) findmin(), which returns the minimum value in the array.



P. Jayanti and A. Joshi 30:9

No hardware directly supports a min-array, so we implement it using read, write, and CAS
operations. Such an implementation of a min-array O specifies code for two procedures,
namely, O.write(p, v) that p can execute to set O[p] to v and O.findmin() that a process can
execute to get the minimum element in O. For the implementation to be useful in the design
of our algorithm, we require it to satisfy wait-freedom and idempotence, which are explained
below.

As always, wait-freedom means that if p invokes O.write(p, v) or O.findmin() and executes
the steps of that procedure without crashing, then p will complete and return from that
procedure in a bounded number of its own steps [5].
To explain what we mean by idempotence, let us begin with the notion of a partial
execution by p of a procedure Π, where Π is either O.write(p, v) (for a fixed v) or
O.findmin(). An execution of Π is partial if p invokes Π and performs an arbitrary
number of steps of Π, but does not run Π to completion. With most implementations,
if p executes Π partially and then reexecutes Π from the start, the implementation
can go completely haywire and return arbitrary responses. We however require the
implementation to behave gracefully in such a scenario because, if p crashes in the middle
of Π, by our model it goes to the Remainder section and subsequently when it starts
running again, it might reexecute Π. Motivated by this requirement, we define an epoch
of Π by p as consisting of one or more partial/complete executions of Π. We say the
epoch has length f if it consists of f partial/complete executions of Π. By idempotence
we mean that (i) if the epoch contains at least one complete execution of Π, then the
epoch linearizes to some point within the epoch; (ii) if the epoch does not contain a
complete execution of Π, then either the epoch never takes effect or it linearizes to some
point after the start of the epoch; and (iii) if the same process executes an epoch e of Π
and later an epoch e′ of a different procedure Π′, e′ will not linearize before e. (Reader
unfamiliar with linearizability is referred to [6].)

Jayanti designed a wait-free, linearizable implementation of a min-array [7] which, although
not claimed in his paper, is idempotent. That implementation uses LL/SC operations and
has an RMR complexity of O(lgn) for O.write(p, v) and O(1) for O.findmin(). We make
a simple modification so that the implementation uses CAS instead of LL/SC and has an
RMR complexity of O(f + lgn) for an epoch of O.write(p, v) of length f . We briefly describe
this implementation in the appendix and summarize the result below.

I Lemma 2. The algorithm in Algorithm 2 and 3 in the appendix presents a wait-free,
idempotent implementation of a min-array O using read, write, and CAS primitives. The
RMR complexity of an epoch of O.write(p, v) of length f is O(f + lgn) and the RMR
complexity of an epoch of O.findmin() of length f is O(f).

5 The Algorithm

Our Recoverable Mutual Exclusion algorithm is presented in Algorithm 1. We assume that
all the shared variables are stored in the Non-volatile Main Memory, and the local (or private)
variables are stored in the respective processor registers.

5.1 Shared variables and their purpose
We describe below the role played by each shared variable used in the algorithm.

Go[p]: This is a boolean flag that process p busywaits on, before entering the CS. This
variable is set to true by p at the start of its Try Section. When a process q makes p the

DISC 2017



30:10 Recoverable FCFS Mutual Exclusion with Wait-Free Recovery

Algorithm 1 Recoverable Mutual Exclusion Algorithm with FCFS and Wait-free Recovery.
Algorithm for process p.
Constants
P = {1, 2, . . . , n} // Set of process names.

Shared variables (stored in NVMM)
Registry : A min-array, initially empty.
CSowner ∈ (P × P) ∪ (⊥ × P), initially (⊥, 1); supports read, write, and CAS operations.
∀p ∈ P,Go[p] is a boolean initialized to true; supports read and write operations.
∀p ∈ P,Rem[p] is a boolean initialized to true; supports read and write operations.
∀p ∈ P,MyToken[p] is an integer initialized to ∞; supports read and write operations.
Token is an integer initialized to 0; supports read and CAS operations.

Private variables
∀p, gp is a boolean arbitrarily initialized, local to p.
∀p, tp is an integer arbitrarily initialized, local to p.
∀p, ip, jp, sp, αp contain a process name from P, all initialized arbitrarily, and local to p.

Recover Section
1. if Rem[p] == true goto Line 7
2. gp ← Go[p]
3. if ((sp,−)← CSowner) ∧ (sp 6=⊥)
4. if ¬Go[sp]
5. if (sp, p) == CSowner

if sp == p goto Line 16
else αp ← sp; goto Line 23

6. tp ←MyToken[p]
if ¬gp

if tp ==∞ goto Line 9
else goto Line 12

else if sp == p
if tp ==∞ goto Line 19
else goto Critical Section

else goto Line 21

Try Section
7. Go[p]← false
8. Rem[p]← false
9. tp ← Token
10. CAS(Token, tp, tp + 1)
11. MyToken[p]← tp
12. Registry.write(p, (tp, p))
13. if ((ip, jp)← CSowner) ∧ (ip ==⊥)
14. if Registry.findmin() == (tp, p)
15. if CAS(CSowner, (⊥, jp), (p, p))
16. Go[p]← true
17. wait till Go[p] == true

Exit Section
18. MyToken[p]←∞
19. Registry.write(p, (∞,∞))
20. CSowner← (⊥, p)
21. if ((−, αp)← Registry.findmin()) ∧ (αp 6=∞)
22. if CAS(CSowner, (⊥, p), (αp, p))
23. Go[αp]← true
24. Rem[p]← true

owner of the CS, q releases p from its busywait loop by assigning false to Go[p]. The
operations supported by Go[p] are read and write. To achieve the local-spin property,
Go[p] is allocated to p’s memory module.
Rem[p]: This is a boolean flag that process p uses during recovery to distinguish whether
p is active in an attempt or if p entered the Recover section from the Remainder section to
initiate a new attempt. This variable is set to false by p during its Try Section indicating
that it has initiated an attempt. p completes its attempt by setting Rem[p] to true in
the Exit Section. The operations supported by Rem[p] are read and write.
Token is an integer variable supporting read and CAS operations. Token is used to
implement a counter so that its values can be used to assign token numbers to processes
requesting the CS: in the Try section, a process reads Token to get its token number
and then increments Token. As a result, if p executes up to Line-10 and obtains a token
during an attempt A before q begins its attempt A′, p will get a smaller token number
than q (this fact helps achieve the FCFS and starvation-freedom properties).
Registry is a min-array that supports write and findmin operations. We require that
the two operations satisfy wait freedom and idempotence as mentioned in Section 4. In
our algorithm, Registry acts like a queue by holding the names of processes waiting to
enter the CS, and orders them according to their token numbers. Specifically, in the Try
section, a process p inserts in Registry an element (t, p) (Line 12), where t is p’s token



P. Jayanti and A. Joshi 30:11

number. When exiting, p deletes this element (Line 19). The elements in Registry
are ordered according to their token numbers: (t, p) < (t′, q) if t < t′ or t = t′ ∧ p < q.
Thus, the findmin operation returns (t, p), where p is the process in Registry with the
smallest token. If Registry is empty, findmin returns the special value (∞,∞).
MyToken[p] is an integer variable supporting read and write operations. It is used
by processes to remember the token numbers they use while registering their attempt.
A process may acquire a token, attempt to insert its entry into the Registry, and
crash while completing the insertion. So that it does not acquire a different token and
attempt to insert the new token into Registry after recovery from that crash, the process
remembers the token that it acquired by recording the token into MyToken[p].
CSowner: This variable holds a tuple both components of which hold process names.
The first component holds the name of the process that currently owns the CS. If no
process currently owns the CS, the first component holds the value ⊥. The second
component holds the name of the process that gave the ownership of the CS to a certain
process. A process may crash just after granting the ownership of CS to some process but
right before letting that process into CS, hence not setting the Go flag of that process
to true. We use the second component for recovery purposes in such a case so that
the process can easily remember that it needs to let the waiting process into the CS
which is made owner of the CS but not yet let into the CS. The operations supported by
CSowner are read, write, and CAS.

5.2 Informal description
We now describe informally the algorithm in Algorithm 1. When a process p wants to enter
the CS from the Remainder section, it executes an attempt initiation step. In this step it
executes the first instruction of Recover and finds that Rem[p] is true. Therefore, the process
proceeds to Line 7 in the Try section. It sets its Go flag (Line 7), and then signals that it
is now active in an attempt by setting Rem[p] to false (Line 8). It then proceeds to obtain
a token for itself and increments the global counter (Line 9-10). It also saves the token it
obtained for itself (Line 11), so that in the event of a crash it does not obtain a different token
and try registering its attempt with the new token. Then, it inserts its name, tagged with
its token, into the Registry (Line 12). If a process p executes normal steps upto Line 12 in
attempt A before q initiates an attempt A′, then q does not enter the CS in A′ before p first
enters the CS in A. After executing the Line 12, p tries to capture the CS on its own by first
confirming that the CS is free to be occupied (Line 13), the process with the smallest token in
the Registry is p itself (Line 14), and then attempting to capture the CS for itself (Line 15).
If p succeeds in capturing the CS, it sets its own Go flag to true (Line 16), informing itself
that it no longer needs to wait. Following this, p busy-waits until it is informed that it no
longer needs to wait (Line 17). It then enters the CS. When p leaves the CS, it first wipes
out the token that it obtained for the attempt (Line 18). It then removes its own name from
the Registry (Line 19), and marks the CS as available (Line 20). Following this, p tries to
capture the CS for a waiting process (Line 21-22) and informs the waiting process that it
no longer needs to wait (Line 23), if successful in capturing the CS. Whether p lets another
process into the CS or not, it completes the attempt by setting Rem[p] to true (Line 24) to
indicate that it is no longer active in an attempt.

Next we describe the Recover section. A process p may go to the Recover section due to
one of two reasons:
(i) p may crash,
(ii) p may initiate a new attempt due to an attempt initiation step.

DISC 2017



30:12 Recoverable FCFS Mutual Exclusion with Wait-Free Recovery

Therefore, p first reads Rem[p] to determine if it wants to initiate an attempt (Line 1). If so,
p proceeds to the Try Section. Otherwise, p reads its own Go flag so that it can decide later
where it crashed during the attempt (Line 2). p then checks if any process is currently the
owner of CS. The section of code on Lines 4-5 is executed when p learns that some process
owns the CS. Suppose p learns that some process owns the CS. Then p checks the Go flag of
that process to determine if that process was informed to no longer wait. If that process is
still waiting without any information, p checks if the CS is still owned by the same process,
and whether p installed that process as the owner. If that is so, p was either installing itself
as the owner, in which case it has to go back to the Try section (i.e. Line 16), or while
exiting p was installing some other process as the owner of the CS, in which case it has to
go to the Exit section again. If any of the checks at Lines 4-5 fail, p is not responsible in
informing any waiting process. If no process is the owner, then p definitely did not crash
while letting some process into the CS. Therefore, p proceeds to read its own token (Line 6).
Depending on p’s token value, Go flag, and the value of sp (used only to identify if p itself is
the owner of CS), p decides whether to go back to Try, CS, or Exit section.

5.3 The subtle features of the algorithm
From the above description it might not be clear why we perform certain operations in the
algorithm, namely,
(A) the need to set Rem[p] after setting Go[p] (Line 7-8),
(B) the need to read CSowner twice in the Recover section (Lines 3, 5).
We demonstrate below that the first feature is necessary to preserve Well-formedness. The
second feature is necessary to preserve Mutual Exclusion.

The need for feature A: In order to distinguish between a fresh attempt and a recovery
to an active attempt, we have to maintain the boolean variable Rem[p]. The placement of
the lines that modify Rem[p] is also important. Suppose, instead, we set Rem[p] to false in
the first line of the Try Section. Then it is possible for a process to re-initiate an already
completed attempt as we demonstrate in the following scenario. Process p initiates a new
attempt, obtains the lock and executes the CS, and continues to the Exit section. p executes
all the steps upto Line 24. Right when PCp = 24, p executes a crash step. The next steps that
p executes are from the Recover section. p notices that Rem[p] = true, MyToken[p] =∞,
and Go[p] = true. Since p didn’t crash at Line 23 (which it knows after reading CSowner),
it incorrectly concludes that it crashed somewhere in the Try section before obtaining a
token for itself. Therefore, p goes back to the Try section instead of the Exit section. This
violates Well-formedness. This problem would not arise with p if Rem[p] is set to false in
Line 8, because by reading Go[p] it can infer that the value of Go[p] is true due to its own
completed attempt. If p had not initiated an attempt, Go[p] would still be true, but Rem[p]
would also be true. Therefore, p can infer correctly that it needs to go to the Exit instead of
Try section.

The need for feature B: Suppose p crashes either at Line 16 or Line 23, i.e., while setting
the Go flag of some process. Then, during recovery, in order to conclude that p crashed just
before writing to the Go flag, p has to read CSowner and suppose the second component
contains p’s name, then it has to read the Go flag of the process whose name appears in
the first component of CSowner. Let s1 be the step when p reads CSowner the first time
for recovery. Let q be the process whose name p read in the first component of CSowner



P. Jayanti and A. Joshi 30:13

and p read its own name in the second component. Let s2 be the step when p reads Go[q].
Suppose p finds that Go[q] is false during s2. There are two cases applicable here:
(1) During s1 Go[q] was true,
(2) During s1 Go[q] was false.
In the first case, p had already let q into the CS. Between steps s1 and s2, q completed that
attempt (this would change the value of CSowner to something other than (q, p)), and later
came back for another attempt setting Go[q] back to false. Hence, p found Go[q] as false by
executing s2 in the first case. In the second case, q was actually somewhere in the Try during
s1 and s2 and it continues to be so, therefore, q has to be let into the CS by p. In order
to distinguish between the two cases, we read CSowner again at Line 5. If p finds that
CSowner is still (q, p), it concludes that it crashed just before setting Go[q] to true. Hence,
it goes back to the appropriate line. Otherwise, p hasn’t obstructed any process from going
into the CS, therefore, it resumes with the rest of the recovery. If p didn’t read CSowner
for the second time in Line 5, p would incorrectly inform q to proceed to CS in the first case
discussed above. Hence, q would continue to CS when some other process already occupies
it, violating Mutual Exclusion.

5.4 Main theorem
The theorem below presents our main result. We will soon release a Dartmouth College
Technical report that includes a detailed proof of correctness based on an invariant satisfied
by the algorithm.

I Theorem 3. The algorithm in Algorithm 1 solves the recoverable mutual exclusion problem
for n processes and additionally satisfies FCFS and Wait-free Recovery. The algorithm uses
read, write and CAS operations. On both CC and DSM machines, a process that fails at
most f times in an attempt performs at most O(f + lgn) RMRs.

Acknowledgment. We are grateful to the anonymous reviewers for their careful and detailed
reviews and Wojciech Golab for helpful discussions.

References
1 Hagit Attiya, Danny Hendler, and Philipp Woelfel. Tight RMR Lower Bounds for Mutual

Exclusion and Other Problems. In Proc. of the Fortieth ACM Symposium on Theory of
Computing, STOC’08, pages 217–226, New York, NY, USA, 2008. ACM.

2 E. W. Dijkstra. Solution of a Problem in Concurrent Programming Control. Commun.
ACM, 8(9):569–, September 1965.

3 Wojciech Golab and Danny Hendler. Recoverable mutual exclusion in sub-logarithmic time.
In Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC’17,
pages 211–220, New York, NY, USA, 2017. ACM.

4 Wojciech Golab and Aditya Ramaraju. Recoverable Mutual Exclusion: [Extended Ab-
stract]. In Proceedings of the 2016 ACM Symposium on Principles of Distributed Comput-
ing, PODC’16, pages 65–74, New York, NY, USA, 2016. ACM.

5 Maurice Herlihy. Wait-free Synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–
149, January 1991.

6 Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A Correctness Condition for
Concurrent Objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July 1990.

7 Prasad Jayanti. f -arrays: Implementation and Applications. In Proceedings of the Twenty-
first Symposium on Principles of Distributed Computing, PODC’02, pages 270–279, New
York, NY, USA, 2002. ACM.

DISC 2017



30:14 Recoverable FCFS Mutual Exclusion with Wait-Free Recovery

8 Leslie Lamport. A New Solution of Dijkstra’s Concurrent Programming Problem. Commun.
ACM, 17(8):453–455, August 1974.

9 John M. Mellor-Crummey and Michael L. Scott. Algorithms for Scalable Synchronization
on Shared-memory Multiprocessors. ACM Trans. Comput. Syst., 9(1):21–65, February
1991.

10 Dushyanth Narayanan and Orion Hodson. Whole-system persistence. In Proceedings of the
Seventeenth International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVII, pages 401–410, New York, NY, USA, 2012. ACM.

11 Aditya Ramaraju. RGLock: Recoverable mutual exclusion for non-volatile main memory
systems. Master’s thesis, University of Waterloo, 2015. URL: https://uwspace.
uwaterloo.ca/handle/10012/9473.

12 Jae-Heon Yang and Jams H. Anderson. A fast, scalable mutual exclusion algorithm. Dis-
tributed Computing, 9(1):51–60, 1995.

A Min-Array implementation with f -arrays

In this section we describe Jayanti’s f -arrays implementation [7]. Detailed explanation
and a proof of correctness are presented in Jayanti’s paper. Here we present a modified
version of the implementation so that it incurs only a constant extra RMR in the event of a
failure during any procedure call. Since the original implementation uses LL/SC, we give an
equivalent implementation that uses CAS and unbounded counters.

Algorithm 2 gives the tree-based implementation of the f -arrays using CAS. In the
implementation there is one node for every process, for a total of n nodes, representing the
array cells. These n nodes are the leaves of a binary tree such that the height of the tree is
lgn.

In computing the min function, the idea is that a process enters an element in its own
cell first. It then traces a leaf to root path so that at each node in the path it takes the
values of that node’s children and writes the minimum among these values into the node.
This continues until the process reaches the root, where it stores the minimum value it
encountered in the path.

The shared variable SavedState is an additional component that stores the address of
a node in the tree. During the execution of the write operation a process may abort (in
our case crash) to resume the execution at a later point of time. When a process invokes
a procedure call to write, we first check if the call was to write a different value from the
previous call (Line 26). If so, then start percolating the value into the f -array from the leaf
nodes of the tree as explained above. Otherwise, the current call is an invocation to write
the same value as before, hence, to maintain idempotence, start percolating the value up the
tree from the point where the process stopped in the last invocation before the abort.

As described in [7], after the second call to refresh we are sure that the value in val
is percolated upto the node in the tree pointed to by currNode. Therefore, we save this
progress as a checkpoint along with the value in the shared variable SavedState, and
continue percolating the value up the tree.

In each call the function min() (or f() in case of an f -array) in Line 42 takes the minimum
value stored in the child nodes of the node pointed by currNode and writes the minimum
value into currNode. The call to refresh happens repeatedly so that a value that is first
written to a leaf node in the tree (Line 25) gets percolated up and ultimately once the process
reaches the root of the tree, it writes in the root the minimum value in the array. To read the
minimum value, the process simply reads the root node and returns the value (Line 37, 38).

https://uwspace.uwaterloo.ca/handle/10012/9473
https://uwspace.uwaterloo.ca/handle/10012/9473


P. Jayanti and A. Joshi 30:15

Algorithm 2 Tree algorithm to implement f -arrays object with CAS. Algorithm for process
p. Adaptation of algorithm is from Figure 4 in [7]. Note, here we explicitly substitute the
min() function in Line 42 instead of the function f() since we know we will use this as a
min-array. Algorithm 1 does not constrain the structure of the object tree τ ′. Therefore, we
assume that τ ′ is a binary tree of height O(lgn).
Shared objects (stored in NVMM)
τ ′: Object tree corresponding to a type tree τ as described in Section 4.2 of [7].
∀p, Lp is the pth leaf of τ ′.

Shared variables (stored in NVMM)
∀p,SavedState[p] : An array storing the node in the tree to start update from,

and the value on which writep was called. Initialized to (&Lp,∞).
Private variables
val, val′ are integers, initialized arbitrarily.
currNode is a reference to a node in τ ′, initialized arbitrarily.
res, seq, v, v1, v2, . . . , vk are integers, initialized arbitrarily.

procedure writep(val)
25. Lp ← val; res← val
26. if (((currNode, val′)← SavedState[p])∧

val 6= val′)
27. currNode← Lp

28. if currNode == root(τ ′)
29. return res
30. repeat
31. currNode← parent(currNode)
32. if ¬refresh(currNode)
33. refresh(currNode)
34. SavedState[p]← (currNode, val)
35. until currNode == root(τ ′)
36. return res

procedure read()
37. (v,−)← read(root(τ ′))
38. return v

procedure refresh(currNode)
Let C1, . . . , Ck be currNode’s children

39. (val, seq)← read(currNode)
40. for i← 1 to k
41. vi ← read(Ci)
42. return CAS(currNode, (val, seq),

(f(v1, v2, . . . , vk), seq + 1))

Algorithm 3 Implementation of min-array using f -arrays (see Algorithm 2; substitute min()
function for the function f() in Line 42) adapted from algorithm of Figure 8 in [7]. Algorithm
for process p.
Shared variables and objects (stored in NVMM)
A : An f -array of n components as described in Algorithm 2.

Private variables
val, v are integers, initialized arbitrarily.

procedure O.write(p, val)
43. writep(A, val)

procedure O.findmin()
44. v ← read(A)
45. return v

In Algorithm 3 we give an f -array implementation of Registry used in our algorithm.
We adapt this from Jayanti’s f -arrays paper [7] except that we do not utilize adaptivity as
done in the paper.

DISC 2017


	Introduction
	Model and Specification
	Configuration and step
	Execution and Attempt
	Basic properties
	Well-formedness: how control transfers upon crash and restart
	Critical Section Reentry
	Wait-free Recovery
	FCFS
	RMR complexity
	Specification of Recoverable Mutual Exclusion

	Important differences with prior works
	An auxiliary min-array object
	The Algorithm
	Shared variables and their purpose
	Informal description
	The subtle features of the algorithm
	Main theorem

	Min-Array implementation with f-arrays

