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Abstract
Direct-sum questions in (two-party) communication complexity ask whether two parties, Alice
and Bob, can compute the value of a function f on ` inputs (x1, y1), . . . , (x`, y`) more efficiently
than by applying the best protocol for f , independently on each input (xi, yi). In spite of signif-
icant efforts to understand these questions (under various communication-complexity measures),
the general question is still far from being well understood.

In this paper, we offer a multiparty view of these questions: The direct-sum setting is just
a two-player system with Alice having inputs x1, . . . , x`, Bob having inputs y1, . . . , y` and the
desired output is f(x1, y1), . . . , f(x`, y`). The naive solution of solving the ` problems indepen-
dently, is modeled by a network with ` (disconnected) pairs of players Alicei and Bobi, with inputs
xi, yi respectively, and communication only within each pair. Then, we consider an intermediate
(“star”) model, where there is one Alice having ` inputs x1, . . . , x` and ` players Bob1, . . . ,Bob`
holding y1, . . . , y`, respectively (in fact, we consider few variants of this intermediate model, de-
pending on whether communication between each Bobi and Alice is point-to-point or whether
we allow broadcast). Our goal is to get a better understanding of the relation between the two
extreme models (i.e., of the two-party direct-sum question). If, for instance, Alice and Bob can
do better (for some complexity measure) than solving the ` problems independently, we wish to
understand what intermediate model already allows to do so (hereby understanding the “source”
of such savings). If, on the other hand, we wish to prove that there is no better solution than
solving the ` problems independently, then our approach gives a way of breaking the task of
proving such a statement into few (hopefully, easier) steps.

We present several results of both types. Namely, for certain complexity measures, com-
munication problems f and certain pairs of models, we can show gaps between the complexity
of solving f on ` instances in the two models in question; while, for certain other complexity
measures and pairs of models, we can show that such gaps do not exist (for any communication
problem f). For example, we prove that if only point-to-point communication is allowed in the
intermediate “star” model, then significant savings are impossible in the public-coin randomized
setting. On the other hand, in the private-coin randomized setting, if Alice is allowed to broadcast
messages to all Bobs in the “star” network, then some savings are possible. While this approach
does not lead yet to new results on the original two-party direct-sum question, we believe that
our work gives new insights on the already-known direct-sum results, and may potentially lead
to more such results in the future.
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1 Introduction

Communication complexity, presented by Yao [27], studies computational problems in a
distributed model, where the input is split between two parties or more. The parties
exchange messages according to a predetermined protocol in order to solve the computational
problem in question, e.g. computing a function on their inputs. The complexity of such
protocol is measured by the number of bits exchanged, on the worst possible input. The
communication complexity of a problem is the cost of the best protocol that solves it. The
literature deals with finding both upper and lower bounds for various computational problems,
and various types of protocols (deterministic, randomized, etc). In the two-party model, the
most extensively studied model in communication complexity, Alice receives an x and Bob
receives a y, both n-bit strings. Together they wish to solve the problem P (x, y). For an
overview of communication complexity and some of its applications, see [17].

Direct-sum questions ask whether solving several computational problems simultaneously
can be done more efficiently than merely solving each problem separately. The direct sum
question in two-party communication complexity, first presented in [16], is the following:
suppose that Alice and Bob attempt to solve a computational problem P (x, y), and suppose
that the cost of the best protocol for solving it is C. Now suppose Alice and Bob are each
given a sequence of ` inputs for P , i.e. Alice is given x1, . . . , x` and Bob is given y1, . . . , y`.
Alice and Bob wish to find a solution for each of the instances, namely to compute P (xi, yi)
for every i ∈ {1, . . . , `}. Clearly, this can be done by running the best protocol that solves the
problem ` times, using `C bits. However, perhaps Alice and Bob can utilize the fact that they
are given all ` inputs at once, and solve P on all of them with fewer bits of communication.
If this is possible, we say that a saving occurs. The question of existence of such savings is
the direct-sum question, namely: does any protocol for ` inputs encapsulates a protocol for a
single input whose cost is at most 1/` the cost of the original protocol?

1.1 Our Multiparty Models of Communication
In an attempt to achieve a better understanding of the source of hardness of direct-sum
questions in the two-party case, we consider several “intermediate” multiparty communication
models with one Alice and ` Bobs, denoted Bob1, . . . ,Bob`. Alice receives x1, . . . , x`, and
Bobi receives yi for every i ∈ {1, . . . , `}. As in the classical direct sum question, they wish
to compute P (xi, yi) for every i. In our “intermediate” models, the question is whether a
saving can be obtained when one party sees ` instances at once, and may send messages that
are “global”, while each of the other parties sees only one instance and sends messages that
rely solely on its instance and its view of the communication.

Specifically, we consider five communication models, to which we refer as M1 to M5. The
first model, M1, is the classical two-party direct-sum model, and the last one, M5, represents
` independent computations. Ultimately, the direct-sum question aims towards a better
understanding of the connection between M1 and M5. In order to do so, M2, M3, and M4
are defined, such that each model presents an additional constraint over the previous model.
The definitions and motivations of these models are as follows:

The Classical Direct-Sum Model (M1). In this model, there are two parties, Alice
and Bob. Alice receives an `-tuple of n-bit inputs, (x1, . . . , x`) ∈ ({0, 1}n)`, and Bob
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receives another `-tuple of n-bit inputs, (y1, . . . , y`) ∈ ({0, 1}n)`. Together, they wish to
compute P (xi, yi) for every i ∈ [`], for some computational problem P .
The Broadcast Model (M2). In this model, there are (`+ 1) parties; one Alice and `
Bobs, denoted Bob1, . . . ,Bob`. Alice receives an `-tuple of n-bit inputs, (x1, . . . , x`) ∈
({0, 1}n)`, and each Bobi receives an n-bit input, yi ∈ {0, 1}n. Together, they wish to
compute P (xi, yi) for every i ∈ [`], such that when the protocol terminates, Alice knows
all ` outputs. The communication is by broadcast among all parties; namely, every
message sent by any party is received by all other parties.
The One-Way Broadcast Model (M3). This model is similar to M2, only that the
Bobs cannot hear each other; namely, every message Alice sends is heard by all Bobs,
but a message sent by one of the Bobs is received by Alice alone. This model might be
thought of as a communication between a satellite and ` ground stations – whatever the
satellite transmits is heard by all ground stations, but messages from the ground stations
are received only by the satellite.
The Point-to-Point Model (M4). As in M2,M3, the underlying setting in this model
remains the (` + 1)-star. However, in this case the communication is point-to-point;
namely, every message sent by one of the Bobs is received by Alice alone (i.e. the Bobs
cannot send messages to each other), and every message Alice sends is sent to a single
Bob of her choice.
The Independent Computations Model (M5). In this model, there are ` Alices and
` Bobs. For every i ∈ [`], Alicei is given xi ∈ {0, 1}n and Bobi is given yi ∈ {0, 1}n. They
communicate over a point-to-point channel, which none of the other Alices or Bobs can
hear, in order to compute P (xi, yi). When the computation terminates, Alicei should
know P (xi, yi). Since each Alicei and Bobi hear no other communication but their own,
this model represents ` independent computations.

1.2 Previous Work
The direct sum question in communication complexity has been studied extensively, with
respect to different types of protocols (e.g. deterministic, nondeterministic, and randomized).
In spite of significant efforts it is far from being well understood.

The deterministic case was first studied in [16], where it was shown that if a certain
two-party direct-sum result holds, then NC1 6= NC2 and NC1 6= P. In [10] it is proved
that for any (full) boolean function f , D(f `) ≥ `

(√
D(f)/2−O(logn)

)
, while there exists a

partial function f such that D(f) = logn+ 1 but D
(
f `
)

= O(`+ logn log `)� ` ·D(f). A
setting in which the number of communication rounds is bounded has also been studied. For
example, it was shown in [10, 15] that for one-round and two-round (deterministic) protocols,
D(f `) ≥ ` (D(f)−O(logn)) for any (possibly partial) function f . However, the direct-sum
question for full functions remains open. Formally stated,

I Question 1. Does D
(
f `
)
≥ `(D(f)−O(1)), for every full function f?

In the case of randomized protocols, one may consider several types of randomness. In
the private-coin setting, each party has a private string of random bits that it can utilize in
its computation. In the public-coin setting, the string of random bits is public, namely seen
by both parties. In [10], a concrete (full) function f that satisfies Rpriv (f) = O(logn) and
Rpriv (f `) = O(`+ logn) was shown, thus demonstrating that savings can be obtained in
the private-coin randomized setting.

One might also consider a hybrid of the private and public-coin models, in which each
party sees both a private and a public string of random bits. This setting arises naturally

DISC 2017
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when applying information theoretic techniques to communication complexity. Such notions
were first introduced in [9] (later redefined in [3]), to measure the amount of information that
must be revealed by the two parties, about their inputs, in order to solve a communication
problem. Informally, since the amount of information revealed by the parties in a protocol
is at most the number of bits transmitted throughout its execution, then one can obtain
lower bounds on the communication complexity of a function by proving lower bounds on
its information complexity. In recent years, information complexity became a powerful tool
for understanding communication complexity and was used to prove many results, e.g. for
reproving a lower bound of Ω(n) on the communication complexity of the set-disjointness
function [2] (originally proved in [14, 23]). In fact, the main theorem in [2] is a direct-sum-
like theorem for information complexity. Furthermore, it was shown in [6, 3] that R

(
f `
)

approaches ` · IC (f) as ` tends to infinity. Therefore, a two-party direct-sum question in
which both public- and private-coin randomization are allowed, can also be stated in terms
of compression. Informally stated: given a protocol π, can one construct a “compressed”
protocol τ such that |τ | is roughly equal to the information content of π? This was proven to
be false in some settings; in [11, 13], a randomized setting in which the inputs are distributed
according to some known distribution was studied, and it was shown that there might be
an exponential gap between information and communication complexity in this setting. In
[12], a randomized non-distributional setting was studied, and it was shown that exponential
gaps between information and communication complexity can also be found in this setting,
when considering search problems. Nonetheless, the question of compression remains open
for functions in the randomized non-distributional setting.

Our proposed models are intended to naturally relate to the two-party direct-sum problem,
and for that reason we require that the same function f(x, y) is computed “on every edge”.
Contrary to our models, in most previous works, e.g. [8, 4, 5, 1], each of the ` parties
receives an n-bit input, xi, and together they compute some “global” function g(x1, . . . , x`)
rather than a “local” function f(x, y) “on every edge”, in our case. To the best of our
knowledge, a setting in which a function f is computed “on every edge” was only considered
in [22] and [7]. In [22], a direct-sum-like theorem in the randomized case was proved, with
respect to some communication complexity measure, denoted EDε

µ(f) (on which we shall not
elaborate), and it was shown that in the message passing modelRpub (f `, ε) = Ω

(
` · EDε

µ(f)
)
,

for any function f and error probability ε. In [7], quantum nondeterministic multiparty
communication complexity was considered, with which we do not deal in this work.

1.3 Our Results

In Section 3, public-coin randomized communication complexity is studied. First, we formalize
several notions of randomized and distributional communication complexity in Section 3.1,
and prove some useful connections between the different measures we present. Afterwards,
in Section 3.2, we prove our main result in the public-coin setting (Theorem 12). It states
that solving ` instances of a function f in M4 in the public-coin model costs roughly ` times
the cost of solving a single instance.

In the full version of the paper, a similar result is shown in the private-coin randomized
setting, for functions f that satisfy a certain constraint. We also present a function for which
there is a gap between M3 and M4 in this setting. For nondeterministic communication
complexity, we prove that M1, M2, and M3 are almost equivalent and that M4 and M5 are
almost equivalent; this is also omitted here, for lack of space, and included in the full version.

Interestingly, the point-to-point model proved to be hard in both the randomized and
nondeterministic settings. These results imply that the fact that Alice must send each Bob a
separate message makes practically any savings impossible.
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In Section 4, we consider the connections between our five models in a setting where
the number of rounds is bounded. In particular, for one-round protocols, we show that
a saving never occurs when solving a computational problem in either M3, M4, or M5
(Observation 18); that saving never occurs in M2 in the public-coin randomized setting
(Claim 20); and we demonstrate a gap between M2 and M3 in the deterministic setting.
Finally, in Theorem 25, we show a gap between M1 and M2 in the deterministic setting, for
some relaxed notion of one-round protocols.

2 Preliminaries

Although most of our results apply to general functions, we focus our discussion on Boolean
functions, for simplicity. Thus, unless explicitly stated otherwise, f is a function f : {0, 1}n×
{0, 1}n → {0, 1}. Given such f and a natural non-zero number `, let f ` : {0, 1}n`×{0, 1}n` →
{0, 1}` denote the following function: for every (~x, ~y) = ((x1, . . . , x`), (y1, . . . , y`)) ∈ {0, 1}n`×
{0, 1}n`, let f `(~x, ~y) , (f(x1, y1), . . . , f(x`, y`)).

Our models, as defined in Section 1.1, aim to naturally relate to the two-party direct-
sum question and, hence, throughout this work, we study asynchronous protocols whose
communication complexity is defined to be the total number of bits sent between the parties.
In a protocol π, in all models, the messages each party sends rely solely on its current view of
the state of the protocol, i.e. its input (including, possibly, its randomness) and the previous
messages it received in the protocol. We further assume that each party knows when it is its
turn to speak based on its view of the state of the protocol. Therefore, all messages sent in
the protocol are self terminating, e.g. drawn from some prefix code. One may also consider
protocols that operate in synchronous rounds, as commonly done in the study of distributed
computing (see, e.g., [21]). This may seem to be a minor difference but it is, in fact, crucial:
In synchronous protocols, parties may exchange information even in rounds in which they do
not speak; merely the fact that they remain silent may convey information.

We denote the worst-case communication complexity of π, i.e. the number of bits sent in
π on the worst possible input, by |π|. Given a computational problem P , and a complexity
measure C ∈ {D,N ,R, . . . } (i.e. Deterministic, Nondeterministic, Randomized, etc.), we
denote the communication complexity, with respect to the measure C, of a single instance
of P in the two-party model by C(P ). Furthermore, given ` ≥ 1, we define Ci(P `) to be
the communication complexity, w.r.t. the measure C, of computing ` instances of P in the
model Mi. For example, using this notation, C5(P `) = `C(P ).

The models M1, . . . ,M5 were defined such that each model presents an additional con-
straint over the former models (see Section 1.1). Therefore, intuition suggests that for any
i ∈ [4] and any computational problem P , solving P ` in Mi+1 is at least as hard as solving
it in Mi. This intuition can be easily formalized in a claim that informally states that
C1 ≤ C2 ≤ C3 . C4 ≤ C5, for any complexity measure C. The formal claim, along with its
proof, appear in the full version of the paper.

3 Public-coin Randomized Communication Complexity

In this section, we consider randomized communication complexity, in the public-coin setting,
where the players have access to a common (global) random string. The private-coin case,
where each player has its own randomness, is deferred, for lack of space, to the full version of
the paper.
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3.1 Randomized and Distributional Communication Complexity
Several definitions of the randomized and distributional settings, differentiated by the way
error is measured, have been considered in the communication complexity literature. This
section deals with the various definitions and relates the different measures to one another.
The main result of this section, showing thatM4 andM5 are “close”, appears in Subsection 3.2.
We note that all the definitions presented hereafter assume ` instances for some boolean
function f , and the definitions for the two-party setting follow by fixing ` = 1.

I Definition 2 (Public-coin randomized protocols). A protocol π is said to be public-coin
randomized protocol if at the beginning of every execution of π, each party receives, in
addition to its input, the same (public) random string r of unbounded length. Then, the
parties communicate according to a predetermined (deterministic) protocol, where the type of
communication between the parties is determined by the model in question (i.e. M1, M2, M3,
M4, or M5). A protocol π is said to compute f ` with ε-error if Prr

[
π(~x, ~y, r) = f `(~x, ~y)

]
≥

1− ε for every (~x, ~y) ∈ {0, 1}n` × {0, 1}n`. Namely, the error is considered over all instances
simultaneously. Let Rpub

k

(
f `, ε

)
denote the cost of the best public-coin randomized protocol

that computes f ` with ε-error in the model Mk.

I Definition 3 (Distributional protocols). Let ρ be a distribution over {0, 1}n` × {0, 1}n`. A
deterministic protocol π is said to be (ρ, ε)-distributionally correct for f ` if it answers correctly
on at least a (1− ε)-fraction of the inputs, weighted by ρ, i.e. Pr(~x,~y)∼ρ

[
π(~x, ~y) = f `(~x, ~y)

]
≥

1− ε. Let D(ρ,ε)
k

(
f `
)
denote the cost of the best (ρ, ε)-distributional protocol for f ` in Mk.

The following theorem relates the two measures defined above.

I Theorem 4 (Yao’s minimax principle). Rpub
k

(
f `, ε

)
≥ D(ρ,ε)

k

(
f `
)

for any distribution ρ over
{0, 1}n` × {0, 1}n`. Furthermore, if ` = 1, there exists a distribution ρ over {0, 1}n × {0, 1}n
for which Rpub (f, ε) = D(ρ,ε) (f).

Yao’s Minimax principle was first proved in [28] for the two-party case, and later gen-
eralized for the multiparty case; see, [25, 26]. It relates two settings: in the public-coin
randomized setting, error is taken over the choice of randomness, while in the distributional
setting, error is taken over the choice of inputs. One may also consider combinations of the
two settings, e.g. the randomized distributional setting that appears e.g. in [11, 12, 13]. We
now define several such measures.

I Definition 5 (Randomized distributional protocols). Let ρ be a distribution over {0, 1}n` ×
{0, 1}n`. A public-coin randomized protocol π is said to be (ρ, ε)-distributionally correct for f `
inMk if it produces a correct answer with probability at least 1−ε, taken over both the choice
of randomness and the choice of inputs, i.e. Prr,(~x,~y)∼ρ

[
π(~x, ~y, r) = f `(~x, ~y)

]
≥ 1 − ε. Let

Rρk
(
f `, ε

)
denote the cost of the best public-coin randomized (ρ, ε)-distributional protocol for

f ` in Mk, and let Rρk
(
f `, ε

)
denote the minimal expected cost of any public-coin randomized

(ρ, ε)-distributional protocol for f ` in Mk, where the expectaion is taken both over the choice
of randomness and the choice of input.

Next, we introduce another communication complexity measure for the classical two-party
setting – public-coin randomized communication complexity with (ρ, δ)-promise and ε-error.
Although this definition can be easily extended to other communication models, we only
need the two-party version for our purposes.

I Definition 6 (Public-coin randomized protocols with (ρ, δ)-promise and ε-error). Let ρ be a
distribution on {0, 1}n ×{0, 1}n, and let ε, δ ∈ (0, 1). A public-coin randomized protocol π is
said to compute f with (ρ, δ)-promise and ε-error if:
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Protocol 1 τ(x, y, r).
1: Simulation: Alice and Bob simulate π (x, y, r).
2: Early termination: If more than 1

δ2 |π| bits were sent, Alice and Bob terminate and
output ‘0’. Otherwise, Alice answers like π.

1. On a δ-fraction of the inputs, weighted by ρ, there is no correctness promise, i.e. the
protocol may always err. These are called type-A inputs of π.

2. On any other input, a (1− δ)-fraction weighted by ρ, there is at most ε-error, weighted
by the choice of the public random string. These are called type-B inputs of π.

Let R(ρ,δ) (f, ε) denote the cost of the best public-coin randomized protocol that computes f
with (ρ, δ)-promise and ε-error.

In the rest of this subsection, we discuss the settings defined above, and show how they
relate to one another. We start by the following observation:

I Observation 7. Rρk
(
f `, ε

)
≤ Rpub

k

(
f `, ε

)
for any f , `, ε ∈ (0, 1) and distribution ρ.

This is immediate: suppose π is a public-coin randomized protocol that errs with probability
at most ε on every input (over the choice of randomness). Clearly, π errs with probability at
most ε if the input is also sampled from some distribution ρ.

I Lemma 8. R(ρ,δ) (f, ε) ≥ D(ρ,δ+ε) (f), for any f , ε, δ ∈ (0, 1) and distribution ρ.

The proof of Lemma 8 is an immediate generalization of the first part of Theorem 4 and
is omitted for lack of space. We conclude this subsection with the following lemma:

I Lemma 9. R(ρ,√ε+δ) (f,
√
ε+ δ) ≤ 1

δ2R
ρ (f, ε) for any f , distribution ρ, and ε, δ ∈ (0, 1)

that satisfy 2(
√
ε+ δ) ≤ 1.

Proof. Let π be an expected (ρ, ε)-distributional randomized protocol for f . For every input
pair (x, y) and any public random string r, let I(x, y, r) be the following {0, 1}-indicator:
I(x, y, r) = 1 if and only if π errs on (x, y) when the random string is r. Furthermore, let
I(x, y) , E

r
[I(x, y, r)]. Observe that I(x, y) is exactly Prr [π(x, y, r) 6= f(x, y)], and since π

is a (ρ, ε)-distributional randomized protocol for f , then E
(x,y)∼ρ

[I(x, y)] ≤ ε.

For every (x, y), let E(x, y) , E
r

[|π(x, y, r)|] denote the expected communication com-
plexity of π on (x, y), taken over the choice of public randomness r. By the definition of π,
we have that E

(x,y)∼ρ
[E(x, y)] = |π|, where here |π| denotes the expected communication cost

of π (since π is an expected randomized distributional protocol).
We construct a protocol τ for f in Protocol 1.
We claim that τ is a public-coin randomized protocol for f with (δ +

√
ε)-promise and

(δ +
√
ε)-error. To do so, we separate the input space of π into two sets, type-A inputs and

type-B inputs, as follows: an input (x, y) is said to be a type-A input of τ if and only if

E(x, y) ≥ 1
δ
|π| or I(x, y) ≥

√
ε.

I Claim 10. Pr(x,y)∼ρ [(x, y) is a type-A input of τ ] ≤ δ +
√
ε.

Proof. First, E
(x,y)∼ρ

[E(x, y)] = |π| and, by applying Markov’s inequality,

Pr
(x,y)∼ρ

[
E(x, y) ≥ 1

δ
|π|
]
≤ Pr

(x,y)∼ρ

[
E(x, y) ≥ 1

δ
E

(x,y)∼ρ
[E(x, y)]

]
≤ δ.
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Similarly, E
(x,y)∼ρ

[I(x, y)] ≤ ε, and by applying Markov’s inequality,

Pr
(x,y)∼ρ

[
I(x, y) ≥

√
ε
]
≤ Pr

(x,y)∼ρ

[
I(x, y) ≥ 1√

ε
E

(x,y)∼ρ
[I(x, y)]

]
≤
√
ε.

A union bound argument yields that

Pr
(x,y)∼ρ

[(x, y) is a type-A input of τ ] ≤ δ +
√
ε,

and the claim follows. J

I Claim 11. Given that (x, y) is a type-B input of τ , Prr [τ(x, y, r) 6= f(x, y)] ≤ δ +
√
ε.

Proof. Since (x, y) is a type-B input of τ , then E
r

[|τ(x, y, r)|] ≤ 1
δ |π| and E

r
[I(x, y, r)] ≤

√
ε.

Observe that τ might err in either of two cases: τ was early-terminated, or τ was not early
terminated but the simulation of π answered incorrectly. By the union bound, we conclude
the following:

Pr
r

[τ(x, y, r) 6= f(x, y)] ≤ Pr
r

[
|τ(x, y, r)| > 1

δ2 |π|
]

+ Pr
r

[I(x, y, r) = 1]

≤ Pr
r

[
|τ(x, y, r)| > 1

δ
E
r

[|τ(x, y, r)|]
]

+ E
r

[I(x, y, r)]

≤ δ +
√
ε,

where the last inequality follows from Markov’s inequality. J

In conclusion, Claim 10 proves that there are at most (δ +
√
ε) type-A inputs of τ , weighed

by ρ, and Claim 11 proves that τ has at most (δ +
√
ε)-error on type-B inputs. Therefore, τ

is indeed a public-coin randomized protocol that computes f with (ρ,
√
ε+ δ)-promise and

(
√
ε+ δ)-error. Step 2 (early termination) assures that |τ | ≤ 1

δ2 |π|, and that concludes the
proof of Lemma 9. J

We remark that we have dealt with several communication complexity measures in this
subsection and, for conciseness reasons, some of the connections between the different measures
were omitted. However, the omitted connections can be shown, either by simply combining the
connections we have proved, or by slightly modifying the arguments presented in our proofs.
For instance, an argument similar to that of Lemma 9 proves that R(ρ,√ε) (f,

√
ε) ≤ Rρ (f, ε).

For another example, one can prove that there exists a distribution ρ over {0, 1}n × {0, 1}n
for which R(ρ,δ) (f, ε) ≥ Rpub (f, δ + ε) using Theorem 4 and Theorem 8.

3.2 Pushing M4 Towards M5

In this section, we prove that computing ` instances of f in the point-to-point model, M4,
cannot be done much more efficiently than just solving each instance separately, as in the
independent computations model, M5. From a more philosophical point of view, designing
protocols in which Alice sends “global” messages is virtually useless in the public-coin
randomized setting when only point-to-point communication is allowed. Formally stated:

I Theorem 12. Rpub (f, 2(
√
ε+ δ)) ≤ 1

δ2
1
`R

pub
4
(
f `, ε

)
, for any f , `, and ε, δ ∈ (0, 1) such

that 2(
√
ε+ δ) ≤ 1.
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Protocol 2 τ(x, y, r).
1: Preparation: Alice and Bob split the random string r into two independent random

strings, r , (r1, r2).
2: Augmentation: Alice and Bob construct an input (~x, ~y) for π from their (x, y):

2.1: Alice and Bob sample i ∼ Unif {[`]} from the randomness r1.
2.2: Alice samples (~u,~v) = ((u1, . . . , u`−1), (v1, . . . , v`−1)) ∼ ρ`−1 from r1.
2.3: Let ~x , aug [~u, x, i], and let ~y , aug [~v, y, i].

3: Simulation: Alice and Bob simulate the i’th channel of π (~x, ~y, r2).
That is, Bob plays the role of Dani, while Alice plays the role of Carol and all other
Dans. In their simulation, Alice and Bob only send messages that are sent between Carol
and and Dani in π. All other messages are simulated by Alice alone, with no additional
communication.

Given a protocol π for f ` in M4, our proof constructs a protocol τ for f (a single instance
in the two-party model) such that |τ | ≤ 1

δ2
1
` |π|. The construction of τ is based on the

symmetrization technique, that was introduced in [22], and was later used in, e.g., [24, 25].
In the core of the symmetrization technique lies an intuitive averaging argument: suppose
we fix some input to each of the parties in M4. In that case, the average number of bits
communicated on a uniformly-chosen channel is at most 1

` |π|. In τ , Alice and Bob augment
their single instance (x, y) to an input (~x, ~y) for π, that contains ` instances of f , and then
simulate a channel of π(~x, ~y). We thus define an augmentation operator :

I Definition 13 (The Augmentation operator). Let Q be any set, and k ∈ N an integer. Given
a k-tuple ~q = (q1, . . . , qk) ∈ Qk, an element p, and an index i ∈ [k + 1], the augmentation
operator aug [~q, p, i] is defined to be the (k + 1)-tuple obtained by “inserting” p as an i’th
element in ~q, i.e. aug [~q, p, i] , (q1, . . . , qi−1, p, qi, . . . , qk).

We now prove a central lemma from which we conclude Theorem 12:

I Lemma 14. Rρ (f, ε) ≤ 1
`R

ρ`

4
(
f `, ε

)
, for any f , `, ε ∈ (0, 1), and ρ over {0, 1}n ×{0, 1}n.

Proof. Let π be a randomized
(
ρ`, ε

)
-distributional protocol for f ` in M4. Given π, we

construct a protocol τ for a single instance of f , such that τ is an expected randomized
(ρ, ε)-distributional protocol. The construction of τ is presented in Protocol 2. To avoid
confusion, we refer to the two parties in τ as Alice and Bob, and to the `+ 1 parties in π as
Carol and Dans.

For every (x, y) ∈ {0, 1}n × {0, 1}n, let E(x, y) , E
r

[|τ(x, y, r)|] denote the expected
communication complexity of τ on (x, y), over the choice of public randomness.

I Claim 15. E
(x,y)∼ρ

[E(x, y)] ≤ 1
` |π|.

Proof of Claim 15. For every i ∈ [`] and every (~x, ~y) ∈ {0, 1}n` × {0, 1}n`, let
∣∣πi (~x, ~y)

∣∣
denote the maximum number of bits communicated between Carol and Dani when running
π on (~x, ~y). We thus have

E
(x,y)∼ρ

[E(x, y)] = E
(x,y)∼ρ

[
E

i∼Unif{[`]}

[
E

(~u,~v)∼ρ`−1

[∣∣πi (~x, ~y)
∣∣]]] ≤ E

(~x,~y)∼ρ`

[
1
`
|π|
]
≤ 1
`
|π|

and the claim follows. J
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For every (~x, ~y) ∈ {0, 1}n` × {0, 1}n` and for every random string r2, let J(~x, ~y, r2) be
the following {0, 1}-indicator: J(~x, ~y, r2) = 1 if and only if π errs on (~x, ~y) given the
random string is r2. Furthermore, for every (x, y) ∈ {0, 1}n × {0, 1}n and for every possible
random string r = (r1, r2), where r1 = (i, (~u,~v)) ∈ [`] × {0, 1}n(`−1) × {0, 1}n(`−1) and
r2 ∈ {0, 1}∗, let I(x, y, r) = J(aug [~u, x, i] , aug [~v, y, i] , r2). Let I(x, y) , E

r
[I(x, y, r)] for

every (x, y) ∈ {0, 1}n × {0, 1}n.

I Claim 16. E
(x,y)∼ρ

[I(x, y)] ≤ ε.

Proof.

E
(x,y)∼ρ

[I(x, y)] = E
(x,y)∼ρ

[
E

i∼Unif{[`]}

[
E

(~u,~v)∼ρ`−1

[
E
r2

[J(aug [~u, x, i] , aug [~v, y, i] , r2)]
]]]

≤ E
(~x,~y)∼ρ`

[
E
r2

[J(~x, ~y, r2)]
]
≤ ε,

where the last inequality holds since π is an expected randomized (ρ`, ε)-distributional
protocol for f ` in M4. J

To conclude, Claim 15 and Claim 16 show that τ is indeed an expected randomized distribu-
tional protocol for f with the desired properties, and together they imply Lemma 14. J

Proof of Theorem 12. As promised in Theorem 4, let ρ be a distribution on {0, 1}n×{0, 1}n

that satisfies D(ρ,2(δ+
√
ε)) (f) = Rpub (f, 2 (δ +

√
ε)). We therefore have that

Rpub (f, 2 (δ +
√
ε
))

= D(ρ,2(√ε+δ)) (f) (by choice of ρ)

≤ R(ρ,√ε+δ) (f,√ε+ δ
)

(Theorem 8)

≤ 1
δ2R

ρ (f, ε) (Theorem 9)

≤ 1
δ2

1
`
Rρ

`

4
(
f `, ε

)
(Theorem 14)

≤ 1
δ2

1
`
Rpub

4
(
f `, ε

)
, (Observation 7)

and the theorem holds. J

4 One-Round Communication

In this section, we consider several definitions of one-round communication protocols in
our models, and examine the connections between them. We prove that savings cannot
be obtained in M3, M4, and M5 when considering one-round protocols, for any complexity
measure (that is, deterministic, nondeterministic, and randomized). However, we prove that,
under a certain definition of one-round protocols in M2, gaps can be found between M2 and
M3 in the private-coin randomized setting and, if search problems are taken into account,
then gaps can also be found between M1 and M2 in the deterministic setting.

4.1 M3, M4 and M5 in the One-Round Setting
I Definition 17. Let P be a computational problem, ` ≥ 1, and k ∈ {3, 4, 5}.
A protocol π in Mk is a one-round protocol if Alice does not send a message to any of the
Bobs in any execution of the protocol. Given a complexity measure C, let C1

k

(
P `
)
denote
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the cost of the best one-round protocol that solves P ` in Mk with respect to the measure C.
Furthermore, let C1(P ) , C1

5 (P ) denote the cost of the best one-round protocol that solves
P in the two-party setting with respect to the measure C.

Since the Bobs in M3, M4, and M5 cannot hear each other directly in these models then,
when considering one-round protocols, the message sent by each Bobi is independent of the
messages sent by the other Bobs. The following is therefore fairly easy to prove:

I Observation 18. C1
k(P `) ≥ ` ·C1(P ), for any k ∈ {3, 4, 5}, any computational problem P ,

any ` ≥ 1, and any complexity measure C (i.e. C ∈ {D,N ,R, . . . }).

4.2 M2 in the One-Round Setting
Contrary to the models M3, M4, and M5, the Bobs are able to hear one another in M2. This
property of M2 allows for several possible variations on one-round protocols:
1. One-message-each protocols, where each Bob sends one message to Alice. However, the

messages are sent sequentially, as opposed to simultaneous protocols. Namely, each Bob
can hear all messages sent by Bobs whose turn preceded his. The identity of the next
speaker is determined by the previous messages sent in the protocol and, in the public-coin
randomized setting, by the public randomness as well. Therefore, the order in which the
Bobs speak may vary between different executions of the protocol.

2. Bobs-only protocols where Alice does not send any message but the Bobs are unconstrained,
and can exchange as many messages as they wish. We remark that these are not one-round
protocols per se, since the speaker may change multiple times. This collective view of the
Bobs is reasonable since M2 is an asymmetric model, in which Alice plays a different role
than the Bobs.

I Definition 19. Let P be a communication problem and let ` ∈ N. Let C be any complexity
measure. Let C1

2
(
P `
)
denote the cost of the best one-message-each protocol that solves P `

in M2 with respect to the measure C, and let CB2
(
P `
)
denote the cost of the best Bobs-only

protocol that solves P ` in M2 with respect to the measure C.

4.2.1 The Randomized Case
4.2.1.1 The Public-Coin Setting

The following claim proves that if public-coin randomness is allowed, then M2 and M5 are
essentially equivalent when considering Bobs-only communication complexity, and significant
gaps between them cannot be found with respect to this measure.

I Claim 20. R1,pub (f, 2(
√
ε+ δ)) ≤ 1

δ2
1
`R

B,pub
4

(
f `, ε

)
for any f , `, and ε, δ ∈ (0, 1) that

satisfy 2(
√
ε+ δ) ≤ 1.

This claim, and its proof, resemble Theorem 12. In the proof of Theorem 12, a protocol τ
that computes f in the two-party setting was constructed from a protocol π that computes
f ` in M4. Intuitively, the two parties in τ choose a uniformly random i ∈ [`] and simulate
the i’th channel of π. Hence, |τ | = O

( 1
` |π|

)
by an averaging argument.

Let us try to extend this argument to M2. As before, to avoid confusion, we refer to the
two parties in τ as Alice and Bob, and to the `+ 1 parties in π as Carol and Dans. Assume,
then, that π is a protocol for f ` in M2 (not necessarily a one-round protocol), and suppose
that Carol sends at most c bits and that the Dans send at most d bits (combined) in any run
of π. Since Carol uses broadcast communication in π, then the average number of bits sent
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between Carol and Dani in π is roughly c+ 1
`d, for a uniformly-sampled i ∈ [`]. However, c

might be very large in general protocols, and hence this averaging argument seems to provide
a very weak bound in the general case. However, if c = 0, i.e. if π is an Bobs-only protocol,
then |τ | = O( 1

`d) = O
( 1
` |π|

)
, as desired. Therefore, in the case of Bobs-only protocols, the

exact same construction of τ as in Theorem 12 proves Claim 20. The formal proof is almost
identical to that of Theorem 12, and is hence omitted.

4.2.1.2 The Private-Coin Setting

In the full version of the paper, we show that the equality function separates M3 from M4
in the unbounded-round private-coin setting, and that it also separates M2 from M3 in the
one-round setting when considering one-message-each protocols, where the lower bound on
M3 follows immediately from Observation 18 and the known fact that R1,priv (EQ, 1/3) ≥
Rpriv (EQ, 1/3) = Ω(logn) (see, e.g., [17]). Thus R1,priv

3

(
EQ`, ε

)
= Ω(` logn). As for the

upper bound on M2, it can be easily obtained using Newman’s transformation from the
public-coin setting to the private-coin setting [18]; we also show (in the full version) that
R1,pub (EQ, 1/3) = O(1) and also that R1,priv (f `, 1/3

)
= O

(
R1,pub (f `, 1/3

)
+ log(n`)

)
for

any function f and natural number `. Using amplification, we have that R1,pub
(

EQ`, 1/3
)

=

O(` log `), and conclude that R1,priv
2

(
EQ`, 1/3

)
= O (` log `+ log(n`)).

We remark that since Bobs-only protocols in M2 are stronger than one-message-each
protocols, then the gap presented also holds for Bobs-only protocols in M2.

4.2.2 The Deterministic Case
The previous subsection shows a gap between M2 and M3 when considering one-message-
each protocols in the private-coin setting. However, M2 seems to behave differently in the
deterministic setting, as suggested by the following claim:

I Claim 21. D1
2
(
P `
)
≥ ` · D1(P ), for any computational problem P and any ` ∈ N.

Proof sketch. By induction on `. The claim is clearly true for ` = 1. Let ` ≥ 2, and let π be
an optimal one-message-each protocol that solves P ` in M2. For every i ∈ [`], let mi denote
the i’th message in π. We separate into cases:

Case 1. Suppose there exists a valid prefix of the transcript m1, . . . ,m`−1 such that∑`−1
i=1 |mi| ≥ `−1

` |π|. In that case, we construct a protocol τ for P in the two-party setting by
fixing these messages and letting Bob play the role of the last party in π. The communication
complexity of τ is at most 1

` |π|, and hence |π| ≥ `C(P ).
Case 2. Suppose that every valid prefix of the transcriptm1, . . . ,m`−1 satisfies

∑`−1
i=1 |mi| <

`−1
` |π|. In that case, we construct a protocol τ for P `−1 in M2 (with one Alice and ` − 1

Bobs) by letting the Bobs play the roles of the first ` − 1 parties of π, and letting Alice
simulate the last Bob (with no communication). We therefore have that |τ | < `−1

` |π|. Since
we assumed π to be optimal, then clearly |π| ≤ `C(P ), and we thus get |τ | < (`− 1)C(P ),
in contradiction to the induction hypothesis. J

Claim 21 shows that no gaps can be found between M2 and M3 when considering one-
message-each protocols in the deterministic setting. We ask whether this is true for Bobs-only
protocols as well; namely,

I Question 22. Is it true that DB2
(
P `
)
≥ ` · D1(P ) for any P and any ` ≥ 1?
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4.2.2.1 Separating M1 from M2 for One-Message-Each Protocols

When considering the deterministic communication complexity of direct-sum problems, no
saving is known to be achievable for full functions in the two-party setting. However, some
saving can be achieved in the case of partial functions. In the rest of this section, we study
such an example in our models.

I Definition 23 (The NBA problem). Let n ∈ N. For every x = (u, v) ∈ {0, 1}n × {0, 1}n
and for every y ∈ {0, 1}n, the NBA function is defined as follows:

NBA(x, y) ,


undefined y /∈ {u, v} ∨ u = v

1 y = u

0 y = v

Intuitively, Alice knows the names of two NBA teams, u and v, that played against each
other last night. However, she does not know which of the teams had won the game. Bob,
on the other hand, knows the name of the winning team, y ∈ {u, v}, but not the name of its
opponent. The goal is for Alice to know which team had won the match.

The NBA problem was first studied in [19, 20], where it was called The League Problem,
and it was proved that D (NBA) = logn+ 1. Then, in [10], it was proved that some saving
can be achieved for its direct-sum version. In particular, an upper bound of O(`+ logn log `)
was shown. The protocol can also be run in M2 and M3, and seems to heavily rely on Alice’s
ability to see all ` instances together. Therefore, intuition would suggest that switching the
roles of Alice and Bob would put their ability to design a clever protocol for M2 in question.
We therefore define the Inverted-NBA problem:

I Definition 24 (The INBA problem). For every x ∈ {0, 1}n and y ∈ {0, 1}n × {0, 1}n, the
Inverted-NBA function is defined to be INBA(x, y) , NBA(y, x).

I Example 25. Consider the INBA partial function. We claim that it presents a deterministic
gap between M1 and M2 in the one-round setting. In particular, we examine one-message-
each protocols in M2. The lower bound in M2 follows from Claim 21 and the fact that
D (NBA) = logn + 1, which together prove that DB2

(
INBA`

)
≥ ` logn. For the upper

bound on M1, we first claim that any protocol that computes NBA` in M1 can also be used
to compute INBA` in M1, simply by switching the roles of Alice and Bob. Furthermore, we
claim (without proof) that the protocol presented in [10] can be easily turned into a one-round
protocol for INBA` in M1, and thus conclude that D1

1

(
INBA`

)
= O(` + log ` logn). The

argument appears at length and in greater detail in the full version of the paper.

Proving that DB
2

(
INBA`

)
= Ω (` logn) would strengthen the gap presented in the

example above. We conjecture that the INBA problem remains hard in M2 even in the
unbounded-round setting. That is: D2

(
INBA`

)
= Ω (` logn).

5 Conclusions and Future Work

In this work, we suggest a new approach to the study of two-party direct-sum questions in
communication complexity. Future work may extend our approach in several directions.

One such direction would be to try and find more gaps and equivalences between the
models we proposed with respect to various complexity measures; for instance, one may try
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to extend Theorem 12 and prove that savings cannot be obtained in M4 with respect to other
measures, e.g. deterministic communication complexity. This would support our intuition
that “point-to-point communication is hard”. Another example is to try and separate M1
and M2 with respect to private-coin randomized setting. To the best of our knowledge, all
currently known savings in this setting utilize Newman’s transformation which also applies
to the models M2 and M3. Therefore, the current techniques cannot be used to separate
M1 and M2. Another interesting direction, that would require devising new functions for
which savings can be obtained in the classical two-party direct-sum setting, would be to try
to separate M1 from M2 with respect to private-coin randomized communication complexity.
One may also consider a variant of the public coin randomized setting in which there is a
common random string on each communication line, that is, Alice and Bobi share a random
string ri. It may be interesting to study the connection between our five models in this
setting, and compare it to other settings, e.g. to the public coin setting we discuss in the
paper (in which there is one global random string, shared by all parties).

Finally, one can examine the two-party direct-sum question through the lens of other
multiparty models, such as more complicated bipartite communication graphs (where one
side has k Alices and the other side has t Bobs) or the clique network. Understanding these
questions may also shed new light on the source of hardness of classical direct-sum questions
in two-party communication complexity.
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