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Abstract
The coalescence protocol plays an important role in the population protocol model. The con-
ceptual structure of the protocol is for two agents holding two non-zero values a, b respectively
to take a transition (a, b) → (a + b, 0), where + is an arbitrary commutative binary operation.
Obviously, it eventually aggregates the sum of all initial values. In this paper, we present a fast
coalescence protocol that converges in O(

√
n log2 n) parallel time with high probability in the

model with an initial leader (equivalently, the model with a base station), which achieves an
substantial speed-up compared with the naive implementation taking Ω(n) time.
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1 Introduction

A passively-mobile system, which is an abstract notion of wireless ad-hoc networks, consists of
a collection of moving objects (called agents) in a certain region, with computing devices that
do not control over how they move. Despite the restrictions on communication range, memory,
and computational power caused by the mobility requirement, the devices must execute
cooperatively some task through tiny local computation and short-range communication with
other devices located nearby. Typical examples of passively-mobile systems are the network
of smart devices attached to cars or animals. Population protocol is one of the promising
models for such a system, which is first introduced by Angluin et al. [2]. A Population
protocol consists of anonymous and identical n agents, which are defined as deterministic
state machines. The communication among agents is performed by pairwise interactions,
where two interacting agents change their states following a transition function (protocol)
deployed to all agents. An execution of a population protocol is a sequence of pairwise
interactions. In the basic model, the scheduling of interactions is worst-case but guaranteed
to be fair, which means that if in the infinitely-many interactions every two agents interact
infinitely often.

Recent trends of this model are to design fast protocols for popular problems (e.g. leader
election, majority) converging in O(polylog(n)) time, and to reveal trade-offs between time
and space for several problems. To measure time in the runs of the population protocol
models, the (uniform) probabilistic scheduler is often assumed. In the model, two agents
interacting at each step are selected at random uniformly and independently. In the literature

© Ryota Eguchi and Taisuke Izumi;
licensed under Creative Commons License CC-BY

31st International Symposium on Distributed Computing (DISC 2017).
Editor: Andréa W. Richa; Article No. 49; pp. 49:1–49:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/132422712?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.DISC.2017.49
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


49:2 Brief Announcement: Fast Aggregation in Population Protocols

of this model, time complexity is defined as the number of interactions divided by the number
of agents n, and space complexity is the number of states used by each agent.

We consider some abstract problem, called the aggregation problem. Precisely, the
aggregation problem is defined by any monoid (X, +), where initially each agent i has a
value xi ∈ X, and eventually one specific agent must output the value of s =

∑
i xi. This

problem can be solved by the traditional coalescence protocol, whose transition rule for two
agents with values a and b respectively is specified by (a, b)→ (a + b, 0). One can see that,
the standard coalescence protocol needs Θ(n) time for convergence, since the probability
that the last two agents having non-zero values interact is 1/n2.

In this paper, we present a new coalescence protocol. It achieves O(
√

n log2 n)-convergence
time in the special model with existence of one unique leader (equivalently, the model with
a base station). On the space complexity side, agents (including the leader) uses O(|X|3)
states.

Problem Statement

Let (X, +) be an arbitrary commutative monoid whose identity element is zero (where + is
not necessarily the standard arithmetic sum), and X̂ = X \ {0}. In the aggregation problem
for (X, +), each agent i initially has a value xi ∈ X, and the goal of the task is that the
leader computes the value s =

∑
i xi. More precisely, we assume that the leader equips an

output register storing a value in X. The value of the output register must be converged
and stabilized into s. Note that the leader does not have to detect the termination of an
execution, and is allowed to update answers multiple times. The computation time of the
aggregation problem is defined as the time taken until the convergence of the output register.

Outline of Our Algorithm

Our algorithm utilizes several algorithmic tools proposed in past literature as building blocks.
Before the presentation of our protocol, we illustrate three tools. The first algorithm called
epidemics (or propagation) is a straightforward subroutine used in many algorithms. The
abstract structure of the epidemics is as follows: At first there are at least one agent with
value v, which wishes to propagate v to all other agents, and the other agents initially with
value ⊥. The transition rule is (v,⊥) or (⊥, v) to (v, v). The analysis by Angluin et al. [3]
shows that under the random scheduler the epidemics algorithm finishes within O(log n)
parallel time with high probability.

The second tool is a synchronization mechanism called phase clock which counts approxi-
mately O(log n) time or O(log2 n) time. The phase clock is first presented in the paper by
Angluin et al. [3]. The phase clock is mainly introduced for a unique leader to detect the
end of the epidemics (i.e. O(log n) time), and by a simple extension, it is also possible to
count O(log2 n) time [4]. A non-trivial advantage of the phase clock mechanism is that it
uses only O(1) states per agent.

The third tool is synthetic coin flips due to Alistarh et al. [1], which provides the
accessibility of private random bits to each agent. It gives a coin flipping mechanism with
reasonably small bias to the agents. The randomness of the synthetic coin flips is extracted
from the random interaction-pattern of the scheduler, and thus it works only on the random
scheduler.

The idea of our algorithm is very simple: The bottleneck of the standard coalescence
algorithm is the situation where the number of agents with non-zero values becomes small. If
only m agents have non-zero values, an interaction selected by the scheduler gets no progress
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of the algorithm with probability 1−Θ((m/n)2). In the naive coalescence algorithm, spending
O(
√

npolylog(n)) parallel time, Θ(
√

n) agents still have non-zero values. To accelerate the
following coalescence process, when only O(

√
n) agents have non-zero values, we utilizes

another mechanism, called sequential absorption. The sequential absorption first chooses
an agent (which is not leader) with a non-zero value as an absorption agent only spending
O(log n) parallel time. This process is achieved by utilizing the phase clock and the synthetic
coin flips: At each phase, the agents with non-zero values flip the synthetic coin, the agents
which get value 1 start epidemics, and the epidemics kill the agents with value 0. The number
of phases to elect one unique absorption agent is O(log n), thus the total time to elect the agent
is O(log2 n). The absorption agent runs the epidemics its value, and immediately become
an agent with value zero. The value reaches to the leader within O(log n) time. Repeating
this procedure Θ(

√
n) times, we can complete the aggregation. Since both the election

and epidemics take O(log2 n) time, the total running time of the sequential absorption is
O(
√

n log2 n). The remaining issue is to combine those two algorithms. While the sequential
composition is obviously correct, it requires the timer for (exactly or approximately) counting
Θ(
√

n) parallel time. To avoid consuming extra memory space, instead we choose fair
composition, that is, simply running them concurrently. This composition does not affect
the correctness of our protocol, since the absorption agent behave following way so that
the value of the sum does not change: When the absorption agent with value xi detect its
uniqueness by the phase clock counting O(log2 n) time, it immediately change its state to
the value zero, and thus xi is never aggregated in the standard coalescence side. Here we
present our main theorem. Note that our algorithm have a low probability of error, that is
conversely the algorithm convergences only with high probability.

I Theorem 1. Our algorithm solves an aggregation problem for (X, +) in expected
O(
√

n log2 n) time using O(|X3|) states per agent, with high probability.

Discussion and Research Direction

In [2], authors show the simple coalescence protocol can compute semilinear predicates, which
are exact characterization of the basic population protocol model, and thus our protocol
computes the predicates in O(

√
n log2 n) time. However for computation of semilinear

predicates with leader, there is much faster protocol presented by Angluin et al. [3] which
converges in O(log4 n) time with high probability. We believe that due to its simplicity and
generality, there are some applications of our algorithm in population protocol models.
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