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Abstract
We revisit the hardness of approximating the diameter of a network. In the CONGEST model,
Ω̃(n) rounds are necessary to compute the diameter [Frischknecht et al. SODA’12]. Abboud et al.
[DISC 2016] extended this result to sparse graphs and, at a more fine-grained level, showed that,
for any integer 1 ≤ ` ≤ polylog(n), distinguishing between networks of diameter 4`+ 2 and 6`+ 1
requires Ω̃(n) rounds. We slightly tighten this result by showing that even distinguishing between
diameter 2`+ 1 and 3`+ 1 requires Ω̃(n) rounds. The reduction of Abboud et al. is inspired by
recent conditional lower bounds in the RAM model, where the orthogonal vectors problem plays
a pivotal role. In our new lower bound, we make the connection to orthogonal vectors explicit,
leading to a conceptually more streamlined exposition. This is suited for teaching both the lower
bound in the CONGEST model and the conditional lower bound in the RAM model.
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1 Introduction

In distributed computing, the diameter of a network is arguably the single most important
quantity one wishes to compute. In the CONGEST model, where in each round every vertex
can send to each of its neighbors a message of size O(logn), it is known that Ω̃(n) rounds
are necessary to compute the diameter [3] even in sparse graphs [1], where n is the number
of vertices. With this negative result in mind, it is natural that the focus has shifted towards
approximating the diameter. In this note, we revisit hardness of computing a diameter
approximation in the CONGEST model from a fine-grained perspective.

The current fastest approximation algorithm [4], which is inspired by a corresponding
RAM model algorithm [5], takes O(

√
n logn+D) rounds and computes a 3

2 -approximation
of the diameter, i.e., an estimate D̂ such that b 2

3Dc ≤ D̂ ≤ D, where D is the true diameter.
In terms of lower bounds, Abboud, Censor-Hillel, and Khoury [1] showed that Ω̃(n) rounds
are necessary to compute a ( 3

2 − ε)-approximation of the diameter for any constant 0 < ε < 1
2 .

At a more fine-grained level, they show that, for any integer 1 ≤ ` ≤ polylog(n), at least
Ω̃(n) rounds are necessary to decide whether the network has diameter 4` + 2 or 6` + 1,
thus ruling out any “relaxed” notions of ( 3

2 − ε)-approximation that additionally allow small
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44:2 More Fine-Grained Diameter Reductions

additive error. We tighten this result by showing that, for any integer ` ≥ 1, at least Ω̃(n)
rounds are necessary to distinguish between diameter 2`+ 1 and 3`+ 1.

The reduction of Abboud et al. [1] is inspired by recent work on conditional lower
bounds in the RAM model, where the orthogonal vectors problem plays a pivotal role. In
particular, the Orthogonal Vectors Hypothesis (OVH) is a weaker “polynomial-time analogue”
of the Strong Exponential Time Hypothesis (SETH); it is well-known that SETH implies
OVH. In our new lower bound, we make the connection to orthogonal vectors explicit: we
consider a communication complexity version of orthogonal vectors that we show to be
hard unconditionally by a reduction from set disjointness and then devise a reduction from
orthogonal vectors to diameter approximation. The latter reduction also has implications
in the RAM model. We show that under OVH, for any integer 1 ≤ ` ≤ no(1), there is
no algorithm that distinguishes between graphs of diameter 2` and 3` with running time
O(m2−δ) for some constant δ > 0, where m is the number of edges of the graph. This
tightens the result of Cairo, Grossi, and Rizzi [2], who provide the same lower bound under
the stronger hardness assumption SETH. To summarize, our approach is more streamlined
than in previous works [3, 2, 1], allowing for a more unified view of CONGEST model and
RAM model lower bounds.

2 Reduction via Orthogonal Vectors

Set disjointness is a problem in communication complexity between two players, called
Alice and Bob, in which Alice is given an n-dimensional bit vector x and Bob is given an
n-dimensional bit vector y and the goal for Alice and Bob is to find out whether there is
some index k at which both vectors contain a 1, i.e., such that x[k] = y[k] = 1. The relevant
measure in communication complexity is the number of bits exchanged by Alice and Bob in
any protocol that Alice and Bob follow to determine the solution. A classic result states that
any such protocol requires Alice and Bob to exchange Ω(n) bits to solve set disjointness.

In the orthogonal vectors problem, Alice is given a set of bit vectors L = {l1, . . . , ln} and
Bob is given a set of bit vectors R = {r1, . . . , rn}, and the goal for them is to find out if
there is a pair of orthogonal vectors li ∈ L and rj ∈ R (i.e., such that, for every 1 ≤ k ≤ d,
li[k] = 0 or rj [k] = 0). We give a reduction from set disjointness to orthogonal vectors.

I Theorem 1. Any b-bit protocol for the orthogonal vectors problem in which Alice and
Bob each hold n vectors of dimension d = 2dlogne + 3, gives a b-bit protocol for the set
disjointness problem where Alice and Bob each hold an n-dimensional bit vector.

I Corollary 2. Any protocol solving the orthogonal vectors problem with n vectors of dimension
d = 2dlogne+ 3, requires Alice and Bob to exchange Ω(n) bits.

We now establish hardness of distinguishing between networks of diameter 2`+ q and 3`+ q,
where ` ≥ 1 and in the CONGEST model q ≥ 1, whereas in the RAM model q ≥ 0. To unify
the cases of odd and even `, we introduce an additional parameter p ∈ {0, 1} and change
the task to distinguishing between networks of diameter 4`′ − 2p + q and 6`′ − 3p + q for
integers `′ ≥ 1, q ≥ 0, and p ∈ {0, 1}. This covers the original question: if ` is even, then set
`′ := `/2 and p := 0 and if ` is odd, then set `′ := d`/2e and p := 1.

Given an orthogonal vectors instance 〈L := {l1, . . . , ln}, R := {r1, . . . , rn}〉 of d-dimen-
sional vectors and parameters ` ≥ 1, q ≥ 0, and p ∈ {0, 1}, we define an unweighted
undirected graph G := GL,R,`,p,q as follows. The graph G contains the following exterior
vertices: uL1 , . . . , uLn , uR1 , . . . , uRn , vL1 , . . . , vLn , vR1 , . . . , vRn , wL1 , . . . , wLd , wR1 , . . . , wRd , xL, xR,
yL, and yR. These exterior vertices are connected by paths as depicted in Figure 1, where
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Figure 1 Visualization of the graph G := GL,R,`,p,q used in our reduction from orthogonal vectors
to diameter distinction. The red, dashed edges encode the orthogonal vectors instance.

each path introduces a separate set of interior vertices. In particular, the instance 〈L,R〉 is
encoded as follows: for every 1 ≤ i ≤ n and every 1 ≤ k ≤ d, if li[k] = 1, then add a path
from vLi to wLk of length `, and if ri[k] = 1, then add a path from vRi to wRk of length `.

I Theorem 3. Let 〈L,R〉 be an orthogonal vectors instance of two sets of d-dimensional
vectors of size n each and let ` ≥ 1, p ∈ {0, 1}, and q ≥ 0 be integer parameters. Then
the unweighted, undirected graph G := GL,R,`,p,q has O(nd` + dq) vertices and edges and
its diameter D has the following property: if 〈L,R〉 contains an orthogonal pair, then
D = 6`− 3p+ q, and if 〈L,R〉 contains no orthogonal pair, then D = 4`− 2p+ q.

For the CONGEST model, observe that G has a small cut of size d+ 1 between its left
hand side and its right hand side. A standard simulation argument, where communication
between Alice and Bob is limited to messages sent along the small cut, yields our main result.

I Corollary 4. In the CONGEST model, any algorithm distinguishing between graphs of
diameter 2`+ q and 3`+ q when ` ≥ 1 and q ≥ 1 requires Ω(n/((`+ q) log3 n)) rounds.

In the RAM model, the Orthogonal Vectors Hypothesis (OVH) states that there is no
algorithm that decides whether a given orthogonal vectors instance contains an orthogonal
pair in time O(n2−δ poly(d)) for some constant δ > 0. Under this hardness assumption, our
reduction has the following straightforward implication.

I Corollary 5. In the RAM model, under OVH, there is no algorithm distinguishing between
graphs of diameter 2` + q and graphs of diameter 3` + q when ` ≥ 1 and q ≥ 0 in time
O(m2−δ/(`+ q)2−δ) for any constant δ > 0.
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