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Abstract
The Arrow protocol is a simple and elegant protocol to coordinate exclusive access to a shared
object in a network. The protocol solves the underlying distributed queueing problem by using
path reversal on a pre-computed spanning tree (or any other tree topology simulated on top of
the given network).

It is known that the Arrow protocol solves the problem with a competitive ratio of O(logD)
on trees of diameter D. This implies a distributed queueing algorithm with competitive ratio
O(s logD) for general networks with a spanning tree of diameter D and stretch s. In this work
we show that when running the Arrow protocol on top of the well-known probabilistic tree
embedding of Fakcharoenphol, Rao, and Talwar [STOC 03], we obtain a randomized distributed
online queueing algorithm with expected competitive ratioO(logn) against an oblivious adversary
even on general n-node network topologies. The result holds even if the queueing requests occur
in an arbitrarily dynamic and concurrent fashion and even if communication is asynchronous.
The main technical result of the paper shows that the competitive ratio of the Arrow protocol is
constant on a special family of tree topologies, known as hierarchically well separated trees.
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1 Introduction

Coordinating the access to shared data is a fundamental task that is at the heart of almost
any distributed system. For example, when implementing a distributed shared memory
system on top of a message passing system, each shared register has to be kept in a coherent
state despite possibly a large number of concurrent requests to read or write the shared
register. In a distributed transactional memory system, each transaction might need to
operate on several shared objects, which need to be kept in a consistent state [17, 26, 30].
When implementing a shared object on top of large-scale network, a distributed directory
protocol can be used to improve scalability of the system [1, 2, 4, 6, 7, 17, 26]. When a
network node requires access to a shared object, the directory moves a copy of the object
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to the node requesting the object. If the node changes the state of the shared object, the
directory protocol has to make sure that all existing copies of the object are kept in a
consistent state.

Distributed Queueing. At the core of many distributed directory implementations is the
following basic distributed queueing problem that allows the system to order potential
concurrent access requests to a shared object [15]. The nodes of a network issue queueing
requests (e.g., requests to access a shared object) in a completely dynamic and possibly
arbitrarily concurrent manner. A queueing protocol needs to globally order all the requests
so that they can be acted on consecutively. Formally, each request has to find its predecessor
request in the order. That is, when enqueueing a request r issued by some node v, a queueing
protocol needs to find the request r′ that currently forms the tail of the queue and inform
the node v′ of request r′ about the new request r. The cost of enqueueing request r after
request r′ is defined as the delay from when request r is issued until when the node v′ knows
that r is the successor request of r′.

The Arrow Protocol. A particularly simple and elegant solution for this distributed queue-
ing problem is given by the Arrow protocol, which was introduced independently (in slightly
different forms) by Naimi and Trehel, Raymond, as well as van de Snepscheut in the context
of distributed mutual exclusion [21, 24, 29]. The Arrow protocol operates on a directed tree
topology T = (V,E). In a quiescent state, the tree is rooted at the node u of the current tail
of the queue, i.e., all edges of T are directed towards u. When a new queueing request is
issued at a node v, the directions of the edges on the path between v and the previous tail u
are reversed so that the tree is now rooted at v. For a precise description of the protocol,
we refer to Section 2. It has been shown in [8] that the Arrow protocol correctly solves
the queueing problem even in an asynchronous system even if the requests are issued in a
completely dynamic and possibly concurrent way. Moreover, the Arrow protocol guarantees
that every request finds the node of its predecessor on a direct path (i.e., within D time
units if D is the diameter of T ). The overall cost of some queueing algorithm is the sum
of delays between when each request is issued and when its predecessor in the final order
knows about it. In [14], it was further shown that on a tree T , the overall cost of the Arrow
protocol for ordering a dynamic set of queueing requests is within a factor O(logD) of the
cost of an optimal offline queueing algorithm, which knows the request sequence in advance.1

Contribution. In the present paper, we strengthen the result of [14] and we show that when
run on the right underlying tree, the Arrow protocol is O(logn)-competitive even on general
n-node network topologies. The competitive ratio achieved by the Arrow protocol is the worst
case ratio between the cost of Arrow and the cost of an optimal offline ordering strategy. The
best previously known competitive ratio for the distributed queueing problem with arbitrarily
dynamically injected requests on general graphs is O(log2 n · logD) as shown in [27] for
the hierarchical schemes defined of [4, 26]. This shows that (under some assumptions), the
simple and elegant Arrow protocol outperforms all existing significantly more complicated
distributed queueing protocols. We note that our protocol is based on a randomized tree
construction and its competitive ratio is w.r.t. an oblivious adversary (i.e., the adversary
needs to determine the sequence of requests before the construction of the tree). Other

1 Note that this implies a competitive ratio of O(s · log D) for general graphs if a spanning tree T of
diameter D and stretch s is given.
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protocols with polylogarithmic competitive ratio are deterministic and they therefore also
work in the presence of an adaptive adversary. For a more detailed comparison of our results
with existing protocols, we refer to the discussion in Section 1.1.

More specifically, as our main technical result, we show that the Arrow protocol is O(1)-
competitive when it is run on a special class of trees known as hierarchically well separated
trees [5]. A hierarchically well separated tree (in the following referred to as an HST) with
parameter α > 1 is a weighted rooted tree, where on each level, all the nodes are at the
same distance to the root (the distance to the root depend on α and on the level) and all
the leaves are on the same level (and thus also at the same distance to the root). Further,
the edge lengths decrease exponentially (by a factor α per level) when going from the root
towards the leaves. The properties of HSTs as well as the way we utilize HSTs are formally
described in Section 2. When running Arrow on an HST T , we assume that all requests are
issued at the leaves of T . We show that the total cost of an Arrow execution on an HST T is
within a constant factor of the total cost of an optimal offline algorithm for the given set of
requests. Our result even holds if the communication on T is asynchronous.

I Theorem 1. Assume that we are given an HST T with parameter α = 2 and queueing
requests R that arrive in an arbitrarily dynamic manner at the leaves of T . When using the
Arrow protocol on tree T , the total cost for ordering the requests in R is within a constant
factor of the cost of an optimal offline algorithm for ordering the requests R on T . This even
holds if communication is asynchronous.

I Remark. Because the statement of the theorem applies to the general asynchronous case,
it also captures a synchronous scenario, where the delay on each edge is fixed, but might be
smaller than the actual weight of the edge in the HST. Such executions are relevant because
an HST T is often built as an overlay graph on top of an underlying network graph G, where
each edge of weight w in T is mapped to a path of length at most w in G and thus even in
a synchronous execution, the delay when sending a message across the edge of T might be
smaller than the weight of the edge.

For a precise description of the Arrow protocol and the definition of queueing cost, we refer
to Section 2. When combining Theorem 1 with the celebrated probabilistic tree embedding
of Fakcharoenphol, Rao, and Talwar [9], we get our main result for general graphs. In [9], it
is shown that there is a randomized algorithm that given an arbitrary n-point metric (X, d)
constructs an HST T such all points X are mapped to leaves of T , all distances in (X, d)
are upper bounded by the respective distances in T , and the expected distance between any
two leaves in T is within an O(logn) factor of the distance between the corresponding two
points in X. When constructing such an HST T for a given graph G and when assuming
an oblivious adversary2, this implies that the expected total cost of Arrow on T is within
an O(logn) factor of the optimal offline queueing cost on G. We also note that an efficient
distributed construction of the HST embedding of [9] has been given in [10].

I Theorem 2. Assume that we are given an arbitrary graph G = (V,E) and queueing requests
R that arrive in an arbitrarily dynamic manner at the nodes of G. There is a randomized
construction of an HST T that can be simulated on G such that when running Arrow on
T , we get a distributed queueing algorithm for G with expected competitive ratio at most
O(logn) against an oblivious adversary providing the sequence of requests. This even holds
if communication is asynchronous.

2 That is, when assuming that the sequence of requests is statistically independent of the randomness
used to construct the HST T or equivalently, if the adversary determines the sequence of requests before
the tree T is constructed.
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Organization of the Paper. The remainder of the paper is organized as follows. Section 2
formally defines the queueing problem, the Arrow protocol, as well as the cost model used
in our paper. The section also contains some lemmas that establish some basic properties
that are needed for the rest of the paper. Section 3 analyzes the cost of an optimal offline
algorithm on an HST T by relating it to the total weight of an MST defined on the set of
requests. In Section 4, we introduce a general framework to analyze the queueing cost of
distributed queueing algorithms on an HST T and the framework is applied to synchronous
executions of the Arrow protocol. For the analysis of asynchronous executions, we refer to
the full version of the paper [11]. Due to lack of space, we also need to omit most proofs
throughout the technical sections of the paper. All the missing proofs can also be found in
the full version [11].

1.1 Related Work
The Arrow protocol has been introduced (in somewhat different forms) by Naimi and Trehel,
Raymond, as well as van de Snepscheut [24] as a way to solve the mutual exclusion problem
in a network. The protocol was later reinvented by Demmer and Herlihy [8], who used Arrow
to implement a distributed directory [6]. Over the years, Arrow has been used and analyzed
in different contexts [14, 16, 18, 19, 22, 28]. The protocol has been implemented as a part
of Aleph Toolkit [16] and shown to outperform centralized schemes significantly in practice
[19]. Several other tree-based distributed queueing protocols that are similar to the Arrow
protocol have also been proposed in the literature. A protocol that combines the ideas of
Arrow with path compression has been implemented in the Ivy system [20]. The amortized
cost to serve a single request is only O(logn) [12], however the protocol needs a complete
graph as the underlying network topology. There are also other similar protocols that operate
on fixed trees. The Relay protocol [30] has been introduced as a distributed transactional
memory protocol. It is run on top of a fixed spanning tree similar to Arrow, however to more
efficiently deal with aborted transactions, it does not always move the shared object to the
node requesting it. Further, in [2], a distributed directory protocol called Combine has been
proposed. Combine runs on a fixed overlay tree and it is in particular shown in [2] that
Combine is starvation-free.

The first paper to study the competitive ratio of concurrent executions of a distributed
queueing protocol is [15]. The paper shows that in synchronous executions of Arrow on a
tree T , if all requests are issued at time 0 (known as one-shot executions), the total cost of
Arrow is within a factor O(log |R|) compared with the optimal queueing cost on tree T . This
analysis has later been extended (and slightly strengthened) to the general concurrent setting
where requests are issued in an arbitrarily dynamic fashion. In [14], it is shown that in this
case, the total cost of Arrow is within a factor O(logD) of the optimal cost on the tree T .
Later, the same bounds have also been proven for the Relay protocol [30] and the Combine
protocol [2]. Typically, these protocols are run on a spanning tree or an overlay tree on top
of an underlying general network topology. While the cost of all these protocols is small
when compared with the optimal queueing cost on the tree, the cost of the protocols might
be much larger when compared with the optimal cost on the underlying topology. In this
case, the competitive ratio becomes O(s · logD), where s is the stretch of the tree. There are
underlying graphs (e.g., cycles) for which every spanning tree and even every overlay tree
has stretch Ω(n) [13, 23]. The fact that even the best spanning tree might have large stretch
initiated the work on distributed queueing protocols that run on more general hierarchical
structures. In [17], a protocol called Ballistic is introduced and analyzed for the sequential
and the one-shot case. Ballistic has competitive ratio O(logD), however the protocol requires
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the underlying distance metric to have bounded doubling dimension and it thus cannot be
applied in general networks. The best protocol known for general networks is Spiral, which
was introduced in [26]. Spiral is based on a hierarchy of overlapping clusters that cover the
graph. It’s general structure is thus somewhat resembling the classic sparse partitions and
mobile objects solutions by Awerbuch and Peleg [3, 4]. The competitive ratio of Spiral is
shown to be O(log2 n · logD) for sequential and one-shot executions in [26]. In [27], a general
framework to analyze the cost of concurrent executions of hierarchical queueing and directory
protocols has been presented. In particular, in [27], the competitive analysis of Spiral and
also of the classic mobile object algorithm of Awerbuch and Peleg [3, 4] has been extended to
the dynamic setting. In [14], it is sketched how the competitive analysis for Arrow generalizes
to the asynchronous case.

2 Model, Problem Statement, and Preliminaries

Communication Model. We consider a standard message passing model on a network
modeled by a graph G = (V,E). In some cases, the edges of G have weights w : E → R>0,
which are assumed to be normalized such that w(e) ≥ 1 for all e ∈ E. We distinguish
between synchronous and asynchronous executions. In a synchronous execution, the delay for
sending a message from a node u to a node v over an edge e connecting u and v is exactly 1
if the edge is unweighted and exactly w(e) otherwise. In an asynchronous execution, message
delays are arbitrary, however when analyzing an asynchronous execution, we assume that
the message delay over an edge e is upper bounded by the edge weight w(e) (or by 1 in the
unweighted case).

The Distributed Queueing Problem. In the distributed queueing problem on a graph
G = (V,E), a set R of queueing requests ri = (vi, ti) are issued at the nodes of V (every
node can issue multiple requests) in an arbitrarily dynamic fashion. The goal of a queueing
algorithm is to order all the requests. Specifically, if a request ri = (vi, ti) is issued at node
vi at time ti ≥ 0, the algorithm needs to enqueue the request ri by informing the node vj of
the predecessor request rj = (vj , tj) in the constructed global order. For this purpose, every
queueing algorithm in particular has to send (possibly indirectly) a respective message from
node vi to vj . We assume that at time 0, when an execution starts, the tail of the queue is
at a given node v0 ∈ V . Formally, this is modeled as a request r0 = (v0, 0) which has to be
ordered first by any queueing protocol. We sometimes refer to r0 as the dummy request. For
a set R′ of queueing requests (and sometimes by overloading notation also for a set of request
indexes), we define tmin(R′) and tmax(R′) to be the minimum and the maximum issue time t
of any request r = (v, t) ∈ R′, respectively.

The Arrow Protocol. The Arrow protocol [24] is a distributed queueing protocol that
operates on a tree network T = (V,E). At each point in time, each node v ∈ V has exactly
one outgoing link (arrow) pointing either to one of the neighbors of v or to the node v itself.
In a quiescent state, the arrow of the node of the request at the tail of the queue points
to itself and all other arrows point towards the neighbor on the path towards the tail of
the queue (i.e., the tree is directed towards the current tail). When a new request at a
node v ∈ V occurs, a “find predecessor” message is sent along the arrows until it finds the
predecessor request. While following the path to the direction of the arrows are reversed.
More formally, a request r at node v is handled as follows.

DISC 2017
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1. If the arrow of v points to v itself, r is queued directly behind the previous request
issued at v. Otherwise if the arrow points to neighbor u, atomically, a “find predecessor”
message (including the information about request r) is sent to u and the arrow of v is
redirected to v itself.

2. If a node u receives a “find predecessor” message for request r from a neighbor w, if the
arrow of u points to itself, atomically, the request r is queued directly behind the last
request issued by node u and the arrow of u is redirected to node w. Otherwise, if the
arrow of u points to neighbor x, atomically, the “find predecessor” message is forwarded
to node x and the arrow of node u is redirected to node w.

For a more detailed description of the Arrow protocol and of how Arrow handles concurrent
requests, we refer the reader to [8, 14]. It was shown in [8] that the Arrow protocol correctly
orders a given sequence of requests even in an asynchronous network. Moreover as shown in
[8, 14], when operating on tree T , the protocol always finds the predecessor of a request on
the direct path on T . As a result, if two requests r′ and r are at distance d on T and if r′
is the predecessor of r in the queueing order, the “find predecessor” message initiated by
request r finds the node of request r′ in time exactly d in the synchronous setting and in
time at most d in the asynchronous model. Further, it is shown in [14] that the successor
request of a request r at node v in the queue is always the remaining request r′′ that first
reaches v on a direct path. This “greedy” nature of the Arrow ordering was used in [15],
where it was shown that in the one-shot case when all requests occur at time 0, the Arrow
order corresponds to a greedy (nearest neighbor) TSP path through requests, whereas an
optimal offline algorithm corresponds to an optimal TSP path on the request set. The
competitive ratio on trees then follows from the fact that the nearest neighbor heuristic
provides a logarithmic approximation of the TSP problem [25]. In [14], this analysis was
extended and it was shown that even in the fully dynamic case, it is possible to reduce the
problem to a (generalized) TSP nearest neighbor analysis. Formally, the greedy nature of
the Arrow protocol in the synchronous setting is captured by Lemma 7 in Section 3.

Hierarchically Well Separated Trees. The notion of a hierarchically well separated tree
(HST) was defined by Bartal in [5]. Given a parameter α > 1, an HST of depth h is a rooted
tree with the following properties. All children of the root are at distance αh−1 from the
root. Further, every subtree of the root is an HST of depth h − 1 that is characterized
by the same parameter α (i.e., the children 2 hops away from the root are at distance
αh−2 from their parents). The probabilistic tree embedding result of [9] shows that for
every metric space (X, d) with minimum distance normalized to 1 and for every constant
α > 1, there is a randomized construction of an HST T with a bijection f of the points
in X to the leaves of T such that for every x, y ∈ X, d(x, y) ≤ dT (f(x), f(y)) and such
that the expected tree distance E

[
dT (f(x), f(y))

]
= O(log |X|) · d(x, y). Further, an efficient

distributed implementation of the construction of [9] for the distances of a given network
graph was given in [10].

The main technical result of this paper is an analysis of Arrow on an HST T if all requests
are issued at leaves of T . Throughout the paper, the HST parameter α is set to α = 2. For
convenience, we number the levels of an HST T of depth h from 0 to h, where the level 0
nodes are the leaves and the single level h node is the root. For ` ∈ {0, . . . , h}, δ(`) := 2`+1−2
denotes the distance between two leaves for which the least common ancestor is on level `.

Cost Model. Assume when applying some queueing algorithm ALG to the dynamic set
of requests R, the requests are ordered according to the permutation πALG such that the
request ordered at position i in the order is rπALG(i) . For every i ∈ {1, . . . , |R| − 1}, we define
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the cost of ordering rπALG(i) after rπALG(i−1) as the time it takes the queueing algorithm ALG
to enqueue the request rπALG(i) as the successor of rπALG(i−1). More specifically, we assume
that request rπALG(i) can be enqueued as soon as the predecessor request rπALG(i−1) is in the
system and as soon as node vπALG(i−1) knows about request rπALG(i). Assume that algorithm
ALG informs node vπALG(i−1) (through a message) about rπALG(i) at time tALG(i). The cost
(latency) LALG(rπALG(i−1), rπALG(i)) incurred for enqueueing request rπALG(i) and the overall cost
(latency) costALG of ALG are then defined as follows.

LALG(rπALG(i−1), rπALG(i)) := max
{
tALG(i), tπALG(i−1)

}
− tπALG(i), (1)

costALG(πALG) :=
|R|−1∑
i=1

LALG(rπALG(i−1), rπALG(i)). (2)

We next specify the above cost more concretely for Arrow and for an optimal offline algorithm.
Assume that we have an execution A of the Arrow protocol that operates on a tree T . Let
πA be the ordering induced by the Arrow execution A. When the “find predecessor” message
of a request rπA(i) arrives at the node of the predecessor request rπA(i−1), clearly the request
rπA(i−1) has already occurred and thus we always have LA(rπA(i−1), rπA(i)) = tA(i)− tπA(i)
for any Arrow execution. Further note, that in a synchronous execution of arrow on tree T ,
because Arrow always finds the predecessor on the direct path, this latency cost is always
equal to the distance between the respective nodes in T .

When studying the cost of an optimal offline queueing algorithm O, we assume that O
knows the whole sequence of requests in advance. However, O still needs to send messages
from each request to its predecessor request. The message delays are not under the control
of the optimal offline algorithm. When lower bounding the cost of O, we can therefore
assume that all communication is synchronous even in the asynchronous case. Note that a
synchronous execution is a possible strategy of the asynchronous scheduler. When operating
on a graph G, the latency cost of O for ordering a request rj as the successor of a request
ri is then exactly LGO(ri, rj) = max {ti − tj , dG(vi, vj)}. As we analyze Arrow on an HST T

that is simulated on top of an underlying network G, we directly define the optimal offline
w.r.t. synchronous executions on the tree T as follows.

LTO(rπT
O(i−1), rπT

O(i)) := max
{
dT (vπT

O(i−1), vπT
O(i)), tπT

O(i−1) − tπT
O(i)

}
, (3)

costTO(πTO) :=
|R|−1∑
i=1

LTO(rπT
O(i−1), rπT

O(i)). (4)

The ordering πO is chosen such that the total cost costTO(πO) in (4) is minimized. The next
lemma shows that when using the randomized HST construction of [9], the cost (4) is within
a logarithmic factor of the optimal offline cost on the underlying network graph G.

I Lemma 3. Assume T is an HST that is constructed on top of an n-node network graph G
by using the randomized algorithm of [9] and assume that there is a dynamic set of queueing
requests issued at the nodes of G. If the sequence of requests is independent of the randomness
of the randomized HST construction, the expected optimal total cost on T (as defined in (4))
is within a factor O(logn) of the optimal offline queueing cost on G.

Given Theorem 1 (which will be proven as the main technical result of the paper) and
Lemma 3, we immediately get Theorem 2. We note in light of the remark following the
statement of Theorem 1 in Section 1, the statement of Theorem 2 is also true for synchronous
executions on the underlying graph G.

DISC 2017
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Manhattan Cost. In the dynamic competitive analysis of Arrow on general trees in [14],
it has been shown that it is useful to study the optimal ordering w.r.t. to the following
Manhattan cost on a tree T between two queueing requests ri = (vi, ti) and rj = (vj , tj).

cTM(ri, rj) := dT (vi, vj) + |ti − tj |. (5)

As the cost function cM(ri, rj) defines a metric space on the request set, the problem of
finding an optimal ordering w.r.t. the cost cM(ri, rj) is a metric TSP problem.3 As a result,
we will for example use that the total weight of an MST on the set of request w.r.t. the weight
function cM(ri, rj) is within a factor 2 of the cost of an optimal TSP path. The following
definition is inspired by Lemma 3.12 in [14].

I Definition 4 (Condensed Request Set). A set R of queueing requests ri = (vi, ti) on a
tree T is called condensed if for any two requests ri = (vi, ti) and rj = (vj , tj) that are
consecutive w.r.t. time of occurrence, there exists requests ra = (va, ta) and rb = (vb, tb) such
that ta ≤ ti, tb ≥ tj , and dT (va, vb) ≥ tb − ta.

It is shown in [14] that for condensed request sets, the total optimal Manhattan cost is
within a constant factor of the optimal offline queueing cost.

I Lemma 5 (Lemma 3.17 in [14] rephrased). If the request set R is condensed, then on any
tree T and for every ordering π on the requests, it holds that

|R|−1∑
i=1

cTM(rπ(i−1), rπ(i)) ≤ 12 ·
|R|−1∑
i=1

LTO(rπ(i−1), rπ(i)).

For synchronous executions on trees, it is also shown in [14] that every request set R can
be transformed into a condensed request set without changing the ordering (and the cost) of
Arrow and without increasing the optimal offline cost.

I Lemma 6 (Lemma 3.11 in [14] rephrased). Let R be a set of queueing requests issued on a
tree T and let ri = (vi, ti) and rj = (vj , tj) be two requests of R that are consecutive w.r.t.
time of occurrence. Further, choose two requests ra = (va, ta) with ta ≤ ti and rb = (vb, tb)
with tb ≥ tj minimizing δ := tb− ta− dT (va, vb). If δ > 0, every request r = (v, t) with t ≥ tj
can be replaced by a request r′ = (v, t− δ) without changing the synchronous Arrow order and
without increasing the optimal offline cost.

Lemma 6 implies that every request set R can be transformed into a condensed set R′
without changing the synchronous order of Arrow and without increasing the optimal offline
cost. For the analysis of Arrow in synchronous systems, we can thus w.l.o.g. assume that the
request set is condensed.

3 Analysis of the Optimal Offline Cost

This and the next section discuss the main technical contribution of the paper and analyzes
the total cost of a synchronous Arrow execution when run on an HST T . Throughout this
section, we assume that a fixed HST T , a set of dynamic requests R placed at the leaves of T ,
and a synchronous execution of Arrow with request set R on T are given. For convenience, we

3 The relation of Arrow and the TSP problem was already exploited in [14] when analyzing Arrow on
general trees.
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relabel the requests in R so that they are ordered according to the queueing order resulting
from the given Arrow execution on T . That is, we assume that for all i ∈ {0, . . . , |R| − 1},
request ri = (vi, ti) is the ith request in Arrow’s order. Note that r0 = (v0, 0) is still the
dummy request defining the initial tail of the queue. As discussed in Section 2, the Arrow
order can be seen as a greedy ordering in the following sense. Given the first i− 1 requests in
the order, the ith request ri is a request r = (v, t) from the subset of the remaining requests
that can reach the node vi−1 of request ri−1 first immediately sending a message at time t
from node v to node vi−1. This greedy behavior is captured by the following basic lemma.
For a more thorough discussion, we refer to [14].

I Lemma 7. Consider a synchronous execution of Arrow on tree T and consider two arbitrary
requests ri and rj for which 1 ≤ i < j (i.e., rj is ordered after ri by Arrow). Then it holds
that
1. ti + dT (vi−1, vi) ≤ tj + dT (vi−1, vj) and
2. ti ≤ tj + dT (vi, vj).

Before delving into the details of the analysis, we give a short outline. In the first step
in Section 3.1, we study the ordering generated by Arrow in more detail and show that it
implies a hierarchical partition of the requests R in a natural way. To simplify the next step,
Section 3.2 transforms the given HST T into a new tree such that inside each subtree, if
ordering the request by time of occurrence, the gap between the times of consecutive requests
cannot be too large (whenever such a gap is too large, we split the corresponding subtree
into two trees). Section 3.3 then shows that the optimal offline cost can be characterized by
the total Manhattan cost of a spanning tree that respects the hierarchical structure of the
HST T in a best given way. Finally, in Section 4, we give a general framework to compare
the queueing cost of an online distributed algorithm on an HST T to the optimal offline cost
on T and we apply this method to synchronous Arrow executions.

3.1 Characterizing Arrow By A Hierarchical Partition of R

We hierarchically partition the requests R according to the Arrow queueing order and the
hierarchical structure of the HST T . On each level ` of T , we partition the requests into
blocks, where a block of requests is a maximal set of requests that are ordered consecutively
by Arrow inside some level-` subtree of T . In the following, for non-negative integers s and
t, we use the abbreviations [s] := {0, . . . , s− 1} and [s, t] := {s, . . . , t}. Formally, instead of
partitioning the set of requests R directly, we partition the set of indexes [|R|]. Recall that
the requests in R are indexed consecutively according to the queueing order of Arrow.

I Definition 8 (Hierarchical Block Partition). For each level ` ∈ [0, h], we partition [|R|] into
n(`) blocks

{
b`0, b

`
1, · · · , b`n(`)−1

}
such that

1. each block is a consecutive set of integers (i.e., a consecutively ordered set of requests),
2. for every block b`i , all requests rp for p ∈ b`i are in the same level-` subtree of T , and
3. for all i, j ∈ [n(`)] and all p ∈ b`i and q ∈ b`j , i < j =⇒ p < q.
For each block b, we define the first request of b to be the one with min. index in b.

Note that for each level ` and for the first block of this level, the first request of the block
has index 0. The block partition defined in Definition 8 is illustrated in Figure 1. Figure
1a shows the blocks within the HST structure, whereas Figure 1b shows the hierarchical
partition induced by the blocks. To simplify the presentation of our analysis, we also define
a level −1 block b−1

i for each individual request ri. Note that we have n(−1) = |R|. The
following definition allows us to navigate through the block hierarchy.
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(a) Blocks within the same subtree.
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(b) Tree induced by the block hierarchy.

Figure 1 The partition of R. (a) An HST with height 2 and 5 leaves. The leaves issue requests
at different times. The issued requests by nodes v1, v2, and v3 are partitioned into the blocks b1

0
and b1

2 on level 1. These two blocks are called neighbor blocks at a subtree rooted at height 1. (b)
The corresponding 4 level-wise partition based on Arrow’s order that forms a parent-child relation
between the blocks on different levels. Blue boxes include the requests that are ordered first by
Arrow among all requests in blocks b0

i for all i ∈ [0, 9].

I Definition 9 (Children Blocks). The set of children blocks of a block b`i on a level ` ∈ [0, h]
is defined as child(b`i) :=

{
b`−1
j : b`−1

j ⊆ b`i
}
. Block b`i is called the parent block of each of

the blocks in child(b`i).

In Figure 1b, block b1
2 is the parent block of its children blocks b0

5 and b0
6. Block b1

1 has only
one child block b0

4 and thus b1
1 = b0

4.
The blocks

{
b`0, b

`
1, · · · , b`n(`)−1

}
of level ` belong to the subtrees rooted at height ` of the

HST T . Note that by the definition of the block partition, no two consecutive blocks at the
same level ` belong to the same level-` subtree of T . The next definition specifies notation
to argue about blocks of the same subtree of T .

I Definition 10 (Blocks of Same Subtree). If two blocks b`i and b`j belong to the same level-`
subtree of T , this is denoted by b̂`ib`j . Moreover, |b̂`ib`j | :=

∣∣{w : i < w < j ∧ b̂`ib
`
w holds

}∣∣.
Two blocks b`i and b`j are called neighbor blocks if b̂`ib`j and |b̂`ib`j | = 0.

In Figure 1a, blocks b0
0, b0

2, and b0
5 are within the same subtree rooted at node v1. Blocks

b0
0 and b0

5 are not neighbor blocks, however blocks b0
0 and b0

2, as well as blocks b0
2 and b0

5 are
neighbor blocks. The next lemma lists a number of simple properties of the block partition.

I Lemma 11. The hierarchical block partition of Def. 8 satisfies the following properties:
1. For every block b`i and for all p, q ∈ b`i , we have dT (vp, vq) ≤ δ(`).
2. For each level ` and all level-` blocks b`i and b`j, if b̂`ib`j holds, for any p ∈ b`i and q ∈ b`j,

we have dT (vp, vq) ≤ δ(`).
3. For each level ` and all level-` blocks b`i and b`j, if b̂`ib`j does not hold, for all p ∈ b`i and

q ∈ b`j, we have dT (vp, vq) ≥ δ(`+ 1).
4. Assume ` < h and consider two blocks b`i and b`j that have a common parent block b`+1

w , but
for which b̂`ib`j does not hold. Then, for all p ∈ b`i and q ∈ b`j , we have dT (vp, vq) = δ(`+1).

We have seen that in a synchronous Arrow execution, the latency cost for ordering request
ri+1 as the successor of ri is exactly the distance dT (vi, vi+1) between the nodes of the two
requests. The total cost of Arrow therefore directly follows from the structure of the block
partition.
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I Lemma 12. The total cost of a synchronous Arrow execution on the HST T with corre-
sponding hierarchical block partition is given by

costA(πA) =
h−1∑
`=0

(
n(`)− n(`+ 1)

)
· δ(`+ 1).

3.2 HST Conversion
We next provide a recursive (top-down) splitting procedure that converts the original HST
into a new HST with better properties. The conversion does not change the total cost of
ordering the requests by Arrow (in fact, it does not change the block partition). Further, the
total Manhattan cost of optimal offline algorithm’s order asymptotically remains unchanged
as well. We describe how the splitting procedure works and we then argue its properties.

Splitting Procedure. We describe the splitting procedure as it is applied to a subtree T ′
that is rooted at a given level ` ∈ {0, . . . , h} of T . If ` = 0, the tree T ′ is returned unchanged.
Otherwise (` ≥ 1), we go through all level-(`− 1) subtrees T ′′ of T ′. As long as the tree T ′′
has two neighbor blocks b`−1

i and b`−1
j (for i < j) for which the following condition (6) is

true, the subtree T ′′ is split into two separate subtrees T ′′1 and T ′′2 of T ′.

tmin(b`−1
j )− tmax(b`−1

i ) ≥ δ(`). (6)

The splitting of T ′′ into T ′′1 and T ′′2 works as follows. The topology of T ′′1 and T ′′2 is identical
to the topology of T ′′. Each request r = (v, t) that is issued at some node v of T ′′ is either
placed on the isomorphic copy of v in T ′′1 or in T ′′2 . All requests r in blocks b`−1

x of T ′′ for
x ≤ i are placed in tree T ′′1 and all request in blocks b`−1

y of T ′′ for y ≥ j are placed in tree
T ′′2 . We perform such splittings for trees T ′ of level ` as long as there are subtrees of T ′ on
level ` − 1 with neighbor blocks that satisfy Condition (6). As soon as no such neighbor
blocks exist, the procedure is applied recursively to all trees T ′′ at level `− 1 (incl. the new
subtrees). The conversion is started by applying the procedure to the complete HST T .

I Lemma 13. The above splitting procedure does not change the hierarchical block partition
and it thus also preserves Arrow’s queueing order πA and its total cost costA(πA).

The next lemma shows that if a tree T ′′ is split into two trees T ′′1 and T ′′2 such that all
requests in T ′′1 are ordered before all requests in T ′′2 , there is a significant time of occurrence
gap between the requests ending up in subtrees T ′′1 and T ′′2 .

I Lemma 14. Assume that we are performing a single splitting. Further, assume that we
are working on a tree T ′ on level ` and that we are splitting a subtree T ′′ of T ′ into T ′′1 and
T ′′2 such that T ′′1 obtains the blocks that are scheduled first by Arrow. If R1 and R2 are the
request sets of T ′′1 and T ′′2 , respectively, we have tmin(R2)− tmax(R1) ≥ δ(`)− δ(`− 1).

It remains to show that the splitting also does not affect the optimal offline cost in a significant
way. The following lemma shows that the Manhattan cost cM(r, r′) for any two requests r
and r′ can increase by at most a factor 3. Hence, also the total Manhattan cost of an optimal
ordering cannot increase by more than a factor 3.

I Lemma 15. For any two requests r and r′, the splitting procedure does not increase the
Manhattan cost cM(r, r′) by more than a factor 3.
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For the remainder of the analysis, we assume that the HST T is an HST that is obtained
after applying the splitting procedure recursively. We therefore assume that for every level `
and every subtree T ′ at level `, there is no level-(`− 1) subtree T ′′ of T ′ that contains two
neighbor blocks that satisfy Condition (6).

3.3 Lower Bounding The Optimal Manhattan Cost
In this section, we construct a tree S∗ that spans all requests in R. The tree S∗ has a nice
hierarchical structure: For each subtree T ′ of T , the set of edges of S∗ induced by the request
set of the subtree T ′ forms a spanning tree of the request set of T ′. Apart from this useful
structural property, we will show that the total Manhattan cost of the spanning tree S∗ is
within a constant factor of minimum spanning tree (MST) of the request set R w.r.t. the
Manhattan cost. We have seen that on condensed request sets, the optimal TSP path of
the request set w.r.t. the Manhattan cost is within a constant factor of the optimal offline
queueing cost. Note that because any TSP path is also a spanning tree, this implies that the
total Manhattan cost of the MST and thus also the total Manhattan cost of the tree S∗ are
lower bounding the optimal offline queueing cost within a constant multiplicative factor.

For convenience, we add one more level to the HST T . Instead of placing the requests at
the leaves on level 0, we assume that each level 0 node v has a child node on level −1 for
each of the requests issued at node v. Hence, the new leaf nodes are on level −1 and each
leaf node receives exactly one request.4 The distance between a level −1 node and its parent
on level 0 is set to be 0.

Spanning Tree Construction. The spanning tree S∗ is constructed greedily in a bottom-up
fashion. For each subtree T ′ of T , we recursively define a tree S∗(T ′) as follows. For the
leaf nodes on level −1, the tree consists of the single request placed at the node. For a tree
T ′ rooted at a node v on level ` ≥ 0, the tree S∗(T ′) consists of the recursively constructed
trees S∗(T ′′1 ), S∗(T ′′2 ), . . . of the subtrees T ′′1 , T ′′2 , . . . of T ′′ and of edges connecting the trees
S∗(T ′′1 ), S∗(T ′′2 ), . . . to a spanning tree of the set of requests issued at leaves of tree T ′. The
edges for connecting the trees S∗(T ′′1 ), S∗(T ′′2 ), . . . are chosen so that they have minimum
total Manhattan cost. That is, to connect the trees S∗(T ′′1 ), S∗(T ′′2 ), . . . , we compute an
MST of the graph we get if each of the trees S∗(T ′′i ) is contracted to a single node. We can
therefore for example choose the edges to connect the trees S∗(T ′′1 ), S∗(T ′′2 ), . . . in e greedy
way: Always add the lightest (w.r.t. Manhattan cost) edge that does not close a cycle with
the already existing edges, including the edges of the trees S∗(T ′′1 ), S∗(T ′′2 ), . . . .

MST Approximation. In the following, it is shown that the total Manhattan cost of the
tree S∗ = S∗(T ) is within a constant factor of the cost of an MST w.r.t. the Manhattan cost.
Where convenient, we identify a tree τ with its set of edges, i.e., we also use S∗ to denote
the set of edges of the tree S∗. Further, the cost of an edge e = {r, r′} is the Manhattan
cost cM(r, r′). We also slightly abuse notation and use cM(e) to denote this cost. The proof
applies a general MST approximation result that appears as Theorem A.1 in the full version
[11]. Together with the following lemma, Theorem A.1 of [11] directly implies that the total
Manhattan cost of S∗ is within a factor 4 of the MST Manhattan cost. For a subtree T ′ of
T , we use R(T ′) to denote the subset of the requests in R that are issued at nodes of T ′.

4 Note that subtrees of T that do not have any queueing requests can be ignored and therefore, we can
w.l.o.g. assume that every leaf node issues some queueing request.
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I Lemma 16. Consider the constructed spanning tree S∗ and consider an arbitrary edge e
of S∗. Let S∗1 and S∗2 the two subtrees that result when removing edge e from S∗. Further,
assume e∗ be an edge that connects the two subtrees S∗1 and S∗2 and that has minimum
Manhattan cost among all such edges. We then have cM(e) ≤ 4 · cM(e∗).

I Corollary 17. The total Manhattan cost of the spanning tree S∗ is at most 4 times the
total Manhattan cost of an MST spanning all the requests.

4 Analysis of the Online Queueing Cost

In this section, we give a general framework to compare the queueing cost of an online
queueing algorithm on HST T with the bound of the offline queueing cost as established in
Section 3. At the end of the section, we apply the method to analyze synchronous Arrow
executions on T . As in Section 3.3, for convenience, we add one more level to the HST T so
that each level 0 node v has a child node on level −1 for each of the requests issued at node
v. The new leaf nodes are on level −1 and each leaf node receives exactly one request.

We first state two basic locality properties of Arrow. We will then show that those
properties are sufficient to prove a constant competitive ratio compared to the optimal offline
queueing cost on T . We define the notion of a distance-respecting queueing order and the
notion of distance-respecting latency cost of a queueing algorithm.

I Definition 18 (Distance-Respecting Order). Let R be a set of requests ri = (vi, ti) is-
sued at the nodes of a tree T and let π be permutation on [0, |R| − 1]. The ordering
rπ(0), rπ(1), . . . , rπ(|R|−1) induced by π is called distance-respecting if whenever π(i) < π(j),
we have ti − tj ≤ dT (vi, vj).

I Definition 19 (Distance-Respecting Latency Cost). An online distributed queueing algorithm
ALG is said to have distance-respecting latency cost if for any request set R and any possible
queueing order πALG of ALG, for all 1 ≤ i < j < |R|, it holds that

tπALG(i) + LALG(rπALG(i),πALG(i−1)) ≤ tπALG(j) + dT (vπALG(j), vπALG(i−1)).

4.1 Constructing a Spanning Tree
As the first part of the online queueing cost analysis, we construct a new tree S that spans
all requests in R. It will be shown that the total Manhattan cost of S asymptotically equals
the total Manhattan cost of the tree S∗ constructed in the previous section.

We construct a new tree S on R based on an ordering π of the set of requests. We assume
that the ordering of the requests given by π is rπ(0), rπ(1), . . . , rπ(|R|−1). For each index i
with i ∈ [0, |R| − 2], we define the local successor as

next(i) := min
{
j ∈ [i+ 1, |R| − 1] : dT (vπ(i), vπ(j)) = min

k∈[i+1,|R|−1]
dT (vπ(i), vπ(k))

}
. (7)

Hence, among the requests ordered after rπ(i) by order π, next(i) is the position of a request
in the order π with minimum tree distance to vπ(i) and among those, of the first one ordered
by π. Note that this means that for all requests rπ(k) for which i < k < next(i), we have
dT (vπ(i), vπ(k)) > dT (vπ(i), vπ(next(i))) and for all requests rπ(k) for which k ≥ next(i), we
have dT (vπ(i), vπ(k)) ≥ dT (vπ(i), vπ(next(i))).

The spanning tree S is constructed as follows. For every request rπ(i) for all i ∈ [0, |R|−2],
we add the edge

{
rπ(i), rπ(next(i))

}
to the tree S. Note that S is indeed a spanning tree: If
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directing each edge from rπ(i) to rπ(next(i)), each node has out-degree 1 and we cannot have
cycles because next(i) > i. The following observation shows that in addition, S has the same
useful hierarchical structure as the tree S∗ constructed in Section 3.3.

I Observation 20. As the tree S∗, also the tree S has the property that for any subtree T ′
of T , the subgraph of S induced by only the requests at nodes in T ′ is a connected subtree
of S. This follows directly from the definition of the local successor rπ(next(i)). Except for
the last ordered request inside T ′, the local successor of any other request of T ′ is inside T ′
(because the local successor is a request with minimum tree distance). J

In light of Observation 20, for any subtree T ′ of T , we use S(T ′) to denote the subtree of
S induced by the requests issued at nodes in T ′.

4.2 Bounding the Manhattan Cost of the Spanning Tree
The following lemma shows that if the spanning tree S is constructed by using a distance-
respecting ordering π, the total Manhattan cost of the spanning tree S is asymptotically
equal the total Manhattan cost of S∗.

I Lemma 21. Let CM(S) and CM(S∗) be the total Manhattan costs of S and of S∗. If the
tree S is constructed using a distance-respecting ordering π, we have CM(S) ≤ 3 · CM(S∗).

4.3 Bounding the Total Latency Cost
It remains to prove the main claim and show that the total online queueing cost on the HST
T is within a constant factor of the optimal offline cost on T . The following theorem states
that this is generally true for algorithms with distance-respecting latency cost (Def. 19) and
which produce distance-respecting queueing orders (Def. 18), as long as the request set R is
condensed (Def. 4).

I Theorem 22. Assume that we are given an HST T and a condensed set of requests issued
at the leaves of R. Further, assume that we are given a distributed queueing algorithm
ALG that has distance-respecting latency cost and that always produces a distance-respecting
queueing order π. Then, the total latency cost of ALG is within a constant factor of the
optimal offline cost on T .

I Corollary 23. The total latency cost of a synchronous execution of Arrow on an HST T is
within a constant factor of the optimal offline queueing cost on T .

I Remark. The above corollary proves Theorem 1 (cf. Section 1) for synchronous executions
on the HST T . The full statement of Theorem 1 for general asynchronous executions is
proven in the full version of the paper [11]. There, it is shown that also for asynchronous
executions, Arrow has distance-respecting latency cost and produces distance-respecting
queueing orders. In addition, we also show that we can still restrict attention to condensed
request sets. The claim of Theorem 1 for the asynchronous case then follows from Theorem
22 in the same way as in the above corollary.
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