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Abstract
We revisit the problem of distributed consensus in directed graphs tolerating crash failures; we
improve the round and communication complexity of the existing protocols. Moreover, we prove
that our protocol requires the optimal number of communication rounds, required by any protocol
belonging to a specific class of crash-tolerant consensus protocols in directed graphs.
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1 Introduction

A crash-tolerant reliable consensus protocol [3] allows a set of n mutually distrusting parties,
each with some private input, to agree on a common output. This is ensured even in the
presence of a computationally unbounded centralized adversary, who may crash any f out
of the n parties and try to prevent the remaining parties from achieving consensus. While
most of the prior work in the literature (see [2, 1, 4] and their references) have considered
the undirected graph model, where parties are assumed to be a part of a complete undirected
graph, in [5], necessary and sufficient condition for crash-tolerant consensus is presented for
a more generic directed graph model. We revisit the round complexity of crash-tolerant
consensus protocols in the latter model.
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Informally, in directed graphs the necessary condition for crash-tolerant consensus demands
that even if an arbitrary set of f nodes crashes, there should still exist a special node in the
graph, called source, which should have a directed path to every other node in the remaining
graph. The authors in [5] proved the sufficiency of this condition by presenting two consensus
protocols, a consensus protocol for the binary domain and a multi-valued consensus protocol
for an arbitrary domain {0, . . . ,K}. These protocols belong to a special class of protocols,
based on “flooding”. In more detail, the protocols consist of several “phases” of d rounds
of “send-receive-update”, where d is called the crash-tolerant diameter of a directed graph.
Informally, d is the maximum distance of any node from a potential source in the graph. Thus
any given potential source can propagate its value to all remaining nodes in a single phase
within the d rounds of flooding. In a round every node (including the source) broadcasts its
value to its neighbours. At the end of the round, each node “updates” its value, by locally
applying an update function to the received values. In the subsequent round, nodes broadcast
their updated value. The two types of update function applied are a min function for a min
phase and a max function for a max phase. The min (resp. max) function requires nodes
to update their value by taking the minimum (resp. maximum) of all the received values
(including its own value).

The binary consensus protocol of [5] requires 2f + 2 alternate min-max phases, each with
d rounds. The round complexity of the protocol is (2f + 2) · d rounds and the communication
complexity is O(nfd) bits. In [5] the authors claimed that their binary consensus protocol
cannot be extended trivially to the multi-valued case. They present a multi-valued consensus
protocol, which requires (2f + 2) · d ·K rounds of interaction and communication complexity
is O(nfdK logK) bits. Clearly the protocol has exponential round and communication
complexity, as K = 2log K (K is the domain size).

Our Results. In this work, we improve the round and communication complexity of the
min-max based consensus protocols of [5]. We consider the binary consensus protocol of [5]
and observe that if instead of d, we allow d+1 rounds of communication in each of the phases,
then it is possible to achieve consensus with just f+2 alternate min-max phases, thus making
the round complexity (f + 2)(d+ 1). We then show an optimization of our protocol, where
we allow only d rounds in the first and the last phase, thus reducing the round complexity to
(f + 2)(d+ 1)− 2. Interestingly, we show that our protocol works even for the multi-valued
case, with no modifications what so ever. Thus, unlike [5], the round complexity of our
multi-valued consensus protocol is independent of K. The communication complexity of our
protocol is O(nfd logK) bits and for significantly large values of K our protocol improves
upon the round and communication complexity of the multi-valued consensus protocol of [5].
Moreover, we improve the number of rounds for the binary consensus, for every f, d ≥ 2.

We also address the problem of lower bound on the minimum number of rounds required
by any crash-tolerant consensus protocol in a directed graph, based on min-max strategy and
derive three interesting lower bounds. We first consider the case, where only f + 1 min-max
phases are allowed in the protocol and with no restriction on the number of communication
rounds in each phase. We show that it is impossible to achieve crash-tolerant consensus
within f + 1 phases. Next we consider min-max based consensus protocols with at least d
rounds in each phase. For such protocols, we show that it is impossible to achieve consensus
in general with (f + 2)(d + 1) − 3 rounds in total. This implies that our min-max based
protocol with (f + 2)(d+ 1)− 2 rounds is round optimal. Finally we consider min-max based
consensus protocols with exactly d rounds of communication in each phase. Note that the
consensus protocols of [5] belong to this class. For several values of f and d, we show that the
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minimum number of phases required to achieve consensus in this case is 2f + 2, thus showing
that the binary consensus protocol of [5] has the optimal number of communication rounds.
The lower bounds establish that our protocol is the best in terms of the round complexity if
one is interested to design consensus protocols based on min-max strategy.

High Level Description of Our Protocol. Our starting point is the binary consensus
protocol of [5] with 2f + 2 phases, each with d rounds. The correctness of their protocol is
based on the guaranteed occurrence of two consecutive crash-free phases, among the 2f + 2
alternate min-max phases, within which consensus is shown to be achieved. We observe that
if instead of d rounds, we allow d+ 1 rounds in each phase then consensus can be achieved if
we either have two consecutive crash-free phases or a crashed phase followed by a crash-free
phase, provided only one node crashes during the crashed phase. The base of our observation
is the following: if during the crashed phase the single node to be crashed is a non-source
node, then it is equivalent to having two consecutive crash-free phases (with source node(s)
being unaltered) and so consensus will be achieved within these two phases. On the other
hand, if during the crashed phase the single node to be crashed is a source node, then at
least one of new source nodes will be at a distance of one from the crashed source (this
observation lies at the heart of our protocol). So if at all the crashed source node sends its
value to one of the new source node before crashing, there will be still d rounds left for this
new source node in the crashed phase to further propagate the crashed source node’s value
in the remaining graph. So in essence, we still get the effect of two consecutive crash-free
phases. We further show that with f + 2 alternate min-max phases, there always exist either
two crash-free phases or a crashed phase with a single crash, followed by a crash-free phase.

We find that the above ideas are applicable even for the multi-valued case. For simplicity,
we consider the case when there are two crash-free phases and without loss of generality,
let these be a min phase followed by a max phase. Let λmin be the least value among the
source nodes at the beginning of crash-free min phase. If the non-source nodes have their
value greater than or equal to λmin at the beginning of this phase, then clearly consensus will
be achieved at the end of this min phase itself; this is because each node will update their
value to λmin at the end of the min phase. On the other hand, if some non-source node has a
value smaller than λmin at the beginning of the crash-free min phase, then consensus will not
be achieved in this phase. However, at the end of this min phase, the modified values of all
the nodes (both source as well as non-source) is upper bounded by λmin; moreover all the
source nodes will have λmin as their modified value. Hence in the next crash-free phase which
is a max phase, the value λmin of the source nodes will be the maximum value in the graph
and hence consensus will be achieved at the end of the crash-free max phase. The above
argument also works for the case when there is a crashed phase followed by a crash-free
phase, where it is guaranteed that exactly one node crashes during the crashed phase. The
complete formal details of the protocols and the lower bounds will be available in the full
version of the article.
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