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Abstract
Modern distributed systems often achieve availability and scalability by providing consistency
guarantees about the data they manage weaker than linearizability. We consider a class of such
consistency models that, despite this weakening, guarantee that clients eventually agree on a
global sequence of operations, while seeing a subsequence of this final sequence at any given point
of time. Examples of such models include the classical Total Store Order (TSO) and recently
proposed dual TSO, Global Sequence Protocol (GSP) and Ordered Sequential Consistency.

We define a unified model, called Global Sequence Consistency (GSC), that has the above
models as its special cases, and investigate its key properties. First, we propose a condition
under which multiple objects each satisfying GSC can be composed so that the whole set of
objects satisfies GSC. Second, we prove an interesting relationship between special cases of GSC–
GSP, TSO and dual TSO: we show that clients that do not communicate out-of-band cannot
tell the difference between these models. To obtain these results, we propose a novel axiomatic
specification of GSC and prove its equivalence to the operational definition of the model.
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1 Introduction

Modern distributed systems often achieve availability and scalability by providing consistency
guarantees about the data they manage weaker than the gold standard of linearizability [16].
In this paper we consider a class of such consistency models that, despite this weakening,
guarantee global operation sequencing: clients eventually agree on a global sequence of
operations, while seeing a subsequence of this final sequence at any given point of time.
An implementation of a service providing such a model may consist of a single server and
multiple clients, each maintaining a replica of the data managed by the service. Clients
accept operations from end-users, evaluate them on their local (possibly stale) data replica
and forward the operations to the server. The server arranges all received operations into a
totally ordered log and forwards them to clients in the order determined by the log. The
server log thus establishes the desired global sequence of operations.

Such consistency models arise in different domains. For instance, clients may correspond
to mobile devices, cloud servers or processor cores; the role of the server may be played by
an elected leader, a replicated state machine [26], a reliable total-order broadcast [11] or the
memory subsystem in a multiprocessor architecture [28]. Various models differ in whether
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23:2 Consistency Models with Global Operation Sequencing and their Composition

Table 1 Specialising GSC.

Implicit fences pull push
GSP [10] no no
TSO [24, 23] yes no
dual TSO [2] no yes
OSC [22] updates yes
linearizability [16] yes yes

the propagation of operations from clients to the server and vice versa is asynchronous or
synchronous. Thus, in the Global Sequence Protocol (GSP) model [10], the propagation is
asynchronous in both directions, which allows clients to execute operations even if they get
partitioned from the server [14]. This model is implemented in Microsoft’s TouchDevelop
system for mobile app programming, to support offline access [1], and in the Orleans actor
framework [6], to support geo-replication [5]. In the Total Store Order (TSO) model [24, 23],
implemented by SPARC and x86 multiprocessors, operation propagation from clients to
the server is asynchronous, but the one from the server to clients is synchronous: clients
pull all new operations from the server before evaluating each operation. Conversely, in
the dual TSO model [2] operation propagation from the server to clients is asynchronous,
but the one from the clients to the server is synchronous: clients push operations to the
server immediately after they are executed. If we strengthen dual TSO by requiring that
all update operations are propagated synchronously in both directions, we obtain Ordered
Sequential Consistency (OSC) [22], which captures the semantics of coordination services
such as ZooKeeper [18]. Finally, we obtain linearizability [16] when operation propagation is
synchronous in both directions.

In this paper we study key properties of the consistency models from the above class. To
this end, we consider a flexible model, called Global Sequence Consistency (GSC), that has
the above models as its special cases and obtain novel results about this model: a condition
for safely composing multiple GSC services and a certain interesting relationship between the
model’s special cases. The GSC model is defined by the above client-server protocol where
operation propagation is by default asynchronous, but operations may include two kinds of
fences. The fences respectively force a client to pull all new operations from the server or
push all outstanding local operations to the server (§3). Then we obtain various existing
consistency models by systematically associating fences with operations as shown in Table 1.

Like sequential consistency [20], GSC is not composable (aka local) [16]: objects satisfying
GSC may fail to provide this consistency guarantee when combined. This is a problem
because application programmers often want to distribute objects among multiple services,
e.g., to place them in geographical locations where they are most likely to be updated and
thereby minimise latency [21]. Non-composability does not allow programmers to easily
predict the behavior of such a system. This is a particular issue in the Orleans implementation
of geo-replication [5], which guarantees GSP only for each individual object.

To address this problem, we propose a condition under which multiple objects each
satisfying GSC can be composed so that the whole set of objects satisfies GSC (§5). Informally,
the condition requires using fences according to the following discipline: when switching
between different objects, a client has to push the operations done on the old object and
pull operations on the new object. Our result ensures that in this case clients interacting
with multiple GSC services implementing different objects will behave as though they are
interacting with a single GSC service. This result holds even when clients can communicate



A. Gotsman and S. Burckhardt 23:3

out-of-band, without using the GSC services. As its special cases, we obtain novel conditions
for composing TSO and dual TSO objects, as well as a recently proposed condition for
OSC [22, 21].

We also prove an interesting relationship between special cases of GSC– GSP, TSO and
dual TSO (§4): we show that clients that do not communicate out-of-band cannot tell the
difference between them. In particular, this result implies that a program without out-of-
band communication written assuming TSO operates correctly under much weaker, fully
asynchronous GSP. This equivalence has been previously conjectured without proof [10]; the
present paper confirms this conjecture. Assuming the absence of out-of-band communication
is common for memory models, where clients are processors that do not communicate directly.
However, this assumption is often not appropriate for distributed interactive applications,
where clients can have external means of communication. In this setting, the above special
cases of GSC are observably different.

Proving the above results about compositionality and equivalence is nontrivial due to the
complexity of reasoning about the distributed protocol implementing GSC. Our main tool in
tackling this complexity is an axiomatic specification of GSC, given in the style often used for
consistency models in shared-memory [19] and distributed storage systems [9, 8] (§6). The
specification represents service executions using several relations, declaratively describing
how operations are processed by the GSC protocol; the consistency model is then defined
by a set of axioms, constraining these relations. We prove that our axiomatic specification
is equivalent to the operational one. A particular subtlety in formulating the axiomatic
specification and proving this equivalence is the need for the specification to track the
real-time order between operations, determining when one operation finishes before another
one starts. This makes results established using the axiomatic specification applicable in the
case when clients can communicate out-of-band [12, 3].

The axiomatic specification of GSC is instrumental in obtaining our results. A recurring
challenge is to prove the existence of an execution that satisfies some conditions, e.g., is a
composition of single-object executions in the proof of the compositionality criterion (§8).
Constructing the desired execution is difficult to do directly on the operational model. Because
of the wide-ranging effect of fences, such an execution cannot be obtained simply by local
reordering of independent steps, as with simpler operational models. But via the axiomatic
specification of GSC, we can solve this problem indirectly by formulating constraints on
precedence of events in the execution as relations and then using algebraic techniques to
prove that their union is acyclic, which guarantees that there exists an execution satisfying
them. We hope that, in the future, the GSC model, with its two equivalent definitions,
and our proof techniques will provide a solid foundation for obtaining further results about
consistency models with global operation sequencing.

2 Preliminaries

We consider a distributed service managing a collection of objects Obj = {x, y, . . .}. A finite
number of clients interact with the service by performing operations on the objects, which are
ranged over by op and come from a set Op. Parameters of operations, if any, are part of the
operation name. For uniformity, we assume that all objects admit the same set of operations
and that each operation returns one value from a set Val; we can use a special member of Val
to model operations that return no value. The sequential semantics of operations is defined
by a function eval : Op∗ × Op→ Val that determines the return value of an operation on an
object given the sequence of operations previously executed on this object.

DISC 2017
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The consistency model provided by the service defines the set of all possible interactions
between the service and its clients. We now introduce a structure that records such interactions
in a single computation, called a history. In it we denote client-service interactions using
events, which are ranged over by e, f, g and come from an infinite countable set Event. Events
have unique identifiers from a set Id. An event is of the form e = (ι, x, op, a, fen), where
ι ∈ Id is the event identifier, x ∈ Obj is the object on which the event occurs, op ∈ Op is the
operation done, a ∈ Val is its return value, and fen ⊆ {push, pull} gives the fences requested
by the client. We use obj(e), oper(e), rval(e), fences(e) to select event components.

We use the following kinds of relations. A relation is a strict partial order if it is transitive
and irreflexive. It is a total order if it additionally relates every two distinct elements one
way or another. A relation is prefix-finite if each element is reachable along directed paths
from at most finitely many others. A strict partial order R is an interval order if

∀e1, e2, f1, f2. (e1
R−→ e2 ∧ f1

R−→ f2) =⇒ (e1
R−→ f2 ∨ f1

R−→ e2).

Intuitively, an interval order R is consistent with an interpretation of events as segments of
time during which the corresponding operations executed, with R ordering e before f if e
finishes before f starts [13]. For example, the real-time order considered in linearizability [16]
is an interval order.

A history is a triple H = (E, so, rt), where: E ⊆ Event; session order so ⊆ E×E is a union
of prefix-finite total orders over a finite number of disjoint subsets of E (each corresponding
to operations by the same client); and real-time order rt ⊆ E × E is a prefix-finite interval
order such that so ⊆ rt and ∀e ∈ E. |{f ∈ E | ¬(e rt−→ f)}| <∞.

The set E defines all operations invoked by clients in a single computation and can be
infinite. The session order arranges operations by the same client in the order in which they
were executed. The real-time order e rt−→ f tells us that the operation of e finished before the
one of f started (the last restriction on rt ensures that every operation finishes). Tracking
this relationship is important because it allows the client who executed the operation of e to
communicate its return value to the client executing f out-of-band, without using the service;
the return value of e can then influence the operation executed by f [12, 3]. We denote
components of histories and similar structures as in EH and soH. A consistency model is
defined by a set of histories.

3 Operational Specification

We define Global Sequence Consistency using the idealised protocol in Figure 1, which is a
generalisation of the Global Sequence Protocol (GSP) [10]. It assumes a single server and a
finite number of clients. The server state is represented by a log server_log of operations
received from clients, tagged with unique identifiers from Id. The state of each client c
includes three logs: knownc is the prefix of server_log that c knows about; pendingc is the
log of operations by c that have not yet been pushed to the server; and unackedc is the log
of operations by c that have been pushed to the server, but knownc has not yet advanced
enough to incorporate them.

The communication between the server and each client c is modeled by transitions push(c)
and pull(c) that can fire nondeterministically at any time when the client is not executing
an operation and atomically modify the client and the server state (implementations may
refine this using asynchronous communication channels as in [10]). The push(c) function
models how the server processes the next operation by client c: it appends the oldest record
in pendingc to server_log and moves it to the end of unackedc. The pull(c) function models
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State for each client c:
knownc ∈ (Id× Op)∗

unackedc ∈ (Id× Op)∗

pendingc ∈ (Id× Op)∗

exec(c, op, fen):
if (pull ∈ fen)
while (knownc 6= server_log) pull(c)

result :=
eval(stripIds(knownc · unackedc · pendingc), op)

pendingc := pendingc · (uniqueId(), op)
if (push ∈ fen)
while (pendingc 6= [ ]) push(c)

return result

Server state:
server_log ∈ (Id× Op)∗

push(c):
if (pendingc = (id, op) · remainingc)

server_log := server_log · (id, op)
unackedc := unackedc · (id, op)
pendingc := remainingc

pull(c):
if (server_log = knownc · (id, op) ·_)

knownc := knownc · (id, op)
if (unackedc = (id, op) · remainingc)

unackedc := remainingc

Figure 1 The pseudocode of the protocol defining the GSC model. We denote sequence concat-
enation by ·, an empty sequence by [ ] and an irrelevant expression by _.

how the client c learns about the next entry in the server log: it appends to knownc the next
operation in server_log that is not yet part of knownc. If this operation is an echo of an
operation previously executed by the same client c, we remove it from the unackedc log; the
protocol ensures that in this case the operation is the first (oldest) one in unackedc.

We model a client c executing an operation op with fences fen ⊆ {push, pull} by
exec(c, op, fen). The body of exec() is executed atomically, and only a single invocation of it
can be in progress per client. At the beginning of exec(), we handle pull fences by repeatedly
calling pull(c) until the local knownc matches server_log. At the end of exec(), we handle
push fences by repeatedly calling push(c) until all pendingc operations have been processed by
the server. At the core of exec(), we first compute the result of the operation by conjoining
the logs knownc, unackedc and pendingc, stripping identifiers using stripIds and applying
the sequential semantics of operations defined by eval (§2). We then append the operation
to the pendingc with a unique identifier generated by uniqueId. Since op is evaluated on
a log that includes unackedc and pendingc, the client is always guaranteed to observe its
own operations, even before they are acknowledged by the server (the “read-your-writes”
property [29]). Note that when fen is empty, exec(c, op, fen) returns immediately without
communicating, so that in this case the protocol is partition-tolerant [14].

We only consider computations of the protocol that adhere to certain fairness constraints:
every operation by a client eventually gets pushed to the server, every operation received by
the server eventually gets pulled by any client and every invocation of exec() terminates.

The set of histories (E, so, rt) allowed by GSC is defined by considering all possible
computations of the above protocol. The invocations of exec() define the set of events E,
the order in which they are invoked on clients defines so, and two events are related by rt if
the exec() function of the former finishes before the exec() function the latter starts. We
denote the set of histories defined in this way HistGSC.

By systematically associating fences with operations in GSC we get various existing
models as its special cases (Table 1). If operations are executed without any fences, the
GSC protocol exactly matches the one used to define GSP [10]. If every operation includes
a pull fence, then the GSC protocol is isomorphic to one defining the Total Store Order
(TSO) consistency model [24, 23]. In this case, operations are always evaluated based on an
up-to-date state on the server, but are propagated to the server asynchronously. If every
operation includes a push fence, then the GSC protocol is isomorphic to one defining a
recently proposed dual TSO model [2]. In this case, all operations are pushed to the server
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x.append(1)

x.read: [1,2]

x.append(2)

(a)

x.read: [2]

so, rt, vis so, rt, vis
rt

rt

rt, vis
ar x.append(1) x.append(2)

(b)

x.read: [2,1]

so, rt, vis
rt, vis

rt
ar

x.append(1)

y.read: [ ]

y.append(1)

(c)

x.read: [ ]

so, rt, vis so, rt, vis

rt x.read: [1]

y.read: [ ]

y.read: [1]

x.read: [ ]

so, rt so, rt

rt
y.append(1)x.append(1)

(d)

Figure 2 Examples of histories and abstract executions. Events do not include fences unless
explicitly noted. Events by the same client are related by the session order so and laid out vertically.
Thus, there are two clients in (a-c) and four in (d).

immediately, but are evaluated on a client-local possibly stale state. If every operation
includes both a pull and a push fence, then the GSC protocol produces exactly those histories
that are linearizable [16] (we prove this in [15, §C]). Informally, in this case the total order
in which the operations go into server_log defines a linearization of the execution, which
preserves the real-time order between the operations.

As a subcase of dual TSO, we also obtain a recently proposed Ordered Sequential
Consistency (OSC) [22], which captures the semantics of coordination services such as
ZooKeeper [18]. OSC assumes a partitioning of all operations into read-only and update
operations: Op = OpReadOnly ] OpUpdate. Read-only operations do not change the state
of an object: for any operation op and a sequence of operations ξ, we have eval(ξ, op) =
eval(ξ|OpUpdate, op), where ξ|OpUpdate is the projection of ξ onto OpUpdate. In our setting,
OSC is defined by requiring that every operation include a push fence (like in dual TSO) and
all updates additionally include a pull fence. Thus, update operations are evaluated on an
up-to-date state, whereas read-only operations can be evaluated on a stale state. We prove
the correspondence to the original OSC definition in [15, §C].

With unrestricted fence placements, GSC is weaker than linearizability, as we illustrate
by the example histories in Figures 2(a-c) (for now ignore the extra relations vis and ar).
They use sequence objects x and y for which eval(ξ, read) returns the sequence of values in
the append operations in ξ. The histories in Figures 2(a-c) can be produced by the GSC
protocol, but are not linearizable: there does not exist a linearization of the events consistent
with the real-time order and the sequential semantics of objects. In the following, we briefly
describe how the GSC protocol produces these histories; the reader may wish to consult [15,
§A], where we describe the corresponding protocol computations in detail.

In history (a) the read by the second client does not see 1, even though it happens after
the read by the first client that does see 1. In the GSC protocol this can happen if the
second client does not pull append(1) from the server before executing the read. This history
is disallowed if the read by the second client is executed with a pull fence: since the read by
the first client returns [1, 2], at the time the read is executed, 1 must be in known and, hence,
on the server; then the pull fence ensures that the later read by the second client sees 1.

In history (b) the return value of the read is [2, 1] even though append(1) finishes before
append(2) starts. This can happen if the latter operation is pushed to the server before the
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former. This outcome is disallowed if append(1) is executed with a push fence, so that it is
pushed to the server before the operation finishes.

In history (c) each read does not see the append by the other client; this is a variant
of the store buffering anomaly, characteristic of TSO [24]. It can be produced by the GSC
protocol if the appends are pushed to the server only after the reads execute. The history is
disallowed if the appends include push fences and the reads pull fences.

Finally, history (d) is a variant of the independent reads of independent writes anomaly [7]
and cannot be produced by the GSC protocol. There two clients concurrently append 1 to
different sequence objects x and y. A third client sees the append to x, but not to y, and a
fourth client sees the append to y, but not to x. Thus, from the perspective the latter two
clients the updates to x and y happen in different orders. This outcome cannot happen in a
GSC protocol computation, because there is a single order in which the append operations
will be incorporated into the server log. If x.append(1) precedes y.append(1) in the log, then
the read from x in the fourth client cannot return [ ]; otherwise, the read from y in the third
client cannot return [ ].

4 Equivalence between GSP, TSO and Dual TSO

We now establish a certain relationship between special cases of the GSC model: TSO [24]
(all operations pull), dual TSO [2] (all operations push) and GSP [10] (operations neither pull
nor push). We prove that the sets of histories allowed by these three models are the same
modulo the real-time order, which means that the models are observationally equivalent to
clients that cannot communicate out-of-band [12, 3].

Formally, for an event e = (ι, x, op, a, fen) let mkPull(e) = (ι, x, op, a, {pull}) and
mkPush(e) = (ι, x, op, a, {push}). We lift mkPull and mkPush to sets of events and relations
in the expected way. Let EPush = {e | push ∈ fences(e)} and EPull = {e | pull ∈ fences(e)}.

I Theorem 1.

∀E.∀so. E ∩ (EPush ∪ EPull) = ∅ =⇒ ((∃rt. (E, so, rt) ∈ HistGSC) ⇐⇒
(∃rt′. (mkPush(E),mkPush(so), rt′) ∈ HistGSC)⇐⇒
(∃rt′′. (mkPull(E),mkPull(so), rt′′) ∈ HistGSC)).

We prove Theorem 1 in §7 and [15, §C]. According to it, any GSP computation of the
protocol, where operations are propagated asynchronously both from clients to the server and
from the server to clients, can be transformed into an equivalent-modulo-rt computation where
operations can be propagated asynchronously in only one direction. While the equivalence
between TSO and dual TSO has been established before [2], the result about GSP was only
conjectured [10], and its proof is a contribution of the present paper. Like proofs of other
results of ours, this one exploits the axiomatic specification of GSC that we present in §6.

If we take the real-time order into account and, hence, allow clients to communicate
out-of-band, then GSP is strictly weaker than TSO and dual TSO, and the latter two are
incomparable. In particular, the above theorem does not hold if we additionally require
rt′ = rt or rt′′ = rt. Indeed, as we noted in §3, the history in Figure 2(a) is allowed by GSP,
but is disallowed if the operations pull; hence, it is disallowed by TSO. However, the history is
allowed if all operations push and, hence, is allowed by dual TSO. The history in Figure 2(b)
is similarly allowed by GSP, but is disallowed if all operations push; hence, it is disallowed
by dual TSO. On the other hand, it is allowed if all operations pull and, hence, is allowed
by TSO. Finally, even modulo real-time order, GSP, TSO and dual TSO are strictly weaker
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than linearizability [16]: the history in Figure 2(c) is allowed by these models, but is not
linearizable no matter how we change the real-time order.

5 Composing GSC Objects

GSC is not a composable (aka local) property [16]: objects satisfying GSC may fail to provide
this consistency guarantee when combined. Indeed, consider the history in Figure 2(d). It is
easy to see that the projections of the history to events on objects x or y yield GSC histories:
e.g., the projection to x can be produced by the GSC protocol if the rightmost client is slow
to pull updates from the server. However, as we explained in §3, the overall history is not
GSC. We now give a condition under which multiple objects each satisfying GSC behave such
that the whole set of objects satisfies GSC. The condition requires using fences according to
a certain discipline, formalised as follows. A history H = (E, so, rt) is well-fenced if

∀e, f ∈ E. e so−→ f ∧ obj(e) 6= obj(f) =⇒ ∃e′ ∈ EPush.∃f ′ ∈ EPull.

obj(e′) = obj(e) ∧ obj(f ′) = obj(f) ∧ e so?−−→ e′
so−→ f ′

so?−−→ f,

where R? is the reflexive closure of R. The above condition requires that, when switching
between different objects, a client pushes to the server the operations done on the old object
and pulls from the server operations on the new object. Let us denote by H|x the projection
of H to events on an object x. The following theorem is our main result (proved in §8).

I Theorem 2. For a well-fenced history H, we have (∀x.H|x ∈ HistGSC) =⇒ H ∈ HistGSC.

The theorem ensures that well-fenced clients interacting with multiple GSC services,
implementing different objects, behave as though they are interacting with a single GSC
service. Since our histories track the real-time order between events, this result holds even
when clients can communicate out-of-band, without using GSC services. Programmers can
thus ensure consistency when accessing multiple GSC services by placing fences according
to the proposed discipline. Even though fences are expensive (in particular, not partition-
tolerant), clients only incur this overhead when switching between different services. A client
accessing the same service incurs no overhead.

For example, assume we make the upper reads in Figure 2(d) push and the lower reads pull.
Then the projection of the history to y is no longer GSC: since the lower read from y happens
after the upper read from y and pulls operations from the server, it has to also observe 1.
Hence, in this case the outcome shown in Figure 2(d) cannot happen when clients interact
with multiple GSC services. (Actually, making the upper reads push is not required to ensure
this, since they are read-only operations. Our results could be strengthened to incorporate
such optimisations, but for simplicity we decided to treat all operations uniformly.)

As special cases of Theorem 2, we obtain novel criteria for composing TSO and dual
TSO objects. Since in TSO all operations pull, we only need to require that a client pushes
operations on an object before accessing a new one. Since in dual TSO all operations push, a
client need only pull operations on the new object. As a subcase of dual TSO, we obtain the
recently proposed criterion for composing OSC objects [22]. Recall that in OSC all operations
push and update operations pull. Hence, in this case we require that a client start accessing
a new object with an update operation. This can be ensured by adding dummy updates – a
policy implemented by the ZooNet system [21] for composing ZooKeeper services [18]. Thus,
our results generalise the compositionality criterion for OSC.
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RetVal. ∀e ∈ E. rval(e) = eval(ctxtA(e), oper(e)).
RYW. so ⊆ vis.
MonotonicView. vis ; so ⊆ vis.
ObservedVis. ar? ; (vis \ so) ; (rt ∩ (Event× EPull))? ⊆ vis.
PushedVis. ar? ; (rt? ∩ (EPush× EPull)) ⊆ vis?.
ObservedAr. (vis \ so) ; rt ⊆ ar.
PushedAr. rt ∩ (EPush× Event) ⊆ ar.
Eventual. ∀e ∈ E. |{f ∈ E | ¬(e vis−→ f)}| <∞.

Figure 3 Axioms of the GSC model, constraining an execution A = ((E, so, rt), vis, ar).

6 Axiomatic Specification

We now present the main technical tool we use to prove Theorems 1 and 2 – an axiomatic
specification of GSC, given in the style often used for consistency models in shared-memory [19]
and distributed storage systems [9, 8]. It is based on the following notion. An abstract
execution is a tripleA = ((E, so, rt), vis, ar), where: (E, so, rt) is a history; visibility vis ⊆ E×E
is a prefix-finite acyclic relation; and arbitration ar ⊆ E × E is a prefix-finite total order
such that vis ⊆ ar. Visibility and arbitration declaratively describe how the GSC protocol
processes the operations in E. Given a computation of the protocol, we have e vis−→ f

if, when a client executed the operation of f , the operation of e was in one of its three
local logs. We have e ar−→ f if the operation of e preceded the one of f in the server log.
Figures 2(a-c) give examples of abstract executions (we omit some edges irrelevant for the
following explanations).

To define the set of histories allowed by GSC, our specification constrains abstract
executions using the consistency axioms in Figure 3, which declaratively describe guarantees
the GSC protocol provides about operation processing and are explained in the following.
In the axioms R1;R2 denotes the sequential composition of relations R1 and R2; we define
ctxtA below. The axiomatic specification admits those histories that can be extended to an
abstract execution satisfying the axioms. Denoting the latter set of executions ExecGSC, the
corresponding set of histories is

HistGSCax = {H | ∃vis, ar. (H, vis, ar) ∈ ExecGSC}.

As the following shows, the axiomatic specification is equivalent to the operational one.

I Theorem 3. HistGSC = HistGSCax.

We now explain the axioms in Figure 3 and, on the way, give the key ideas for the proof
of the “⊆” direction of the theorem, showing the soundness of the axiomatic specification.
Consider a computation of the GSC protocol producing a history H = (E, so, rt). To prove
the soundness result, we extract vis and ar from the computation as described above and
show that the resulting abstract execution satisfies all the axioms in Figure 3. RetVal
says that the result of an operation e is computed by applying its sequential semantics to
the sequence of operations given by ctxtA(e), which is obtained by arranging the operations
invoked by the events in the set {f | f vis−→ e ∧ obj(e) = obj(f)} according to ar. For example,
the execution in Figure 2(b) satisfies RetVal: the read returns [2, 1] because both appends
are visible to it and x.append(2) ar−→ x.append(1). RYW formalises the “read-your-writes”
guarantee from §3: a client observes all operations it has executed before. MonotonicView
similarly ensures that a client observes all operations it has observed before.
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The axioms ObservedVis to PushedAr are more subtle, and we thus give detailed
justifications for their soundness. They constrain vis or ar based on the fact that, by a
certain moment, a particular operation was guaranteed to have been pushed to the server.
In ObservedVis and ObservedAr this is the case because the operation was observed
by a client other the one that that executed it (expressed in the axioms using vis \ so); in
PushedVis and PushedAr this is the case because the operation included a push fence
(expressed using EPush). In more detail, these axioms are justified as follows:

ObservedVis. Assume e1
ar?−−→ e2

vis\so−−−→ e3
rt∩(Event×EPull)?−−−−−−−−−−−→ e4. Since e2

vis\so−−−→ e3, when
a client executed e3, it was aware of the event e2 by a different client. The client could
only find out about e2 from the server, so by the time e3 finished, e2 was on the server.
Since e1

ar?−−→ e2, so was e1. If e3 = e4, then the client executing this event was also aware
of e1, since clients pull operations in the order of the server log. Hence, e1

vis−→ e4. If
e3

rt∩(Event×EPull)−−−−−−−−−−→ e4, then after e3 finished, the client executing e4 pulled all updates
from the server, which must have included e1. Hence, e1

vis−→ e4 again.
PushedVis. Assume e1

ar?−−→ e2
rt?−→ e3, e2 ∈ EPush and e3 ∈ EPull. Since e2 ∈ EPush, e2

was on the server after its operation finished. Since e1
ar?−−→ e2, so was e1. If e1 = e3, we

trivially have e1
vis?−−→ e3. Otherwise, since e2

rt?−→ e3, e1 was also on the server before e3
started. Since e3 ∈ EPull, e3 pulled all operations from the server, including e1. Hence,
e1

vis−→ e3.
ObservedAr. Assume e1

vis\so−−−→ e2
rt−→ e3. Since e1

vis\so−−−→ e2, e1 must have been on the
server by the time e2 finished. Since e2

rt−→ e3, e3 started after e2 finished and thus must
follow e1 in the server log. Hence, e1

ar−→ e3.
PushedAr. Assume e1

rt−→ e2 and e1 ∈ EPush. Then e1 was pushed to the server before
e2 started. Hence, e2 was pushed onto the server after e1, so that e1

ar−→ e2.

Finally, the Eventual axiom guarantees that an event e can be invisible to at most
finitely many other events f . Its soundness is ensured by the fairness constraints in the GSC
protocol (§3). The axioms imply more properties of the relations in an execution.

I Proposition 4. If A satisfies MonotonicView and ObservedVis, then visA is transitive.
If A satisfies ObservedAr, then visA ∪ rtA is acyclic.

The executions in Figures 2(a-c) satisfy all the axioms. On the other hand, the history in
Figure 2(d) cannot be extended to an execution satisfying the axioms. Indeed, for the return
values of the upper reads to be consistent with RetVal, we must have x.append(1) vis−→
x.read : [1] and y.append(1) vis−→ y.read : [1]. Arbitration has to order the two appends one
way or another. If, for example, we have x.append(1) ar−→ y.append(2), then by ObservedVis
we must also have x.append(1) vis−→ x.read : [ ], contradicting RetVal.

Recall from §3 that GSC disallows the history in Figure 2(a) if the read in the second
client is a pull. Accordingly, there is no abstract execution that extends the resulting
history and satisfies the axioms: by ObservedVis, in such an execution we would have
x.append(1) vis−→ x.read : [2], contradicting RetVal. Similarly, there is no execution that
extends the history in Figure 2(b) assuming x.append(1) is a push. This is because by
PushedAr in such an execution we must have x.append(1) ar−→ x.append(2), so that by
RetVal the read must return [1, 2]. Finally, there is no execution for the history in
Figure 2(c) assuming the appends push and the reads pull: by PushedVis we must have
x.append(1) vis−→ x.read : [ ], contradicting RetVal.
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As follows from the “⊇” direction of Theorem 3, the axioms in Figure 3 are also complete:
given an abstract execution (H, vis, ar), we can construct a computation of the GSC protocol
producing the history H. Due to space constraints, we defer the detailed proof of Theorem 3
to [15, §B]. The completeness part of the proof is nontrivial, but uses similar techniques to
the proof of the compositionality criterion that we present in §8.

7 Proof of Model Equivalence

As a simple illustration of the use of the axiomatic specification of GSC, we prove the first
“⇐⇒” in Theorem 1, showing that GSP and dual TSO are equivalent modulo real-time order
(the rest of the proof is given in [15, §C]). Consider E and so such that E∩(EPush∪EPull) = ∅.

The “⇐=” direction. It is easy to see that

∀rt. (mkPush(E),mkPush(so),mkPush(rt)) ∈ HistGSC =⇒ (E, so, rt) ∈ HistGSC,

since erasing fences from events does not invalidate any axioms.
The “=⇒” direction. Assume rt such that (E, so, rt) ∈ HistGSC. Then for some vis and ar

we have A ∆= ((E, so, rt), vis, ar) ∈ ExecGSC. Let rt′ = mkPush(ar). Then

A′ ∆= ((mkPush(E),mkPush(so), rt′),mkPush(vis),mkPush(ar))

is an abstract execution. Further, since A satisfies all GSC axioms, so does A′. In particular,
A′ satisfies ObservedVis and PushedVis because mkPush(E)∩EPull = ∅, and ObservedAr
and PushedAr by the choice of rt′. This completes the proof.

Thus, our axiomatic specification allows easily proving the above model equivalence by
picking a witness for the real-time order and checking axiom validity. Such a proof would
be much more challenging with the operational specification, as it would require devising a
nontrivial transformation of one execution of the GSC protocol into another.

8 Proof of the Compositionality Criterion

We next show how to use our axiomatic specification of the GSC model to prove Theorem 2.
Here we give only the key ideas and defer the complete proof to [15, §D]. Consider a well-
fenced history H = (E, so, rt) such that ∀x.H|x ∈ HistGSC. Then for any x there is an
execution Ax = (H|x, visx, arx) ∈ ExecGSC. We need to show H ∈ HistGSC, to which end we
construct an execution A = (H, vis, ar) ∈ ExecGSC.

Let so0 =
⋃

x∈Obj soH|x , vis0 =
⋃

x∈Obj visx and ar0 =
⋃

x∈Obj arx. It is reasonable to
expect vis and ar to extend the corresponding per-object orders in Ax, so we should have
vis0 ⊆ vis and ar0 ⊆ ar. The most difficult part is to construct ar; once this is done, we
construct vis as the smallest relation containing vis0 that is a solution to the system of
inequalities given by the axioms RYW-PushedVis in Figure 3. The following lemma gives
a closed form for this solution. Let Id = {(e, e) | e ∈ E}.

I Lemma 5. Given any arbitration order ar ⊇ ar0, the relation

vis = so∪ (ar? ; (vis0 \so) ; (rt∩(Event×EPull))? ; so?)∪ ((ar? ; (rt?∩(EPush×EPull)) ; so?)\ Id)

is the smallest one such that vis0 ⊆ vis and (H, vis, ar) satisfies RYW-PushedVis.

The first component of vis is meant to validate RYW, the second ObservedVis and
the third PushedVis. Appending so? at the end of the last two components validates
MonotonicView.
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x.read: [1 ] 

g: y.read: [ ]/
pull

f: y.append(1)

e: x.append(1)

so, rt

ar

vis0 \ so

vis

Figure 4 Motivation for ≺.

We now describe the construction of ar. This order needs to include several relations.
Since vis0 ⊆ vis and A should satisfy ObservedAr, we must have (vis0 \ so) ; rt ⊆ ar. Since
A should satisfy PushedAr we must have rt ∆= rt ∩ (EPush× Event) ⊆ ar. Since A should
satisfy RYW and vis ⊆ ar, we must have so ⊆ ar0. Finally, for A to satisfy RetVal, ar should
include one more relation that is more subtle. We illustrate the need for it using the example
in Figure 4. Assume that we have the solid edges in the figure. If we arbitrate between the
two appends as shown by the dashed edge f ar−→ e, then according to the construction in
Lemma 5 we will also have the dashed edge f vis−→ g (needed for A to satisfy ObservedVis).
But then the resulting A will violate RetVal. We therefore include the following relation
into ar, which ensures that such situations do not happen:

e ≺ f ⇐⇒ ∃g. obj(f) = obj(g) ∧ (f, g) 6∈ vis0 ∧
(e, g) ∈ (vis0 \ so) ; (rt ∩ (Event× EPull)) ; so0? ∪ (rt ∩ (EPush× EPull)) ; so0?.

If e ≺ f , then adding an edge f ar−→ e would create a visibility edge f vis−→ g between events
on the same object that is not in vis0. Note that the expression covering (e, g) above is more
specific than the one in Lemma 5: we have so0 instead of so, and rt must be used. This
is crucial for the proof (specifically, Lemma 6 below) and, as we show, is still sufficient to
validate RetVal because the history H is well-fenced.

Thus, we need to construct an ar that includes R ∆= rt ∪ so ∪ ar0 ∪ ((vis0 \ so) ; rt) ∪ ≺.
For this to be possible, R has to be acyclic.

I Lemma 6. rt ∪ so ∪ ar0 ∪ ((vis0 \ so) ; rt) ∪ ≺ is acyclic.

Establishing this lemma is the most subtle part of the proof. To do this, we construct a
closed-form expression covering the transitive closure of R.

I Lemma 7.

(rt ∪ so ∪ ar0 ∪ ((vis0 \ so) ; rt) ∪ ≺)+

= (rt ∪ so ∪ ar0 ∪ ((vis0 \ so) ; rt))+ ∪ (≺ ∪ ar0 ; ≺) ; (rt ∪ so ∪ ar0 ∪ ((vis0 \ so) ; rt))∗ and
(rt ∪ so ∪ ar0 ∪ ((vis0 \ so) ; rt))+

⊆ rt ∪ ar0 ∪ (ar0 ; rt) ∪ (rt ; ar0) ∪ (ar0 ; rt ; ar0) ∪ ((vis0 \ so) ; rt) ∪
(ar0 ; ((vis0 \ so) ; rt)) ∪ (((vis0 \ so) ; rt) ; ar0) ∪ (ar0 ; ((vis0 \ so) ; rt) ; ar0).

The proof Lemma 7 relies on establishing that components of R satisfy various algebraic
properties, some of which exploit the fact that the history H is well-fenced. For example, we
prove that ≺ is a strict partial order, i.e., transitive and irreflexive.

To prove Lemma 6, it is thus sufficient to prove that the relation covering R+ in Lemma 7
is irreflexive. This relation describes only particular paths in R of length at most 5. Its
irreflexivity is then established by a case analysis on these paths.
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Using Lemma 6, we can extend R to a prefix-finite total order, which we take as ar; then
vis is defined by Lemma 5. We can then show that vis defined in this way is prefix-finite,
acyclic and vis ⊆ ar, so that A = (H, vis, ar) is an abstract execution. By Lemma 5, A
satisfies RYW-PushedVis. It satisfies PushedAr because rt ⊆ ar, and it is also easy to
check that it satisfies ObservedAr.

We next argue that A satisfies RetVal, which exploits the particular way in which we
constructed ar. To this end, we show that for any object x we have vis|x = visx, where vis|x
is the projection of vis to events on x. Then since for any x we have arx ⊆ ar and Ax satisfies
RetVal, so does A. Since visx ⊆ vis by construction, we only need to show vis|x ⊆ visx.
Consider arbitrary f, g ∈ E such that obj(f) = obj(g) = x and f vis−→ g. To show f

visx−−→ g

our proof considers several cases corresponding to which of the components of the union
defining vis in Lemma 5 the edge (f, g) belongs to. For illustration, here we only consider a
single case when (f, g) comes from the following instance of the second component of the
union, which uses an rt edge: (f, g) ∈ ar? ; (vis0 \ so) ; (rt ∩ (Event× EPull)) ; so?. Then for
some g′ we have

f
ar?;(vis0\so);(rt∩(Event×EPull))−−−−−−−−−−−−−−−−−−−→ g′

so?−−→ g.

Figure 4 illustrates the case when g′ = g. If obj(g′) 6= obj(g), then since the history H
is well-fenced, for some g′′ ∈ EPull we have g′ so−→ g′′

so0?−−→ g. Since so ⊆ rt, this implies
g′

rt∩(Event×EPull)−−−−−−−−−−→ g′′
so0?−−→ g. Hence,

f
ar?;(vis0\so);(rt∩(Event×EPull))−−−−−−−−−−−−−−−−−−−→ g′′

so0?−−→ g. (1)

If obj(g′) = obj(g), then g′ so0?−−→ g and we again have (1) for g′′ = g′. Thus, in all cases (1)
holds for some g′′. Then for some e we have

f
ar?−−→ e

(vis0\so);(rt∩(Event×EPull))−−−−−−−−−−−−−−−−−→ g′′
so0?−−→ g.

Now if ¬(f visx−−→ g), then e ≺ f , contradicting ≺ ⊆ ar. Hence, f visx−−→ g, as required.
Thus, A satisfies all GSC axioms except for possibly Eventual. Since ∀x. vis|x = visx

and Ax satisfies Eventual, we have

∀e ∈ E. |{f ∈ E | obj(e) = obj(f) ∧ ¬(e vis−→ f)}| <∞, (2)

i.e., an event e cannot be invisible to infinitely many events f on the same object. Then, as the
following lemma shows, we can extend vis so as to validate Eventual without invalidating
any of the other axioms.

I Lemma 8. Let H = (E, so, rt) and A = (H, vis, ar) be an execution that satisfies all GSC
axioms except for possibly Eventual. Assume (2) holds. Then there exists vis′ ⊇ vis such
that (H, vis′, ar) ∈ ExecGSC.

We thus construct an execution (H, vis′, ar) ∈ ExecGSC, which shows that H ∈ HistGSC
and thereby establishes Theorem 2.

The axiomatic specification of GSC plays an important role in the above proof. It allows
us to concisely state constraints that the global order on operations represented by ar needs
to satisfy for the global execution to be GSC. We can then show that the desired global order
exists by proving algebraic properties over relations, as exemplified by Lemma 7.
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9 Related Work and Discussion

Lev-Ari et al. [22] have proposed a criterion for composing objects providing Ordered
Sequential Consistency (OSC), which is a special case of our results (§5). In comparison
to them, we handle a more complex consistency model, which requires a different proof
approach: specifying the consistency model axiomatically and reasoning about it using
algebraic techniques. Lev-Ari et al. have also implemented their criterion in a library for
composing ZooKeeper instances and showed that it has a competitive performance [21]. We
hope that our results will enable similar practical implementations for systems providing
other consistency models from the family we considered. In particular, the implementation
of GSP in Orleans [5] provides only per-object consistency guarantees, and our results should
allow its clients to use multiple objects while preserving the consistency model.

There are other widely used consistency models that are in general non-composable, such
as sequential consistency [20]. Perrin et al. [25] proposed conditions on the use of sequentially
consistent concurrent objects under which a composition of multiple objects stays sequentially
consistent. Our compositionality result is similar in spirit, but handles a family of more
complex consistency models implemented in modern systems [10, 23, 18]. Vitenberg and
Friedman [30] showed that combining sequential consistency with any composable property
yields a non-composable property. Our compositionality criterion does not contradict this
result, since well-fencedness of histories is not a composable property.

Our operational specification of the GSC model generalizes the GSP protocol [10], with
significant differences. First, GSP allows only pure read and update operations, while GSC
permits mixed operations that both modify the state and return a value to the caller. Second,
GSP does not support push and pull fences that are attached to operations. Rather, its
original proposal [10] investigated stronger synchronization primitives, such as standalone
fences and transactions, which cannot be used to define TSO, dual TSO and OSC as special
cases. Therefore, GSP is unsuitable to serve as a unifying model that clarifies the relationship
between these instances.

Axiomatic specifications have been previously proposed for consistency models in shared-
memory [23, 19] and distributed storage systems [9, 8]. Our GSC specification uses the same
framework as for the latter. Researchers have proposed axiomatic specifications for TSO-like
models and proved their equivalence to operational ones [23, 17]. However, our specifications
are the first to formalise the role of the real-time order in distinguishing between these
models. Including real-time order into axiomatic models [8] is important in a distributed
setting because of the possibility of out-of-band communication between clients; without this
one cannot safely substitute implementations for specifications [12, 3].

We have exploited the axiomatic specification of GSC to establish a compositionality
criterion and an equivalence between GSP and TSO/dual TSO. However, axiomatic specific-
ations of consistency models have been shown useful to obtain other kinds of results, such as
criteria for robustness – checking when an application running on a weak consistency model
behaves as if it runs on a strong one [27, 4]. We hence hope that our specifications will allow
obtaining such results for consistency models with global operation sequencing.

Acknowledgements. We thank Idit Keidar, Kfir Lev-Ari and Matthieu Perrin for helpful
comments.
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