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Abstract
The Undecided-State Dynamics is a well-known protocol that achieves Consensus in distributed
systems formed by a set of n anonymous nodes interacting via a communication network. We
consider this dynamics in the parallel PULL communication model on the complete graph for
the binary case, i.e., when every node can either support one of two possible colors or stay in
the undecided state. Previous work in this setting only considers initial color configurations with
no undecided nodes and a large bias (i.e., Θ(n)) towards the majority color. A interesting open
question here is whether this dynamics reaches consensus quickly, i.e. within a polylogarithmic
number of rounds. In this paper we present an unconditional analysis of the Undecided-State
Dynamics which answers to the above question in the affirmative. Our analysis shows that,
starting from any initial configuration, the Undecided-State Dynamics reaches a monochromatic
configuration within O(log2 n) rounds, with high probability (w.h.p.). Moreover, we prove that
if the initial configuration has bias Ω(

√
n logn), then the dynamics converges toward the initial

majority color within O(logn) round, w.h.p. At the heart of our approach there is a new ana-
lysis of the symmetry-breaking phase that the process must perform in order to escape from
(almost-)unbiased configurations. Previous symmetry-breaking analysis of consensus dynamics
essentially concern sequential communication models (such as Population Protocols) and/or sym-
metric updated rules (such as majority rules).
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1 Introduction

Strong research interest has been recently focussed on the study of simple, local mechanisms
for Consensus problems in distributed systems [3, 2, 11, 12, 16, 17]. In a basic setting of the
consensus problem, the system consists of a set of n anonymous nodes that run elementary
operations and interact by exchanging messages. Every node initially supports a color chosen
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from an alphabet Σ and a Consensus Protocol is a local procedure that, starting from any
color configuration, let the system converge to a monochromatic configuration. The consensus
is valid if the winning color is one among those initially supported by at least one node.
Moreover, once the system reaches a consensus configuration it will stay there forever.

We study the consensus problem in the PULL model [8, 10, 14] in which, at every
round, each active node contacts one neighbor uniformly at random to pull information. A
well-studied consensus protocol is the Undecided-State Dynamics (for short, the U-Dynamics)
in which the state of a node can be either a color or the undecided state. When a node is
activated, it pulls the state of a random neighbors and updates its state according to the
following updating rule: If a colored node pulls a different color from its current one, then it
becomes undecided, while in all other cases it keeps its color; moreover, if the node is in the
undecided state then it will take the state of the pulled neighbor. The U-Dynamics has been
studied in both sequential and parallel models. As for the sequential model, [3] provides an
unconditional analysis showing (among other results) that the U-Dynamics solves the binary
consensus problem (i.e. when |Σ| = 2) in the complete graph within O(n logn) activations
(and, thus in O(logn) “parallel” time), w.h.p.1 As for the parallel PULL model, even though
it is easy to verify that the U-Dynamics achieves consensus in the complete graph (w.h.p.),
the convergence time of this dynamics is still an interesting open issue, even in the binary
case. We remark that the stochastic process yielded by the parallel dynamics significantly
departs from the process yielded by the sequential one. A crucial difference lies in the random
number of nodes that may change color at every round: In the sequential model, this is at
most one, while in the parallel one all nodes may change state in one shot and indeed, for
most phases of the process, the expected number of changes is linear in n. It thus turns
out that the probabilistic arguments used in the analysis of [3] appear not useful in the
parallel setting. In [5], the author analyze the U-Dynamics in the parallel PULL model
on the complete graph when the alphabet Σ has size k, where k = o(n1/3). The analysis
in [5] considers this dynamics as a protocol for Plurality Consensus [2, 3, 15], a variant of
Consensus, where the goal is to reach consensus on the color that was initially supported by
the plurality of the nodes: Their analysis requires that the initial configuration must have a
relatively-large bias s = c1 − c2 between the size c1 of the (unique) initial plurality and the
size c2 of the second-largest color. More in details, in [5] it is assumed that c1 ≥ αc2, for
some absolute constant α > 1 and, thus, this condition for the binary case would result into
requiring a very-large initial bias, i.e., s = Θ(n). This analysis clearly does not show that
the U-Dynamics efficiently solves the binary consensus problem, mainly because it does not
manage balanced initial configurations.

Our results. We prove that, starting from any color configuration2 on the complete graph,
the U-Dynamics reaches a monochromatic configuration (thus consensus) within O(log2 n)
rounds, w.h.p. This bound is almost tight since, for some (in fact, a large number of) initial
configurations, the process requires Ω(logn) rounds to converge. Not assuming a large initial
bias of the majority color significantly complicates the analysis. Indeed, the major challenges
arise from (almost) balanced initial configurations where the system needs to break symmetry.
A key ingredient of our analysis is a suitable application of the martingale optional stopping
theorem. While the use of that theorem is standard in the analysis of sequential processes of
interacting particles that can be modeled as birth-and-death chains, our new approach allows

1 As usual, we say that an event En holds w.h.p. if P (En) ≥ 1− n−Θ(1)
2 Our analysis also considers initial configurations with undecided nodes.
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us to analyze the process yielded by running the U-Dynamics in synchronous parallel rounds,
that is a somewhat “wild” process where an unbounded number of particles may change
state at every round. The symmetry-breaking phase terminates when the U-Process reaches
some configuration having a bias s = Ω(

√
n logn). Then we prove that, starting from any

configuration having that bias, the process reaches consensus within O(logn) rounds, with
high probability. Even though our analysis of this “majority” part of the process is based
on standard concentration arguments, it must cope with some non-monotone behaviour
of the key random variables (such as the bias and the number of undecided nodes at the
next round). Our refined analysis shows that, during this majority phase, the winning color
never changes and, thus, the U-Dynamics also ensures Plurality Consensus in logarithmic
time whenever the initial bias is s = Ω(

√
n logn). Interestingly enough, we also show that

configurations with s = O(
√
n) exist so that the system may converge toward the minority

color with non-negligible probability.

Other related work. The interest in the U-Dynamics arises in fields beyond the borders of
Computer Science and it seems to have a key-role in important biological processes modelled
as so-called chemical reaction networks [7, 12]. For such reasons, the convergence time of this
dynamics has been analyzed on different communication models [1, 3, 4, 6, 9, 11, 13, 15, 17].
Concerning the sequential model, [15] recently analyzes the U-Dynamics in arbitrary graphs
when the intitial configuration is sampled uniformly at random between the two colors. In
this (average-case) setting, they prove that the system converges to the initial majority color
with higher probability than the initial minority one. They also give results for special classes
of graphs where the minority can win with large probability if the initial configuration is
chosen in a suitable way. In [4, 6, 13, 17], the same dynamics for the binary case has been
analyzed in further sequential communication models.
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