
Exercise Solution Check Specification Language
for Interactive Programming Learning
Environments
Jakub Swacha

Institute of Information Technology in Management, University of Szczecin,
Szczecin, Poland
jakubs@uoo.univ.szczecin.pl

Abstract
Automatic checking of the correctness of students’ solutions of programming exercises for gen-
erating appropriate feedback is a necessary component of interactive programming learning en-
vironments. Although there are multiple ways of specifying such a check, ranging from mere
string patterns to code written in general-purpose programming language, they all have their
deficiencies, with the check specification being too verbose, too complicated, difficult to reuse, or
very limited in its expressive capabilities. In this paper, a new language designed especially for
this purpose is described. It provides both extension and replacement for RegEx-based pattern
specification so that checks typical for programming exercise verification can be expressed in a
concise and highly-readable manner.

1998 ACM Subject Classification D.3.2 [Language Classifications] Specialized Application Lan-
guages

Keywords and phrases automatic programming exercise solution verification, source code pat-
tern specification, RegEx extension, RegEx alternative

Digital Object Identifier 10.4230/OASIcs.SLATE.2017.6

1 Introduction

Learning programming is difficult (see [1] and works cited therein). A highly important
element of this process is letting the students practice with writing their own code by providing
them with adequately chosen programming exercises. It may lead to substantial learning
progress if only the students receive relevant feedback after they submit their solutions of the
exercises. In traditional learning environments, checking the students’ solutions and giving
them feedback belongs to the instructor. In interactive programming learning environments,
most of this process is automated, so that the instructor can focus better on other types of
teaching activities.

The downside is that the instructor who is preparing an exercise for students not only
has to conceive it and write its description (the aim and rules, possibly also expected results),
but also specify the automatic checks and feedback generation rules. From this author’s
experience, based on the development of an interactive course of Python [8], if the course is
intended for small student groups, the overall time spent on specifying the checks is greater
than time spent on traditional checking of the exercises. Much of the reason for it lies in the
deficiencies in the form of specification of the automatic checks (see the following subsection).
An obvious solution for this problem would be to use a better form of specification, designed
especially for this purpose and thus free of the most frequent and onerous nuisances. The
goal of this paper is to describe such a solution, in a form of a domain-specific language.

© Jakub Swacha;
licensed under Creative Commons License CC-BY

6th Symposium on Languages, Applications and Technologies (SLATE 2017).
Editors: R. Queirós, M. Pinto, A. Simões, J. P. Leal, and M. J. Varanda; Article No. 6; pp. 6:1–6:8

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/132422654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.SLATE.2017.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

6:2 Exercise Solution Check Specification Language

2 Problem setting

The most basic automatic checking of programming exercise solution takes into consideration
only the output it produces after its execution (black-box testing). As the exercise description
may impose restrictions on the programming language constructs or functions allowed in
the solution, or require to apply certain constructs, functions, algorithms, programming
techniques or design patterns, also the source code of the solution has to be checked to
verify that, in addition providing valuable input for generating meaningful feedback to the
students. Moreover, interpreter syntax check and execution environment error messages
may be checked to transform them into a form that would be related to the actual exercise
description and more intelligible to the students.

There are various ways that can be used to specify such checks [5, p. 44]. In the case of
interactive programming learning environments (with limitations of their own), the two most
obvious alternatives are to use a general-purpose programming language (not necessarily the
language the solutions are written in) or RegEx-based patterns [9]. The general-purpose
programming languages are designed for far more than exercise checking, therefore the check
code, in all but trivial examples, is somewhat verbose, and it is not easy to tell after a single
look at it what is actually checked. It makes them difficult to reuse and may cause a need
for translation when transferring the exercises to another learning environment. Moreover,
the actual match patterns are often expressed using RegEx expressions embedded in the
general-purpose programming language used, which makes the issues specific to RegEx (see
below) still valid.

RegEx (short from regular expressions, though it extends regular languages as known
from theory [3]) is a lingua franca of text pattern specification in today’s computing world.
Nonetheless, as Lowell D. Thomas stated, the RegEx-defined patterns are often ”hard to
read, even harder to write, and hard to maintain” [11].

The intrinsic issues with RegEx readability are significantly augmented by the type of
content that is searched through (i.e., especially, program source code) and the character of
patterns to be matched. Selected examples of those are discussed below.

For instance, many programming languages allow optional whitespaces. Accommodating
RegEx expressions for it results in single spaces being replaced with wildcards, obfuscating
the pattern specification, e.g.:
/\(\s*limit\s*=\s*50\s*\)/

Similar issues are due to alternative notation of quotes (single or double) or certain
operators (e.g. <> and !=) allowed in some languages (e.g. Python).

RegEx defines a number of special characters (e.g. ., (,), [or * which have to be escaped
in pattern specification. The same characters are very frequently used in source code of most
programming languages, which leads to obfuscation of the pattern specification by insertion
of backslashes, e.g.:
/**| f\.a\s**f\.a/

The problem grows (along with the number of inserted backslashes) when the checked
source code itself is expected to contain backslash-escaped characters (due to the requirements
of the programming language notation), e.g.:
/1\.\.\.\\ n\\t2 \.\.\.\\ n/

Most of the patterns looked for in the solution source code are expected to match valid
program instructions, but they can as well match within literal string constants and comments.

J. Swacha 6:3

In order to overcome that, the pattern actually sought has to be prepended with another
one which ensures invalid code is ignored, increasing the total pattern complexity. The
example below is intended for Python and it does not even cover multi-line strings and
escaped backslashes:

/^(?:[^#" ’]*(?: ’(?:[^ ’]|\\ ’)* ’|"(?:[^"]|\\")*"))*[^#" ’]*\ bfor\b/

Moreover, the patterns are often used to check the solution’s structure, i.e., that specific
code is found within specific logical block (e.g. an if statement). This requires a sophisticated
RegEx in the case of languages forming logical blocks by indentation (such as Python), e.g.:

/if\s+x\s*<\s*0\s *:(?:\ s*|\n(\s +)(?:.*\ n\1))x\s*=\s*-\s*x/

The exercise solution often has to produce a specified, exact number of results. RegEx
expressions checking non-occurrence of specific elements look awkward and contribute to low
readability of pattern specification, e.g.:

/^(?:[^ i]|i[^f]|\ Bif|if\B)*\ bif\b(?:[^i]|i[^f]|\ Bif|if\B)*$/

A similar problem is when the exercise solution has to produce results in a specified order
(e.g. sorted ascendingly). Ensuring that using RegEx expression is a nuisance, as it requires
explicit listing of all the possible expected values, e.g.:

/^\D *(?:0\ D +)*(?:1\ D +)*(?:2\ D +)*(?:3\ D +)*(?:4\ D +)*(?:5\ D+)*
(?:6\D +)*(?:7\ D +)*(?:8\ D +)*(?:9\ D +)*(?:10\ D+)*$/

There is even bigger problem if more than one of alternative patterns has to be found in
the source code, in unknown order. The example below is for an exercise which expected the
student to use at least two different parameter orders when calling a function taking three
parameters:

/\(\s *(?:(?: a_1\D+)?1\D+\d\D+(\d)[\s\S]+\(\s *(?:(?: a_1\D+)?
1\D+\1|\D +[23])|\ D +([23])\ D+(?: a_1\D+)?(\d)\D+(\d)[\s\S]+
\(\D*(?: a_1\D +)?(?:\2\ D +\4|(?:\3|\4)))/

3 Related work

The unreadability of RegEx prompted search for alternative ways of pattern specification.
A good example of such is apg-exp [11], using a superset of Augmented Backus-Naur Form
(ABNF) [2]. The most notable extensions of the original ABNF are the positive and negative
look ahead/behind operators which make specification of context-relevant patterns easy.
Although apg-exp brings a visible improvement in readability of pattern specification, it is
hardly concise. And while it fits well with programming language syntax definitions which
are usually expressed in some form of BNF, apg-exp was designed as a general-purpose
replacement for RegEx and thus provides no direct shortcuts for exercise solution checking.

Looking at the existing work in this area, however, there are no solutions that fit exactly
such needs. The specification format for programming exercises, PExIL (Programming
Exercises Interoperability Language) defines elements (within specification element) only
for output check and feedback specification [6]. The automatic assessment solutions that
transform solution code into abstract syntax trees or graphs use standard query languages,
respectively, XPath and GReQL, to define the checks [7].

Perhaps the most promising of the existing solutions is the domain-specific language
proposed by Hadiwijaya and Liem for an ”automatic generation of the output, input, and

SLATE 2017

6:4 Exercise Solution Check Specification Language

source code checkers” [4]. However, only the output- and input-checking is based entirely on
the syntax native to that language, whereas source code checking (which demands the most
sophisticated checks) relies on RegEx expressions.

4 Language Specification

4.1 Text pattern specification
The proposed language is designed as both a replacement and an extension of RegEx.
Regarding the latter, it introduces a number of textual instructions and operators that allow
to specify additional requirements for the specified patterns to match. Regarding the former,
it provides four ways of pattern notation:

word: a sequence of non-space characters (from a limited set, mostly alpha-numeric),
intended to match single numbers, instruction names and identifiers; note there is no
need for delimiters other than whitespace;
words: a sequence of characters delimited with apostrophes; it has special properties: a
space matches any whitespace sequence, a double quotation mark matches any language-
defined literal string constant delimiter, code comments within matched text are ignored,
it may contain variable references (they have to be delimited on both ends with $ or #
characters - the difference is explained below);
string: a sequence of characters delimited with double quotation marks; they match
literally the given string (no wildcards, no special properties);
regex: a RegEx expression (JavaScript flavor) delimited with slashes.

4.2 Referencing and combining patterns
All the available pattern notations can be used interchangeably, and even combined to form
compound pattern expressions, as well as labeled for later reuse using -> operator, e.g. the
following code will look for decimal digits after width = , and label the numeric pattern as
$width:
’width = ’,/\d+/ -> $width

The labeled patterns can be referenced both by definition (to look for similar patterns
elsewhere) or by value (to look for repeating occurrences of the value matched by the pattern
earlier), e.g. the following code references the pattern defining variable identifiers allowed in
Python ($pyvar, assumed to be defined earlier; not a part of the specification language) and
the value last matched by pattern $width (also assumed to be defined earlier):
’for $pyvar$ in range (#width#) :’

Note the spaces in the above listing will be matched by any whitespace combination.
The patterns can be combined using the following operators (and round brackets):
seq: match all the elements in the given order (also applies if no operator is specified),
each: match all the elements in any order,
none: match none of the elements,
any: match at least one of the elements,
select num : match exactly num of the elements in any order.

For example, the following code will report match only if there is either for or while, but
not a combination of these (as when using any):
select 1 (for ,while)

J. Swacha 6:5

4.3 Match quantity requirement specification
Using the following operators, the expected number of matches can be specified:

just num : the pattern must match exactly num times,
atleast num : the pattern must match num or more times,
atmost num : the pattern must match num or less times,
between num1 and num2 : the pattern must match at least num1 and at most num2
times,
multiply num : the pattern must match num*x times, where x is any integer greater
than 0.

For instance, the following code will report match only if the number of occurrences of
two-digit numbers is even:

multiply 2 /{\b\d\d\b}/

4.4 Order and uniqueness requirement specification
Using the following operators, additional requirements in case of multiple matches can be
specified:

distinct: none of the fragments matched by the pattern can repeat,
same: each fragment matched by the pattern must have the same content,
incr: each subsequent fragment matched by the pattern must have greater value (lexico-
graphic order is used for non-decimals);
decr: each subsequent fragment matched by the pattern must have smaller value (lexico-
graphic order is used for non-decimals).

For instance, the following code will report match only if there occurs at least one number
and none of the matched numbers repeats:

distinct /\b\d+\b/

4.5 Position requirement specification
By default, the pattern is matched in the whole text (i.e., the input, output, or source code
of the exercise solution). This can be changed by explicitly defining match position using
one of the following operators:

in block : the pattern will be matched inside the block (see below for details),
after block : the pattern will be matched no sooner than the block ends,
follows block : the pattern will be matched right after the block ends (only language-
specific whitespaces are allowed in-between).

The block can be specified either by type only (the pattern will be matched in each block
of that type) or also specified by pattern (the sought pattern will be matched only in those
blocks of that type which also match the context pattern). There are five types of blocks
defined:

bracket: matches only within the specified kind of brackets (one of (), < >, [], and { });
in source code, brackets outside of language-specific valid code (e.g. inside comments or
literal string constants) are ignored;
line: matches only within a single line (having source-language-specific boundaries, e.g. \
may disable line end in some languages);

SLATE 2017

6:6 Exercise Solution Check Specification Language

compound: matches only in the specified compound statement, having source-language-
specific boundaries; this is designed especially for languages which do not use brackets
(like { } in C) to delimit compound statements, as e.g. Python; the context phrase matches
from the beginning of the compound statement (i.e. including its header);
string: matches only within a single string (having source-language-specific boundaries,
e.g. \" may disable string end in some languages);
comment: matches only within code comments.

Note that the context pattern can also have the position requirement specified, therefore
the following code is correct and matches 5 as range function parameters in a line containing
= within if statement block inside of for loop:

5 in bracket ’range (’ in line ’=’ in compound if in compound for

4.6 Assessment result and feedback generation
The result of a match may trigger acceptance or rejection of the solution. The language
defines two instructions serving this purpose:

req: considers the solution incorrect and generates feedback if the pattern does not
match;
forbid: considers the solution incorrect and generates feedback if the pattern matches.

The appropriate feedback for the student is specified using the => operator. For instance,
the following code will report an incorrect solution and provide the specified feedback
(Incorrect number) only if there is 1 or 2 or 3 (or any combination of these numbers):

forbid any (1 ,2 ,3) => Incorrect number

4.7 Conditional requirements
The result of a match can be stored in a variable. A match can be executed on a condition
defined with a specified Boolean expression which can use three Boolean operators (not,
and, or) and reference any variables set earlier. This allows for, e.g., performing checks and
generating hints depending on a number of factors. For instance, the following code will
require only one of the three specified patterns:

$v1 = ’x = -x’ in compound ’if x < 0’
$v2 = ’x = -x’ in compound ’else ’ follows compound ’if x >= 0’
$v3 = ’abs (x)’
if not $v1 and not $v2 req $v3 => Calculate the absolute value

5 Implementation and validation

The proposed language has been defined using ABNF [2]. Its parser has been generated
automatically in JavaScript using APG [12] and served as the basis for a proof-of-concept
implementation of its interpreter, tuned for checking solutions written in Python – it can
still be easily adapted to any other programming language by replacing a set of callback
functions.

The language and its interpreter were validated using multiple pattern examples from
real-world programming exercises from the course mentioned earlier [8]. No major issues were

J. Swacha 6:7

encountered, and minor issues were used as a base for improvements in language specification
and its interpreter. Among others, the eight RegEx patterns presented in Section 2 of this
paper were successfully translated to the proposed language (note its conciseness and high
readability):

1. (limit = 50)’

2. any(’f.a ** 2’, ’f.a * f.a’, ’pow (f.a , 2)’)

3. ’1...nt2...n’

4. for

5. ’x = -x’ in compound ’if x < 0’

6. just 1 if

7. incr /b1?db/

8. distinct 2 each (any (’(1’,’a_1 = 1’), 2, 3) in bracket ’(’)

6 Conclusion

The instant feedback based on automatic checking of the correctness of students’ solutions
should be considered as a crucial component of every interactive programming learning
environment. The specificity of such an intended use (large number of short exercises
compared to small number of relatively long exercises used usually in programming contests)
results in significant work effort needed to specify the acceptance and feedback rules even for
a single course. The described deficiencies of existing forms of specification often turn even
simple checks into verbose, complicated and difficult to reuse pattern definitions. The new
language introduced in this paper provides ways to specify checks typical for programming
exercise verification in a concise and highly-readable manner.

Currently, there is work undergoing on developing a new open specification format for
interactive programming exercises which will feature the language described in this paper [10].
In the next step, the mentioned interactive Python course [8] will be converted to the new
format, and the check code of all its exercises will be translated to the proposed language,
which will confirm its usefulness and also provide statistical evidence on its conciseness.

References
1 Yorah Bosse and Marco Aurélio Gerosa. Why is programming so difficult to learn?: Pat-

terns of difficulties related to programming learning mid-stage. ACM SIGSOFT Software
Engineering Notes, 41(6):1–6, 2017.

2 David H. Crocker and Paul Overell. Augmented BNF for syntax specifications: ABNF.
RFC 5234, IETF, January 2008.

3 Cezar Câmpeanu, Kai Salomaa, and Sheng Yu. Regex and extended regex. In Jean-Marc
Champarnaud and Denis Maurel, editors, Implementation and Application of Automata,
volume 2608, pages 77–84. Springer, 2003.

4 Ryan Ignatius Hadiwijaya and M.M. Inggriani Liem. A domain-specific language for auto-
matic generation of checkers. In International Conference on Data and Software Engineer-
ing, pages 7–12, 2015.

5 Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. Towards a systematic review of
automated feedback generation for programming exercises. In Conference on Innovation
and Technology in Computer Science Education, pages 41–46, 2016.

SLATE 2017

6:8 Exercise Solution Check Specification Language

6 Ricardo Queirós and José Paulo Leal. Making programming exercises interoperable with
PExIL. In José Carlos Ramalho, Alberto Simões, and Ricardo Queirós, editors, Innovations
in XML Applications and Metadata Management: Advancing Technologies, pages 38–56.
IGI Global, 2013.

7 Michael Striewe and Michael Goedicke. A review of static analysis approaches for pro-
gramming exercisesd. In Marco Kalz and Eric Ras, editors, Computer Assisted Assessment.
Research into E-Assessment, volume 439, pages 100–113. Springer, 2014.

8 Jakub Swacha. An interactive Python course: development and evaluation. Forthcoming,
2017.

9 Jakub Swacha. Scripting environments of gamified learning management systems for pro-
gramming education. In Ricardo Queirós and Mário Pinto, editors, Gamification-Based
E-Learning Strategies for Computer Programming Education, pages 278–294. IGI Global,
2017.

10 Jakub Swacha. SIPE: a domain-specific language for specifying interactive programming
exercises. Forthcoming, 2017.

11 Lowell D. Thomas. An alternative to regular expressions: apg-exp, July 2016. SitePoint.
http://www.sitepoint.com/alternative-to-regular-expressions.

12 Lowell D. Thomas. JavaScript APG, 2017. Coast to Coast Research. http://www.
coasttocoastresearch.com/docjs2/apg/index.html.

http://www.sitepoint.com/alternative-to-regular-expressions
http://www.coasttocoastresearch.com/docjs2/apg/index.html
http://www.coasttocoastresearch.com/docjs2/apg/index.html

	Introduction
	Problem setting
	Related work
	Language Specification
	Text pattern specification
	Referencing and combining patterns
	Match quantity requirement specification
	Order and uniqueness requirement specification
	Position requirement specification
	Assessment result and feedback generation
	Conditional requirements

	Implementation and validation
	Conclusion

