
Models and Algorithms for Chronology
Gilles Geeraerts1, Eythan Levy2, and Frédéric Pluquet3

1 Université libre de Bruxelles, Computer Science Department, Brussels,
Belgium
gigeerae@ulb.ac.be

2 Tel Aviv University, Archaeology Department, Tel Aviv, Israel
eythan.levy@gmail.com

3 École Supérieure d’Informatique (HE2B-ESI), Brussels, Belgium
fpluquet@he2b.be

Abstract
The last decades have seen the rise of many fundamental chronological debates in Old World ar-
chaeology, with far-reaching historical implications. Yet, outside of radiocarbon dating – where
Bayesian formal tools and models are applied – these chronological debates are still relying on
non-formal models, and dates are mostly derived by hand, without the use of mathematical or
computational tools, albeit the large number of complex constraints to be taken into account.
This article presents formal models and algorithms for encoding archaeologically-relevant chro-
nological constraints, computing optimal chronologies in an automated way, and automatically
checking for chronological properties of a given model.
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1 Introduction

1.1 Motivation
Reconstructing ancient chronologies based on archaeological data is a complex task, which
has haunted researchers since the start of the discipline. Current chronologies of given
regions result from an integration of diverse data such as historical records (providing regnal
dynasties for example), pottery sequences (providing relative chronologies for a given region),
stratigraphic sequences (providing synchronisms through stratified pottery and artefacts,
both local and imported), ancient inscriptions (providing synchronisms between different
kings for example) and laboratory methods (providing date-ranges for a given event, through
radiocarbon dating for example). In most cases, these data constitute a complex web of
intricate information, connecting archaeological data of neighbouring sites and regions in a
subtle way. Hence, any change in chronological hypotheses at one end of the network (say,
changing the historical dates of a given king for example) can have far-reaching chronological
repercussions throughout the network (say for example that inscriptions of this king have
been found in a specific archaeological layer, bearing specific pottery types). How can we
model such constraints formally, and how can we use our formal model to automatically derive
a global chronology for a region of interest, through the integration of several scattered local
chronological constraints? We have observed that, outside of carbon dating, where Bayesian
statistical tools are used to formally derive date estimates [15], traditional chronological
research still uses no formal model or algorithm to integrate sets of local chronological

© Gilles Geeraerts, Eythan Levy, and Frédéric Pluquet;
licensed under Creative Commons License CC-BY

24th International Symposium on Temporal Representation and Reasoning (TIME 2017).
Editors: Sven Schewe, Thomas Schneider, and Jef Wijsen; Article No. 13; pp. 13:1–13:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/132422639?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.TIME.2017.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


13:2 Models and Algorithms for Chronology

S2
[20, 100]

? ?

S1
[20, 100]

? ?

K2
[30, 100]

[1200, 1300] [1200, 1300]

K1
[0, 15]

[1200, 1300] [1200, 1300]

Starts during

Ends during

Strata Kings
T
im

e

Figure 1 Our running example: Chronoland. Each period is represented by a rectangle containing
the period’s name. The bounds on each period’s duration, start date and end date are displayed in
the centre, bottom left corner and bottom right corner respectively.
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Figure 2 Optimal date and duration estimates for the Chronoland example.

constraints into a global chronology. In most cases (outside of radiocarbon dating), the date
estimates proposed by researchers are derived by hand, thus certainly obtaining non-optimal
results, since manual treatment of any set of chronological constraints of non-trivial size is
almost impossible. The purpose of this paper is to present a model that allows one to formally
model archaeologically-relevant chronological constraints, to compute optimal chronologies
through specific algorithms, and to automatically check chronological properties of a given
model. Applications of such models are numerous, since the past decades have seen the rise of
many important – and still unsettled – chronological debates in Old World archaeology, with
far-reaching historical implications. Important recent examples of such debates include the
Thera Eruption debate, where two opposing chronologies differ by more than a century, with
important implications regarding the chronology of the Aegean Bronze Age [8]. A second
well-known example is the Iron Age Low Chronology debate for the southern Levant, where
two chronologies differ as to whether the first full-fledged territorial states in the region are
to be dated to the 10th or the 9th century BCE [13].

1.2 Running example
As a didactic example of the kind of data and constraints that typically appear in chronological
debates, we will start with a small test case, in order to show that even small examples, with
far less constraints than any real archaeological case study, are impractical to treat manually
and require a formal and algorithmic approach. The test case is called Chronoland, and is
presented hereinafter.

The story of Chronoland. In the kingdom of Chronoland, Kings K1 and K2 reigned in
succession. We do not know their precise reign dates, but both reigns are known to have
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occurred between 1200 and 1300 CE. Furthermore, K1’s reign did not exceed 15 years, since
we know he died at a rather young age, and King K2 reigned for at least 30 complete years,
since we have a monument dated to his 31st year1. We can also safely assume that K2’s reign
did not exceed 100 years. Now Chronocity, the capital city of Chronoland, was excavated
and only two strata were found, namely strata S1 and S2. We know that stratum S1 was
built by King K1 since he thus claims in a stela found there in-situ, and we also know that
Stratum S2 ended during the reign of King K2, since ancient annals tell us that the city was
destroyed during his reign and never reoccupied. Finally, we assume that each one of our
strata has a duration of at least 20 years and at most 100 years. The data of the example
are given in schematic form in Figure 1, and several natural questions can be asked about it,
such as:

1. What are the most precise estimates (ranges) we can gather for the start date, end
date and duration of each king and stratum of Chronoland?

2. Has King K1 built stratum S2? (Recall that the data only asserts he has built S1.)

Observe that the second question could admit three different answers because of the uncer-
tainties on the dates: (i) ‘yes’, K1 has surely built S2, in all possible scenarios that fit with
the constraints on the dates and durations; or (ii) ‘no’, K1 has surely not built S2 (again in
all possible scenarios); or (iii) ‘maybe’, i.e. some dates that respect the constraints, imply
that K1 has built S2, and some don’t.

Chronology computation. We start by discussing the first question (optimal ranges). These
optimal estimates are shown in Figure 2. One can easily see that they are not straightforward
and require a close look at the model. Here are the steps that one could follow to obtain
these results:
1. Initialisation. The date ranges ofK1 andK2 can be improved using the duration estimates.

The 30 years minimum duration of K2 imply that K2 starts in [1200,1270] and that it
ends in [1230,1300].

2. K1–K2 sequence. The end of K1 equals the start of K2, hence it is in [1200,1270]. The
start of K1 is thus also in [1200,1270], since a start date cannot exceed its corresponding
end date.

3. S1–K1 synchronism. The ‘S1 starts during K1’ synchronism implies that the start of
S1 is in [1200,1270]. The [20,100] duration range now implies that the end of S1 is in
[1220,1370].

4. S1–S2 sequence. The start of S2 equals the end of S1, hence it is in [1220,1370]. The
[20,100] duration range now implies that the end of S2 is in [1240,1470].

5. S2–K2 synchronism. The ‘S2 ends during K2’ synchronism implies that the end of S2
is in [1240,1300]. The [20,100] duration range now implies that the start of S2 is in
[1220,1280]. The duration range can now be reduced to [20,80] since the earliest start of
S2 is 1220 and its latest end is 1300.

6. S1–S2 sequence. The end of S1 equals the start of S2, hence it is in [1220,1280]. The
[20,100] duration range now implies that the start of S1 is in [1200,1260]. The duration
range can now be reduced to [20,80] since the earliest start of S1 is 1200 and its latest
end is 1280.

1 We use a cautious bound of 30 years instead of 31 years because we do not know if the king completed
his 31st year of reign (i.e. he might have died in the course of his 31st year).
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7. S1–K1 synchronism. We need to come back to the ‘S1 starts during K1’ synchronism.
Our new upper bound of 1260 on S1’s start needs to be propagated back to K1, implying
a new improved range of [1200,1260] on K1’s start, instead of the former [1200,1270].

8. S2–K2 synchronism. Finally, we need to consider anew the ‘S2 ends during K2’ syn-
chronism. Our new lower bound of 1240 on S2’s end needs to be propagated back to
K2, implying a new improved range of [1240,1300] on K2’s end, instead of the former
[1230,1300].

Note the difficulty of manually solving this simple problem, especially the final ‘retro-
action’ step, where K1’s start date and K2’s end date get further refined by 10 years thanks
to their synchronisms with S1 and S2 respectively. This final step is somewhat unexpected
since S1 and S2 had no a priori absolute chronology of their own (they had only duration
estimates), and thus derived their absolute dates from K1 and K2. Now, let us come back
to the question whether king K1 has built stratum S2. It turns out that this is impossible,
because K1’s reign lasts at most 15 years, but at least 20 years separate the respective
start dates of S1 and S2, since S1 lasts at least 20 years. However, again, deriving this
information from Figure 1 or Figure 2 is not straightforward. Also note that this example is
of small dimensions compared to real archaeological data for which manual treatment of the
information is practically impossible.

1.3 Contribution
As can be seen from the Chronoland example, rigorous and automatic techniques for reasoning
about chronological problems are needed. To the best of our knowledge, no such techniques
are available today, and the kind of reasoning we exhibit in the Chronoland example are
performed ‘by hand’ by archaeologist, using restricted data sets. In this paper, our first
contribution is a formal constraint language (Section 2) that can express most
relationships between periods which are needed for practical cases of archaeology.
More precisely, our language can express: (i) lower and upper bounds on the start dates, end
dates and durations of periods; (ii) sequences (such as period S2 follows directly S1); and
(iii) different kinds of synchronisms between periods (such as ‘S1 starts during K1’, etc). Then,
our second contribution consists of several algorithmic techniques (Section 3)
to manipulate such constraints and extract information that is meaningful to
archaeologists, namely: (i) what are the tightest bounds on the start dates, end dates and
durations of all periods that one can infer from a given set of constraints? (ii) is the set of
constraints satisfiable. That is, is it possible to assign dates to the starts and ends of all
periods that satisfy all the constraints? (iii) do the constraints imply that two given periods
have a non-empty intersection? That is, is the intersection guaranteed to exist, for all choices
of start and end dates of the periods that satisfy the constraints? We call this problem
the sure-contemporaneity problem; and, finally (iv) do the constraints allow a non-empty
intersection between two periods? That is, does there exist a choice of dates for the starts
and ends of all periods that satisfy the constraints and where the two given periods intersect?
We call this problem the possible-contemporaneity problem. Observe that both the sure- and
possible-contemporaneity problems can be invoked to answer our question: ‘Has K1 built
S2?’

Following [17], we translate our constraints in directed weighted graphs, and reduce
the computation of the tightest bounds to an all-pair shortest paths computation in this
graph (and, as particular case, we obtain an algorithm for the satisfiability problem which
amounts to detecting negative cycles in the graph). Such computation can be carried out
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in polynomial time (in the number of periods) using classical algorithms [12], which is a
clear strong point of approach, enabling scaling to examples of big dimensions. Since all-
pairs shortest paths algorithms also detect negative cycle, we can also test satisfiability in
polynomial time2. Finally, we show that, after computation of the shortest paths, the sure-
and possible-contemporaneity problems can be solved in constant time.

1.4 Related works

The best known use of computer-assisted techniques in Archaeology is in a setting which is
different from ours, namely the calibration of radiocarbon dates [15] thanks to the OxCal
software. The aim of Oxcal is to refine estimates of dates computed from radiocarbon
samples, by taking into account extra information such as the order of strata. Due to the
stochastic nature of radiocarbon decay, these methods are probabilistic (they rely on Bayes’s
theorem) while our methods are not.

Concerning relative chronology, other formal approaches exist, based on the Harris matrix
[7] or the generalised schemes of Sharon [16] and Holst [9]. These works differ from ours in
several way. First, they aim at at obtaining a feasible sorting of the archaeological features,
but do not estimate their absolute time-frame, while our method provides both absolute and
relative information on the periods. Second, the underlying computational problem they
address is NP-complete (hence, they rely on heuristics), while we have identified problems
that can be solved in polynomial time. In fact, an early paper by Kromholz [11] already
combined some relative and absolute dating elements, though in a limited way, through the
application of business-oriented tools (such as Pert charts) to chronological problems. We
are not aware however of any later paper that took on this novel approach.

On the other hand, the constraints we rely on are actually a special case of the zone data
structure developed in the framework of timed automata [1, 6, 4] that form the cornerstone
of efficient tools for the analysis of timed automata such as Uppaal [2] and TiAMo [5].
In our case, however, variables take natural values, instead of real values in the case of
timed automata.q Our constraints are also a particular case of general classes of constraints
developed in the artificial intelligence community for temporal reasoning, see for instance
[14]. Those constraints are more expressive than ours and basic problems about them are
already NP-hard [14] while we propose polynomial-time algorithms.

2 Modelling chronology problems

In this section, we introduce our model for the chronology problems we have sketched in
the introduction. Throughout the paper, we denote the set of natural and integers numbers
by N and Z respectively. We consider closed interval on N (i.e., convex subsets of N), with
natural endpoints. We use the usual notation [a, b] to denote intervals, and for I = [a, b], we
let `(I) = a and u(I) = b.

2.1 Periods and chronologies

Periods. We fix a finite set P of periods. We use the general term ‘period’ to speak about
continuous periods of time characterised by a start date, an end date and a duration (defined

2 Similar techniques are used in the setting of timed automata, see related works.
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as the difference between the end and start dates)3. Examples of periods include historical
eras (‘The Middle Ages’), archaeological strata, king’s reigns and ceramic periods, among
others.

Chronologies. A chronology C on a set of periods P is function that associates, to each
period p ∈ P, an interval C(p) = [ap, bp] ⊂ N with natural endpoints ap and bp. For all
periods p, the interval C(p) represents the whole duration of the period, in the sense that
its endpoints represent the start and the end dates of the period. Throughout the paper,
we assume that all dates are given simply as years, but a finer granularity can be used if
need be (for example, dates can represent days). Observe that, for historical events, start
and end dates could be negative, but we assume that there is a lower bound on all dates4
(i.e., an ‘origin of time’), which we identify with 0 (hence we have ae, be ≥ 0 for all e ∈ P). A
chronology C for our running example could be s.t. C(K1) = [1210, 1222], which is compatible
with the constraints in Figure 1.

2.2 Constraints

Common chronological constraints. Our goal is to formalise a large set of chronological
constraints relevant to archaeology and history. In these fields, the most common constraints
can be grouped in three families:
Bounds. The first family consists of lower and upper bounds on the start date, end date

and duration of a period. For example, in Figure 1, the [20, 100] years constraint on S1’s
duration, or the [1200, 1300] constraint on K1’s start date belong to this family.

Sequences. The second family expresses that a certain period starts where the preceding
period ends, as in the K1,K2 sequence, and the S1, S2 sequence.

Synchronisms. Finally, the third family expresses diverse sorts of synchronisms, such as
contemporaneity (two periods having a non-empty intersection, as in two contemporary
kings), ‘starts during’ (as in ‘S1 starts during K1) and ‘ends during’ (as in ‘S2 ends during
K2’).

Let us now discuss a formal constraint language that allows us to describe all these constraints.

A formal model of constraints. To all finite sets of periods P = {p1, . . . , pn}, we associate
a set of variables V(P) = {z0, beg(p1), end(p1), . . . beg(pn), end(pn)}, interpreted over the
integers. For each period pi, variables beg(pi) and end(pi) represent respectively the beginning
and end of pi. Variable z0 is a special variable that is assumed to be always equal to 0 and
its purpose will become clear later. Then, an atomic constraint on P is an expression of
one of the following forms: either x− y ∼ c or x ∼ c, where x, y are variables from V(P),
c ∈ Z ∪ {+∞}, and ∼ is either ≤ or ≥ or =. Finally, a constraint is a finite conjunction of
atomic constraints5. For an atomic constraint ψ and a constraint ϕ, we write ψ ∈ ϕ iff ψ is
a conjunct of ϕ.

3 Punctual events could be seen as special cases of periods have equal start and end dates, and null
duration.

4 In practice, this is not restrictive since events can always be associated to an epoch, even if this is very
broad.

5 Observe that neither disjunction nor negation are allowed.
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Semantics. Let us now define the semantics of constraints in terms of chronologies. In-
tuitively, a constraint is meant to define a set of possible chronologies, which are all those
that are compatible with the constraint. Formally, a chronology C (on set of periods P)
satisfies an atomic constraint x− y ∼ c (respectively, x ∼ c) iff ν(x)− ν(y) ∼ c (respectively,
ν(x) ∼ c), where ν : V(P) → N is the function associating to each variable x a valuation
according to C, i.e., for all x ∈ V(P): (i) ν(x) = 0 if x = z0; (ii) ν(x) = `(C(e)) if x = beg(e);
and (iii) ν(x) = u(C(e)) if x = end(e). When a chronology C satisfies an atomic constraint ψ,
we write C |= ψ. We extend this notion of satisfaction to constraints: C satisfies a constraint
ϕ = ψ1 ∧ ψ2 ∧ · · · ∧ ψn (noted C |= ϕ) iff C satisfies all conjuncts of ϕ, i.e., C |= ψi for all
1 ≤ i ≤ n. We denote by JϕK the set of all chronologies C s.t. C |= ϕ. Remark that this set
could be empty, for instance if we have specified constraints that are not satisfiable. Note
also that two different constraints can encode the same chronologies, e.g. when there are
redundant atomic constraints. For example, ϕ = x ≥ 0 ∧ x ≤ 1 ∧ y ≥ 0 ∧ y ≤ 1 encodes the
same chronologies as ϕ′ = ϕ ∧ x− y ≤ 5, (i.e., JϕK = Jϕ′K) because ϕ implies x− y ≤ 5.

Expressiveness of the model. While the language of constraints we have just defined might
seem very restrictive, we claim that it allows one to define most of the relevant constraints
in archaeology, as defined at the beginning of this section:
Terminus post quem. A Terminus post quem is defined as a lower bound B on a given

start or end date. Such constraints can be expressed by beg(p) ≥ B and end(p) ≥ B,
respectively.

Terminus ante quem. Symmetrically, a Terminus ante quem is defined as an upper bound B
on a given start or end date. Such constraints correspond to beg(p) ≤ B and end(p) ≤ B,
respectively.

Date range. Ranges on dates are the conjunction of a terminus post and ante quem. In
the example of Figure 1, the constraint on the start of K1 is expressed as: beg(K1) ≥
1200 ∧ beg(K1) ≤ 1300.

Duration constraints. Since the duration of a period p can be computed as end(p)− beg(p),
constraints (lower bounds, upper bound or ranges) on the duration of a period also fit
our model. In the example of Figure 1, the range on the duration of K1 is expressed as:
end(K1)− beg(K1) ≥ 0 ∧ end(K1)− beg(K1) ≤ 15.

Sequence. A sequence of periods p and q means that q follows immediately after p. Thus,
the end date of p is the start date of q, which is formalised as: end(p)− beg(q) = 0.

‘Contemporaneity’ synchronism. Periods p and q are contemporary, i.e. there is a non-
empty intersection between the intervals Ip = [beg(p), end(p)] and Iq = [beg(q), end(q)].
To understand how to model this, we consider the opposite statement: the intersection
between Ip and Iq is empty iff either Ip follows strictly Iq or Iq follows strictly Ip. That
is, Ip ∩ Iq = ∅ iff end(p) < beg(q) ∨ end(q) < beg(p). This can be expressed by our
constraints by taking the negation: Ip ∩ Iq 6= ∅ iff end(p) ≥ beg(q) ∧ end(q) ≥ beg(p).

‘Starts during’ synchronism. Period p starts during period q, i.e. the start of p is included
in the interval [beg(q), end(q)]. This is formalised as: beg(p) ≥ beg(q) ∧ beg(p) ≤ end(q).

‘Ends during’ synchronism. Period p ends during period q, i.e. the end of p is included in
the interval [beg(q), end(q)]. This is formalised as: end(p) ≥ beg(q) ∧ end(p) ≤ end(q).

‘Inclusion’. Period p is included in period q, which can be formalised in our model as:
beg(p)− beg(q) ≥ 0 ∧ end(p)− end(q) ≤ 0.

In addition to these constraints that come from the archaeological data, we assume from
now on that all our constraints imply that all periods must start before they end. This can
be achieved by taking the conjunction of any constraint with:

∧
p∈P beg(p) ≤ end(p).

TIME 2017
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Observe that one type of requirement that our constraints cannot express is non-
contemporaneity, i.e. that the intersection between two periods p and q is empty. Indeed,
non-contemporaneity means that either the end of p occurs strictly before the beginning of q
or end of q occurs strictly before the beginning of p. However, our constraint language does
not allow one to express disjunction.

2.3 Normalisation of constraints

In order to make our subsequent discussions easier, we will, from now on, consider a normal
form for constraints, where constraints contain atomic constraints of the form x− y ≤ c only.
Let ϕ be a constraint. We obtain Norm (ϕ), the normal form of ϕ by applying the following
steps:

1. First, we make sure that there exists at least one atomic constraint for each pair of
variables x and y, by taking the conjunction of ϕ with:

∧
x∈V(P)

(
x− x ≤ 0 ∧ x− z0 ≤ +∞∧ z0 − x ≤ 0

)
∧

∧
x,y∈V(P)\{z0}

x− y ≤ +∞ .

It is easy to check that the resulting constraint accepts the same set of chronologies than
ϕ. Indeed, since we assume that z0 is always null: x − x ≤ 0 is equivalent to x ≤ x;
x− z0 ≤ +∞∧ z0 − x ≤ 0 is equivalent to 0 ≤ x ≤ +∞; and x− y ≤ +∞ should hold
for all x, y since they take finite values.

2. We turn all atomic constraints into constraints of the form x− y ≤ c. That is, we replace
all atomic constraints x ∼ c by x− z0 ∼ c; and all constraints x− y ≥ c by y − x ≤ −c.

3. Finally, whenever there are two different atomic constraints of the form x− y ≤ c and
x− y ≤ c′ in the resulting constraint, we keep the strongest one, i.e. x− y ≤ c if c < c′

and x− y ≤ c′ otherwise.

The resulting is a normalised constraint Norm (ϕ). Observe that a normalised constraint
always contain exactly (2n+ 1)2 atomic constraints of the form x− y ≤ c, where n is the
number of periods; one for each pair of variables x and y in V(P) – this is actually the
point of normalising constraints, even if the normalisation step might introduce some trivial
atomic constraints. From now on, we assume that all constraints are normalised. We abuse
notations and denote normalised constraint by non-normalised ones, writing, for instance,
x− y ≤ 1 instead of Norm (x− y ≤ 1) which has 9 conjuncts.

Observe that this particular class of linear constraints has been studied before by Shostak
[17]. They also form a special case of zones [1], and the normalised version of the constraint
correspond to the Difference Bound Matrix [6] encoding the corresponding zone.

I Example 1. Consider again the example in Figure 1. In order to keep our example legible,
we will consider only stratum S1, king K1 and the ‘starts during’ relationship between them.
The following normalised constraint expresses exactly all the information from Figure 1 about
S1 and K1, assuming X = {z0, beg(S1), beg(K1), end(S1), end(K1)}. Observe that the five
last lines (marked ‘Norm.’) are here for normalisation purpose only.
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end(S1)− beg(S1) ≤ 100 ∧ beg(S1)− end(S1) ≤ −20 (Length S1)
∧ end(S1)− beg(S1) ≤ 15 ∧ beg(S1)− end(S1) ≤ 0 (Length K1)
∧ beg(K1)− z0 ≤ 1300 ∧ z0 − beg(K1) ≤ −1200 (Start K1)
∧ end(K1)− z0 ≤ 1300 ∧ z0 − end(K1) ≤ −1200 (End K1)

∧ beg(S1)− z0 ≤ +∞∧ beg(S1)− beg(K1) ≤ +∞∧ beg(S1)− end(K1) ≤ +∞ (Norm.)
∧ beg(K1)− beg(S1) ≤ +∞∧ beg(K1)− end(S1) ≤ +∞ (Norm.)
∧ end(S1)− z0 ≤ +∞∧ end(S1)− beg(K1) ≤ +∞∧ end(S1)− end(K1) ≤ +∞ (Norm.)
∧ end(K1)− beg(S1) ≤ +∞∧ end(K1)− end(S1) ≤ +∞ (Norm.)

∧
∧

x∈X

x− x ≤ 0 ∧ z0 − beg(S1) ≤ 0 ∧ z0 − end(S1) ≤ 0 (Norm.)

3 Algorithmic manipulation of constraints

In this section, we show how the constraints from Section 2 can be manipulated algorithmically
to answer the questions we have highlighted in introduction. We start by defining four
meaningful problems on constraints, then show how the constraints can be expressed by
means of weighted directed graphs, and finally give polynomial-time algorithms to solve
those problems on the graphs. The main ideas of these techniques have been presented by
Shostak [17], but our techniques for solving the sure- and possible- contemporaneity problems
(that are motivated by the archaeological setting) are, as far as we know, original (and hence
require dedicated proofs).

3.1 Four basic problems
Based on the motivations from the introduction, we focus on the four following problems.

Satisfiability. First, the satisfiability problem asks whether there is some chronology that
satisfies a given constraint. If not, then the constraint contains a contradiction, for example:
the constraint entails that some punctual period A should occur strictly before B, and, at the
same time, that B should occur before A. Thus, the definition of this problem is as follows:

I Problem 1. Given a constraint ϕ, the satisfiability problem asks whether JϕK 6= ∅?

If yes, we say that the constraint ϕ is satisfiable.

Tightening. Second, the tightening problem asks, given a constraint ϕ, to compute the
tightest constraint ϕ′ that represents the same set of chronologies. Intuitively, ϕ′ represents
the most precise information one can deduce from ϕ. Let us first define formally these
notions.

Given two atomic constraints ψ1 = x − y ≤ c1 and ψ2 = x − y ≤ c2 (on the same
variables x and y), we say that ψ1 is tighter than ψ2 (denoted ψ1 � ψ2) iff c1 ≤ c2. Intuitively,
a constraint is tighter than another if it imposes a more stringent limitation on the possible
values of the variables than the other (hence, the upper bound c1 is smaller than or equal
to c2). Then, given two (normalised) constraints ϕ1 and ϕ2 on P, we say that ϕ1 is tighter
than ϕ2 (denoted ϕ1 � ϕ2) iff each atomic constraint of ϕ1 is tighter than the corresponding
constraint in ϕ2. Formally, ϕ1 � ϕ2 iff for all x, y in V(P): ψ1 = x − y ≤ c1 ∈ ϕ1 and
ψ2 = x− y ≤ c2 ∈ ϕ2 implies that ψ1 � ψ2.
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Observe that � is a partial order on constraints, which is not total. For instance,
x1 − y1 ≤ 1 ∧ x2 − y2 ≤ 2 and x1 − y1 ≤ 2 ∧ x2 − y2 ≤ 1 are not comparable. Our
definition of the order on constraints implies the intuition on the sets of chronologies they
represent, i.e., for all constraints ϕ1 and ϕ2: ϕ1 � ϕ2 implies Jϕ1K ⊆ Jϕ2K. However,
the converse is not true. For instance, consider: ϕ1 = Norm (x− y ≤ 1 ∧ y − z ≤ 1), and
ϕ2 = Norm (x− y ≤ 1 ∧ y − z ≤ 1 ∧ x− z ≤ 2). It is easy to check that Jϕ1K = Jϕ2K since
the x− z ≤ 2 atomic constraint of ϕ2 is implied by its two other atomic constraints. Hence,
in particular Jϕ1K ⊆ Jϕ2K, but, clearly ϕ1 6� ϕ2, because ϕ1 constraints x− z to be ≤ +∞,
which is strictly weaker than x− z ≤ 2. We can now define precisely the tightening problem:

I Problem 2. Given a constraint ϕ, the tightening problem asks to compute the tightest
(i.e., minimal wrt �) constraint ϕ′ s.t. Jϕ′K = JϕK. Such a constraint ϕ′ is called tight.

Remark that this constraint ϕ′ is necessarily unique. Indeed, assume it is not the case,
and there are two constraints ϕ′1 and ϕ′2 s.t. Jϕ′1K = Jϕ′2K = JϕK; ϕ′1 � ϕ; ϕ′2 � ϕ, but ϕ′1
and ϕ′2 are not comparable by � (that is, neither is tighter than the other). Then, we can
consider instead the constraint ξ computed as follows: for each pair of variables x and y,
we have in ξ the atomic constraint x− y ≤ min(c1, c2), where c1 and c2 are the constants
occurring in the atomic constraints on x− y in ϕ′1 and ϕ′2 respectively (i.e., x− y ≤ c1 ∈ ϕ′1
and x − y ≤ c2 ∈ ϕ′2). By definition ξ � ϕ′1 and ξ � ϕ′2. Hence, ξ � ϕ. Moreover, since
Jϕ′1K = Jϕ′2K, we also have JξK = Jϕ′1K = Jϕ′2K, hence JξK = JϕK. Thus, ξ is an even tighter
constraint that can be used instead of ϕ′1 and ϕ′2.

Sure-contemporaneity. Third, the sure-contemporaneity problem asks whether two given
periods p1 and p2 do certainly have a non-empty intersection given a constraint ϕ:

I Problem 3. The Sure-Contemporaneity Problem asks, given a constraint ϕ (on set of
periods P) and two periods p1 and p2 in P, whether ϕ guarantees that p1 and p2 intersect,
i.e., whether C(p1) ∩ C(p2) 6= ∅ for all C ∈ JϕK

Possible-contemporaneity. Fourth, the Possible-Contemporaneity problem asks whether
two given periods p1 and p2 can possibly have a non-empty intersection given a constraint ϕ:

I Problem 4. The possible-contemporaneity problem asks whether a given constraint ϕ
does not exclude a contemporaneity between two given periods p1 and p2, i.e. whether there
is C ∈ JϕK s.t. C(p1) ∩ C(p2) 6= ∅.

3.2 Graph-based algorithms
Let us now present polynomial time algorithms for solving the four problems highlighted in
the previous section. The core of our approach consists, following Shostak [17], in translating
each constraint ϕ into a directed weighted graph Gϕ. Roughly speaking, the set of nodes
in Gϕ is the set of variables of ϕ, and each constraint x− y ≤ c is translated by a directed
edge6 from x to y, labelled by c.

More precisely, in our setting, a graph G = 〈V,E,w〉 is made up of a finite set of vertices
V , a finite set of (directed) edges E ⊆ V × V and a weight function w : E → Z. Given a
constraint ϕ on a set of periods P, we build the graph Gϕ = 〈V,E,w〉 as follows:

6 Observe that this definition is consistent with the classical definitions in the literature on timed automata
[6], but that the edges are reversed wrt the definitions generally used in the literature on constraint
graphs [14].
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beg(S1)

end(S1)
= beg(S2)

end(S2)

z0
end(K1)

= beg(K2)

end(K2)

beg(K1)

−20
0

100
−1200

−1200

0

0

0

1300

0

15

1300

−20 100

0

−1200

0

0
−30 100

1300

Figure 3 The graph Chrono for the constraint in Figure 1. To simplify presentation, nodes
end(K1) and beg(K2) (respectively end(S1) and beg(S2)) have been merged and 0-labelled self-loops
on the all nodes are not displayed. The bold part of the graph corresponds to the constraints on S1

and K1 only (see Example 1).

V = V(P), i.e. there is a vertex for each variable in the constraint;
E = {(x, y) | x− y ≤ c ∈ ϕ and c 6= +∞}; and
for all (x, y) ∈ E: w(x, y) = c iff x − y ≤ c ∈ ϕ. That is, there is an edge from x to
y, labelled by c every time ϕ contains a non-trivial atomic constraint x − y ≤ c (by
‘non-trivial’, we mean that c is not +∞). Thus, the edges encode exactly the set of ϕ’s
atomic constraints.

I Example 2. The graph corresponding to the full constraint modelling Chronoland (Figure 1)
is given in Figure 3. The bold part of the graph corresponds to the constraint given in
Example 1 (ranging on S1 and K1 only).

Now, we introduce our algorithms for our four problems given above.

Satisfiability checking and tightening. We address these two problems together as satis-
fiability can clearly be checked from the tightening of the constraint: clearly, ϕ is satisfiable
iff the tightening of ϕ yields a constraint ξ s.t. JξK 6= ∅. As said before, we rely on previous
works for satisfiability and tightening. We start by recalling classical notions on graphs.
Given a directed weighted graph G = 〈V,E,w〉, a path (from v1 to vk) is a finite sequence
π = v1, v2, . . . , vk of vertices (vi ∈ V for all i) s.t. (vi, vi+1) ∈ E for all 1 ≤ i ≤ k − 1. A
cycle is a path v1, v2, . . . , vk s.t. v1 = vk. The weight w(π) of a path π = v1, v2, . . . , vk is
the sum of its edge weights, i.e.

∑k−1
i=1 w (vi, vi+1). A path π (and, in particular, a cycle) is

negative iff w(π) < 0. A path π = v1, v2, . . . , vk is called a shortest path from v1 to vk iff
there is no other path π′ from v1 to vk s.t. w(π′) < w(π) (observe that there could be several
shortest paths from v1 to vk, but all of them have necessarily the same weight). In a graph
that contains no negative cycle, it is well-known that there exists always a shortest path
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between two pairs of nodes, provided that there exists a path between those nodes. In such
graphs G, we note spG(x, y) the weight w(π) of any shortest path π from x to y (and we
let spG(x, y) = +∞ if there is no path from x to y in G). The problem asking to compute
spG(x, y) for all pairs of nodes (x, y) (or to declare the value spG(x, y) as undefined when
the graph contains a negative cycle) is known in the literature as the all-pairs shortest path
problem [12]. This problem allows us to solve the satisfiability and tightening problems. In
[17], the author shows that:

I Theorem 3 ([17]). A constraint ϕ is satisfiable iff its graph Gϕ contains no negative cycle.

Moreover, the tightening of constraints has been considered in the setting of timed
systems, and has been shown equivalent to the computation of all-pairs shortest paths:

I Theorem 4 ([6]). Given a satisfiable constraint ϕ (on set of variables V and with corres-
ponding graph Gϕ), the tightest constraint ϕ′ s.t. JϕK = Jϕ′K is the constraint:∧

x,y∈V
x− y ≤ spGϕ(x, y).

The reduction to shortest paths applies only when the constraint is satisfiable. Otherwise,
the graph contains a negative cycle (by Theorem 3) and the notion of shortest path makes
no sense.

Thus, in order to solve both satisfiability and tightening in practice, one can rely on
one of the algorithms for the all-pairs shortest path problem from the literature (see [12]
for a survey). All of these algorithms run in polynomial time. For example, one could use
Johnson’s algorithm [10], which runs in time O(|V |2 log(|V |) + |V ||E|) and detects negative
cycles before computing all-pairs shortest paths, if the graph contains no negative cycle.

I Example 5. Let us come back to the Chronoland example. The graph in Figure 3
contains no negative cycle, hence the overall constraint ϕ of Chronoland is satisfiable. We
now come to tightening. The result of the all-pairs shortest path computation is given
in appendix (Figure 4) for reference. The most relevant results of computing all-pairs
shortest paths in the graph of Figure 3 are summarised in Figure 2. For instance, the
upper bound of 1260 on beg(S1) is obtained by considering the atomic constraint of the
form beg(S1)− z0 ≤ spG(beg(s1), z0) in the tightened constraint. The value spG(beg(s1), z0)
is obtained by considering the path beg(S1), end(S1), beg(S2), end(S2), end(K2), z0 of total
weight −20 +−20 + 1300 = 1260. Other values are obtained similarly.

Checking sure-contemporaneity. Let us now explain how sure-contemporaneity (Problem 3)
can be checked against the graph Gϕ (corresponding to constraint ϕ) in constant time,
provided that ϕ is tight. We start by defining the Inclusion Checking problem, which will be
useful to this end. This problem checks whether the set of chronologies Jϕ1K represented by a
constraint ϕ1 is included into the set of chronologies Jϕ2K represented by another constraint
ϕ2:

I Problem 5. The Inclusion problem asks, given two constraints ϕ1 and ϕ2, whether
Jϕ1K ⊆ Jϕ2K.

We have already seen in an example above that ϕ1 � ϕ2 implies Jϕ1K ⊆ Jϕ2K, but that, in
general, the reverse implication is not true. It becomes, however, true, when the constraints
have been tightened. As a matter of fact, having ϕ1 tight is sufficient (see [3] for a reference):
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I Proposition 6. For all pairs of constraints ϕ1 and ϕ2, the two following statements hold:

ϕ1 � ϕ2 implies Jϕ1K ⊆ Jϕ2K ,(
Jϕ1K ⊆ Jϕ2K and ϕ1 is tight

)
implies ϕ1 � ϕ2.

We now come back to the sure-contemporaneity problem, and show that it can be
reduced to the inclusion problem. The definition of the sure-contemporaneity problem means
that, for all chronologies C ∈ JϕK: p1 and p2 intersect in C, i.e., `(C(p1)) ≤ u(C(p2)) and
`(C(p2)) ≤ u(C(p1)). Clearly, this holds iff JϕK ⊆

q
ϕsyncp1,p2

y
, where:

ϕsyncp1,p2
= beg(p1) ≤ end(p2) ∧ beg(p2) ≤ end(p1). (1)

However, ϕsyncp1,p2
is equivalent to beg(p1)− end(p2) ≤ 0 ∧ beg(p2)− end(p1) ≤ 0. Thus, using

Proposition 6, and assuming ϕ is tight, we deduce that JϕK ⊆
q
ϕsyncp1,p2

y
iff ϕ constraints

beg(p1)− end(p2) and beg(p2)− end(p1) to be non-positive. Thus, we obtain a constant time
procedure to check the sure-contemporaneity of two periods p1 and p2 on the graph Gϕ of a
tight constraint ϕ:

I Proposition 7. For all tight constraint ϕ on P (with corresponding graph Gϕ = (V,E,w)),
for all pairs of periods p1 and p2, there is a sure-contemporaneity between p1 and p2 in
ϕ iff w(beg(p1), end(p2)) ≤ 0 and w(beg(p2), end(p1)) ≤ 0 (assuming w(x, y) = +∞ when
(x, y) 6∈ E).

I Example 8. To answer our question ‘has K1 built S2?’ from the introduction, we can check
whether there is a sure-contemporaneity between K1 and S2. By proposition 7, there is no
sure-contemporaneity iff either spChrono(beg(K1), end(S2)) > 0 or spChrono(beg(S2), end(K1)) >
0 (see Figure 3 for Chrono). While the path beg(K1), beg(S1),
end(S1), beg(S2), end(S2) is indeed negative, one can check that there all paths from beg(S2)
to end(K1) are positive (actually, spChrono(beg(S2), end(K1)) = 80, see Appendix A). Hence,
there is no sure-contemporaneity between K1 and S2, so the available archaeological data
does not allow to say for sure that K1 built S2.

Checking Possible-Contemporaneity. As with the sure-contemporaneity problem, we first
rephrase the definition of the possible-contemporaneity problem using the ϕsyncp1,p2

constraint
from equation (1). Since there must be only one chronology compatible with the constraint
ϕ in which p1 and p2 intersect, and since the set of such chronologies is characterised by
ϕsyncp1,p2

from equation (1), we have:

I Lemma 9. For all constraints ϕ on set of periods P, and all pairs of periods p1, p2 ∈ P:
there is a possible-contemporaneity between p1 and p2 iff ϕ ∧ ϕsync

p1,p2
is satisfiable.

From this characterisation, we obtain a simple algorithm to check possible-contemporaneity
on tight constraints (in the spirit of Proposition 7 for sure-contemporaneity):

I Proposition 10. For all tight constraints ϕ on P (with corresponding graph Gϕ = (V,E,w)),
for all pairs of periods p1 and p2, there is a possible-contemporaneity between p1 and p2 in
ϕ iff w(end(p2), beg(p1)) ≥ 0 and w(end(p1), beg(p2)) ≥ 0 (assuming w(x, y) = +∞ when
(x, y) 6∈ E).

I Example 11. We come back again to the Chronoland example and our question asking
whether K1 has built S2. We check whether there is a possible-contemporaneity between K1
and S2 (remember from Example 8 that there is no sure-contemporaneity between them).
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By Proposition 10, there is no possible-contemporaneity iff spChrono(end(S2), beg(K1)) < 0 or
spChrono(end(K1), beg(S2)) < 0. The latter holds since the path end(K1), beg(K1), beg(S1),
end(S1), beg(S2) has weight 15 +−20 = −5 (see Appendix A). Hence, there is no possible-
contemporaneity between K1 and S2. This result is stronger than the one from Example 8
and allows one to rule out for sure that K1 built stratum S2.

The result of Proposition 10 is not straightforward and requires a proof. We start by
giving some intuitions. First observe that we consider a constraint ϕ, which we assume to
be satisfiable (otherwise there is trivially no possible-contemporaneity), and tight. Then,
the proof is based on the following observation: taking the conjunction of ϕ and ϕsyncp1,p2

(Lemma 9) amounts to computing the graph G′ = (V,E′, w′) from Gϕ = (V,E,w) as follows
(assuming w(x, y) = +∞ if (x, y) 6∈ E):

E′ = E ∪
{(

beg(p2), end(p1)
)
,
(
beg(p1), end(p2)

)}
;

w′(beg(p2), end(p1)) = min{w(beg(p2), end(p1)), 0);
w′(beg(p1), end(p2)) = min{w(beg(p1), end(p2)), 0);
w′(e) = w(e) for all e ∈ E

{(
beg(p2), end(p1)

)
,
(
beg(p1), end(p2)

)}
.

Thus, G′ is obtained fromGϕ by setting the weights of (beg(p2), end(p1)) and (beg(p1), end(p2))
to 0 if they had non-negative weights in Gϕ. One can check that the constraint corresponding
to G′ is equivalent to ϕ∧ϕsyncp1,p2

, so there is a possible-contemporaneity between p1 and p2 iff
there is no negative cycle in G′, by Lemma 9.

Now assume that ϕ ∧ ϕsyncp1,p2
is not satisfiable and thus G′ contains a negative cycle.

Since ϕ is tight and satisfiable, Gϕ contains no negative cycle, hence the negative cycle
in G′ comes necessarily from the modification we have performed on (beg(p1), end(p2))
and (beg(p2), end(p1)). Thus, there is, in G′, at least one negative cycle that contains
(beg(p1), end(p2)) or (beg(p2), end(p1)). For the sake of the discussion, let us assume the
negative cycle contains (beg(p2), end(p1)) and not (beg(p1), end(p2)), hence, the only reason
for this negative cycle to exist in G′ is because we have set w(beg(p2), end(p1)) to 0, and thus,
there is a negative path from end(p1) to beg(p2) inG′ andGϕ. Since ϕ is tight, this implies that
(end(p1), beg(p2)) exists and has negative weight in Gϕ. Conversely, if w(end(p1), beg(p2)) <
0, then, there is necessarily a negative cycle containing (beg(p2), end(p1)) in G′, since
w′(beg(p2), end(p1)) ≤ 0, by construction. This explains intuitively why checking that both
w(end(p2), beg(p1)) and w(end(p1), beg(p2)) are non-negative is necessary and sufficient to
check possible-contemporaneity. This can be performed in O(1) on tight (and satisfiable)
constraints. A formal proof of the proposition is given in Appendix B.

4 Conclusion and future works

This paper presents a theoretical framework for the modelling of chronological constraints
relevant to archaeological research. Within this framework, algorithms have been presented
to solve four basic chronological problems (satisfiability, tightening, sure- and possible-
contemporaneity) that are usually addressed in a non-formal way by the archaeological
community. As shown here for a toy example featuring only two kings and two archaeological
strata (Figure 1), solving these problems manually is tedious and error-prone, especially
when it comes to obtaining optimal bounds on dates and duration (tightening). On real-life
archaeological cases, featuring dozens of periods and synchronisms, obtaining reliable and
optimal results is virtually impossible without the help of a formal computational approach
as the one advocated for here.

We further contend that the application of our algorithms to real-life archaeological
test-cases might provide significant advances to current chronological debates, through the



G. Geeraerts, E. Levy, and F. Pluquet 13:15

detection of (yet unnoticed) unsatisfiable sets of chronological constraints, and through
the computation of improved chronological estimates through our tightening procedure.
An automated technique also allows archaeologist to test quickly the implications of new
hypotheses on chronological models.

The next steps of this research are therefore both practical and theoretical. On the
practical side, we wish to develop a comprehensive methodology for chronological research
in archaeology, including a user-friendly tool that will allow archaeologists to specify and
manipulate their own chronological models, through a dedicated high-level constraint language.
We also want to apply this methodology to concrete case studies from the archaeological
literature. On the theoretical side, it is clear that the development of concrete case studies
will raise new theoretical questions. One such questions we can already mention is ‘how
to provide the archaeological user with a meaningful witness of non-satisfiability?’ when a
constraint is found to be unsatisfiable. In such as case, the user would wish to understand
why the system is unsatisfiable, and also be provided with hints as to how the system could
be rendered satisfiable through the removal (or relaxing) of a limited number of constraints.
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A Shortest paths in the Chronoland example

The all-pairs shortest path matrix of the Chronoland example (graph in Figure 3) is given in
Figure 4. The entry in row i column j gives the weight of the shortest path from i to j.

B Proof of Proposition 10

Statement of Proposition 10: For all tight constraints ϕ on P (with corresponding graph
Gϕ = (V,E,w)), for all pairs of periods p1 and p2, there is a possible-contemporaneity
between p1 and p2 in ϕ iff w(end(p2), beg(p1)) ≥ 0 and w(end(p1), beg(p2)) ≥ 0 (assuming
w(x, y) = +∞ when (x, y) 6∈ E).

Proof. We prove both directions of the iff. First let us show that a possible-contemporaneity
between p1 and p2 implies w(end(p2), beg(p1)) ≥ 0 and w(end(p1), beg(p2)) ≥ 0. We prove
the contraposition, i.e., if either w(end(p2), beg(p1)) < 0 or w(end(p1), beg(p2)) < 0, then
there is no possible-contemporaneity between p1 and p2.

Assume that w(end(p2), beg(p1)) < 0 (the case w(end(p1), beg(p2)) < 0 is symmetrical),
and consider the graph G′ = 〈V,E′, w′〉 obtained, as described above. By definition of G′,

z0 beg(S1) end(S1) beg(S2) end(S2) beg(K1) end(K1) beg(K2) end(K2)



z0 0 −1, 200 −1, 220 −1, 220 −1, 240 −1, 200 −1, 200 −1, 200 −1, 240
beg(S1) 1, 260 0 −20 −20 −40 15 0 0 −40
end(S1) 1, 280 80 0 0 −20 80 80 80 −20
beg(S2) 1, 280 80 0 0 −20 80 808080 80 −20
end(S2) 1, 300 100 80 80 0 100 100 100 0
beg(K1) 1, 260 0 −20 −20 −40−40−40 0 0 0 −40
end(K1) 1, 270 15 −5 -5 −25 15 0 0 −30
beg(K2) 1, 270 15 −5 −5 −25 15 0 0 −30
end(K2) 1, 300 100 80 80 60 100 100 100 0

Figure 4 The all-pairs shortest paths for the Chronoland example. Bold numbers highlight
the values referred to in Example 8 where sure-contemporaneity between K1 and S2 is checked
(and found not to hold). Boxed numbers highlight the values referred to in Example 11, where
possible-contemporaneity between K1 and S2 is checked (and found not to hold either).
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and since w(end(p2), beg(p1)) < 0: w′(end(p2), beg(p1)) = w(end(p2), beg(p1)) < 0. Let us
show that the cycle

end(p2), beg(p1), end(p1), beg(p2), end(p2)

is negative in G′. Indeed, we have:

w′(beg(p1), end(p1)) ≤ 0 True in all constraints: the beginning occurs before the end
w′(beg(p2), end(p2)) ≤ 0 Same argument
w′(end(p1), beg(p2)) ≤ 0 By construction of G′

w′(end(p2), beg(p1)) < 0 By the above arguments.

Hence, the weight of the end(p2), beg(p1), end(p1), beg(p2), end(p2) cycle is indeed negative.
However, by construction G′ is the graph that corresponds to ϕ∧ϕsyncp1,p2

, hence this constraint
is not satisfiable. By Lemma 9, there is no possible-contemporaneity between p1 and p2 in ϕ.

For the other direction, let us show that:

w(end(p2), beg(p1)) ≥ 0 and w(end(p1), beg(p2)) ≥ 0 (2)

implies that there is a possible-contemporaneity between p1 and p2 in ϕ. Following Lemma 9,
we show that (2) implies that ϕ ∧ ϕsyncp1,p2

is satisfiable. To show this, we rely again on the
graph G′ described above: we proceed by contradiction and assume that (2) holds but that
G′ contains a negative cycle. We consider several cases:
1. The negative cycle contains neither the (beg(p2), end(p1)), nor the (beg(p1), end(p2)) edge.

Since these two edges are the only ones that have been modified when building G′ from
Gϕ, we conclude that the negative cycle is already present in Gϕ. This is a contradiction
since we have assumed that ϕ is satisfiable.

2. The negative cycle contains only edge among (beg(p2), end(p1)) and (beg(p1), end(p2)).
Wlog, we assume that the negative cycle of G′ contains (beg(p2), end(p1)), i.e. it is of the
form:

beg(p2) w′(beg(p2),end(p1))−−−−−−−−−−−−→ end(p1) w1−−→ v1
w2−−→ · · · wn−−→ vn

wn+1−−−→ beg(p2)︸ ︷︷ ︸
π

where w1 = w′(end(p1), v1), wi = w′(vi−1, vi) for all 2 ≤ i ≤ n, wn+1 = w′(vn, beg(p2)),
and neither (beg(p2), end(p1)), nor (beg(p1), end(p2)) occur in π. Since this cycle is
negative in G′:

w′(beg(p2), end(p1)) +
n+1∑
i=1

wi < 0.

Recall that, by construction of G′: w′(beg(p2), end(p1)) ≤ 0. We consider two further
sub-cases:
a. If w′(beg(p2), end(p1)) = 0, then

∑n
i=1 wi < 0, i.e., the total weight of π is non-positive.

However, since all edges occurring in π occur with the same weight in Gϕ, and since
π starts in end(p1) and ends in beg(p2), we conclude that the shortest path between
end(p1) and beg(p2) is < 0 in Gϕ. Since ϕ is assumed to be tight, this implies that
w(end(p1), beg(p2)) < 0, which is a contradiction with our hypothesis (2).

b. If w′(beg(p2), end(p1)) < 0, then by construction of G′, this edge had the same weight
in Gϕ, i.e., w′(beg(p2), end(p1)) = w(beg(p2), end(p1)) < 0. Since all the edges in π
were also present in Gϕ with the same weight, we conclude that the negative cycle
we have identified in G′ is also present in Gϕ. This is a contradiction since we have
assumed that ϕ is satisfiable.
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3. The negative cycle contains both (beg(p2), end(p1)) and (beg(p1), end(p2)), i.e. it is of the
form:

beg(p1) w′(beg(p1),end(p2))−−−−−−−−−−−−→ end(p2) w1−−→ v1
w2−−→ · · · wn−−→ vn

wn+1−−−→ beg(p2)︸ ︷︷ ︸
π1

w′(beg(p2),end(p1))−−−−−−−−−−−−→ end(p1) w′
1−−→ v′1

w′
2−−→ · · ·

w′
`−−→ v′`

w′
`+1−−−→ beg(p1)︸ ︷︷ ︸

π2

where w1 = w′(end(p2), v1); for all 2 ≤ i ≤ n: wi = w′(vi−1, vi); wn+1 = w′(vn, beg(p2));
w′1 = w′(end(p1), v′1); for all 1 ≤ i ≤ `: w′i = w′(v′i−1, v

′
i); w′`+1 = w′(v′`, beg(p1)); and

(beg(p2), end(p1)), (beg(p1), end(p2)) occur neither in π1 nor in π2. Since this cycle is
negative in G′, we have:

w′(beg(p1), end(p2)) +
n+1∑
i=1

wi + w′(beg(p2), end(p1)) +
`+1∑
i=1

w′i < 0 (3)

Since, by construction of G′: w′(beg(p2), end(p1)) ≤ 0 and w′(beg(p1), end(p2)) ≤ 0, we
consider four further sub-cases:
a. First, w′(beg(p2), end(p1)) = w′(beg(p1), end(p2)) = 0. Then, (3) yields:

n+1∑
i=1

wi +
`+1∑
i=1

w′i < 0.

Hence, one of these two sums must be < 0. Wlog, let us assume
∑n+1
i=1 wi < 0, i.e.,

the weight of π1 is non-positive (the arguments carry on when the overall weight of π2
is non-positive instead). Since all the edges of π1 were already present in G with the
same weights, we conclude that the shortest path from end(p2) to beg(p2) is < 0 in
G. Since we have assumed that ϕ is tight, this implies that w(end(p2), beg(p2)) < 0,
hence, ϕ contains an atomic constraint of the form end(p2)− beg(p2) ≤ c from some
c < 0. However, this renders ϕ unsatisfiable, because all constraints imply that
beg(p)− end(p) ≤ 0 for all periods p. Contradiction.

b. Second w′(beg(p2), end(p1)) < 0 and w′(beg(p1), end(p2)) = 0. Then, (3) yields:
n+1∑
i=1

wi + w′(beg(p2), end(p1)) +
`+1∑
i=1

w′i < 0. (4)

However, by construction of G′, w′(beg(p2), end(p1)) < 0 implies that the edge
(beg(p2), end(p1)) was already in G with the same weight, i.e. w(beg(p2), end(p1)) < 0.
Moreover, all edges in π1 and π2 are also present in G with the same weight as in G′.
Thus, we conclude from (4) that the

end(p2), v1, . . . , vn, beg(p2), end(p1), v′1, . . . , v′`, beg(p1)

path exists in G with non-positive weight. Hence, the shortest path from end(p2) to
beg(p1) in G has weight < 0. Since we have assumed that ϕ is tight, we conclude that
w(end(p2), beg(p1)) < 0, which contradict our hypothesis (2). Contradiction.

c. Third, w′(beg(p2), end(p1)) = 0 and w′(beg(p1), end(p2)) < 0 is treated as the previous
case.

d. Finally, when w′(beg(p2), end(p1)) < 0 and w′(beg(p1), end(p2)) < 0, we conclude that
all the edges in the negative cycle we have identified are already present in G with the
same weight, i.e., the beg(p1), end(p2), v1, . . . , vn, beg(p2), end(p1), v′1, . . . , v′`, beg(p1)
cycle has negative weight in G, hence ϕ is not satisfiable. Contradiction. J
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