
Time Expressions Recognition with Word Vectors
and Neural Networks
Mathias Etcheverry1 and Dina Wonsever2

1 Universidad de la República, Facultad de Ingeniería, Instituto de
Computación, Montevideo, Uruguay
mathiase@fing.edu.uy

2 Universidad de la República, Facultad de Ingeniería, Instituto de
Computación, Montevideo, Uruguay
wonsever@fing.edu.uy

Abstract
This work re-examines the widely addressed problem of the recognition and interpretation of
time expressions, and suggests an approach based on distributed representations and artificial
neural networks. Artificial neural networks allow us to build highly generic models, but the large
variety of hyperparameters makes it difficult to determine the best configuration. In this work we
study the behavior of different models by varying the number of layers, sizes and normalization
techniques. We also analyze the behavior of distributed representations in the temporal domain,
where we find interesting properties regarding order and granularity. The experiments were
conducted mainly for Spanish, although this does not affect the approach, given its generic
nature. This work aims to be a starting point towards processing temporality in texts via word
vectors and neural networks, without the need of any kind of feature engineering.

1998 ACM Subject Classification I.2.7 Natural Language Processing

Keywords and phrases Natural Language Processing, Time Expressions, Word Embeddings,
Neural Networks

Digital Object Identifier 10.4230/LIPIcs.TIME.2017.12

1 Introduction

Detecting and interpreting the linguistic expressions that we use to refer to the physical time
we live in (e.g. “21 September”, “2001” or “yesterday”) poses an interesting problem of natural
language processing. Time expressions or timexes are a sub-language made up of specific
lexicon and with an interpretation linked to the calendar system that we use, numbers,
conditions and relations with entities that are external to the expression. Additionally,
as many other NLP tasks, the analysis of timexes presents ambiguous situations where
contextual information is needed.

Several approaches have been proposed to detect and interpret time expressions. Rule-
based systems like HeidelTime [35] and SUTime [9] yield very good results. Also systems
based on machine learning techniques like Support Vector Machines [3] or Conditional
Random Fields [1] produce good results without the cost of defining the rules, though it is
necessary to define specific characteristics and to use external resources.

Furthermore, vector representations of words, obtained from large text collections, have
produced interesting results regarding association and analogies between words [25]. Word
vectors can be seen as a set of artificial micro features that may be part of the input of a
machine-learning algorithm.

© Mathias Etcheverry and Dina Wonsever;
licensed under Creative Commons License CC-BY

24th International Symposium on Temporal Representation and Reasoning (TIME 2017).
Editors: Sven Schewe, Thomas Schneider, and Jef Wijsen; Article No. 12; pp. 12:1–12:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/132422635?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.TIME.2017.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 Time Expressions Recognition with Word Vectors and Neural Networks

Artificial neural networks organized in layers can be interpreted as successive sequent
transformations of a representation to obtain an expected result. Using word vectors as input
enables us to resolve problems without having to specify rules or machine-learning features
with information about the problem. The information about the problem used to define the
models considered in this work is limited to the output layer and the way the model is used.

In this work we study the behavior of neural models that use as input distributed
representations of words to detect and classify the time expressions occurring in a text.
Word representations make associations between similar words or semantically related words,
which gives the model the capacity to consider cases with lexical entries that do not exist
in the training data. We consider feedforward and LSTM models, and analyze the effect of
considering different dimensions for word representations, for hidden layers and normalization
techniques such as noise in representations, dropout, L1 and L2. We conducted experiments
using a small corpus for Spanish obtaining interesting results. We present results relative to
word vectors that suggest the possibility of interpreting time expressions without defining
rules or adding knowledge about the temporal domain. Finally, we include experiments in
English with encouraging results, and in the different, yet related, task of events detection
for Spanish and English.

2 Related Work

2.1 In Time Expressions
Extensive work has been done in the detection and interpretation of time expressions.
Furthermore, neural networks and vector representations of words have made great progress
recently. However, to our knowledge, no studies using neural models to resolve problems
with time expressions have been presented.

Regarding existing rule-based systems, [24] presents a system that resolves recognition
and interpretation through manually developed and machine-learned rules. [28] tackles the
problem by processing the input text, where information about expressions is cumulatively
added in each stage through heuristics and rules. [16] resolves recognition and interpretation
with a formal set of rules on the morphosyntactic information of the input. [13] builds a
system based on the TRIOS system [38], adding pre and post processing stages to improve
their results.

The HeidelTime system [34] uses regular expressions and resources from a temporal
lexicon to recognize and interpret the expressions, reaching the best results at TempEval-2.
These results were later improved by the SUTime system [9]. At TempEval-3, the system
that obtained the best results was a new version of HeidelTime [35]. [8] outperforms this
result with a system based on a manually developed context-free grammar.

Furthermore, traditional machine learning methods are essentially classifiers based on
conveniently defined features. It is from annotated examples that mechanisms are set to
determine the desired information in arbitrary entries. This type of method is suitable to
identify and classify time expressions, but its application to interpretation is not direct.

These systems are usually based on features such as: words part-of-speech tags in a
context window, belonging to word classes that are manually specified, and restrictions on a
dependency or constituents analysis, among many others. The variety of possible features is
unlimited, and the results depend mainly on features engineering. It is also important to
note that some features may require considerable computing time, thus making their use
questionable.

We could mention many existing machine learning based systems. [1] detects time
expressions with Conditional Random Fields (CRF), as does [2]. Later on, [3] uses Support

M. Etcheverry and D. Wonsever 12:3

Vector Machines (SVM) as classifiers and simplifies the rules for interpretation through a
classifiers cascade.

Semi-supervised approaches may include bootstrapping techniques to improve recognition
[27]. [21] expands positive cases using WordNet. The ManTIME system [14] runs CRF
for detection, considering attributes derived from WordNet, but does not reach significant
improvements.

TheClearTK-TimeML system [7] trains multiple supervised classifiers to identify and
classify time expressions, events and relations. Different methods are made to compete in
the system (CRF, SVM and logistic regression), with a specific tune of hyperparameters.

Hybrids that include machine learning techniques and a formal set of rules have produced
good recognition results. As for interpretation, rules are used relatively naturally given their
compositional properties. Some approaches combine the advantages of formal sets of rules
and annotated examples to interpret expressions. [4] inferred a probabilistic context-free
grammar on the expressions. This system can be easily applied to different languages [5].

[22] uses combinatory categorial grammar system to detect and interpret time expressions.
The work considers 287 manually designed entries, as well as automatically generated entries
(such as numbers and formats of dates), obtaining 83.1% F-score for detection, 85.4% for
classification and 82.4% for interpretation in the evaluation data of TempEval-3 ; this is the
current state-of-the-art.

2.2 In Neural Networks

Artificial neural networks currently play a major role in the artificial intelligence community
and natural language processing isn’t an exception[10, 11]. This has increased with the
progress made in the construction of vector representations of words from the contexts where
they occur [25, 26].

As for the use of word representations with neural network models to solve NLP tasks,
many studies with significants results can be mentioned. Among them, paraphrase detection
[32], parsing [31] and sentiment analysis [33]. [18] uses recurrent models and word embeddings
to resolve the issue of opinion mining. This work shares ideas with [17] that uses a feedforward
network and word2vec embeddings for time expression recognition in English for clinical
domain.

3 Time Related Words and Distributed Representations

To study the quality of information provided by words vector representations in the temporal
domain we reduced the dimension of the representations to be able to represent their relative
positions graphically. In turn, the ordering of the cosine distances respect to a specific word
were considered. We used word representations inferred from Wikipedia in Spanish through
GloVe [26], presented by [12].

3.1 Clustering

It is relevant to study the structure of the space of vector representations for the words that
refer to temporal information. Figure 1 shows the representations of a selection of time
related words after reduction to 2 dimensions with t-sne [40] for its graphical representation.
The presented 2-d representation shows how semantically related words tend to form clusters.
The following clusters are formed: days of the week, months, years, adverbs and low numbers

TIME 2017

12:4 Time Expressions Recognition with Word Vectors and Neural Networks

Figure 1 (a) Representation in 2 dimensions using t-sne of 200 dimension representations of
a time related words selection. (b) Representation in 2 dimensions using t-sne of 200 dimension
representations of numbers.

Table 1 Table with the closest terms (to the heading) ordered by distance to the time expressions
representations.1

Amanecer Neolítico Comienzo Antes Repentinamente Apresuradamente
atardecer paleolítico inicio después súbitamente marchar
mañana mesolítico dio tras muere replegarse
noche calcolítico antes ya falleció precipitadamente
día neolítico final días murió desecaba

medianoche datan dando luego prematuramente mudarse
anochece pleistoceno llegada ese trágicamente periódicamente
mediodía precerámico finales meses tempranamente dirigiera
ocaso epipaleolítico principio tiempo

madrugada bronce momento comenzar
.

used in days of the month. In tasks related to time expressions, this enables the generalization
to cases that are not included in the training corpus.

Besides the days of the week and the months of the year, it is interesting to observe, for
example, the behavior of the words denoting times of day (e.g. sunrise), prehistoric times
(e.g. Neolithic) or time adverbs. Table 1 shows the closest words to a given term ordered by
distance.

3.2 Ordering and Granularity

In the examples presented, besides the formation of clusters we notice that the words that
follow a sequential order (common in time domain), such as the days of the week, months,
etc., tend to hold the order in terms of the representations. For instance, the representation
of the word miércoles (Wednesday) occurs closer to that of martes (Tuesday) and of jueves
(Thursday) than to other week day names. This shows that representations tend to preserve
the chronological order of the terms.

1 There is an English translated version in the Appendix B, Table 22.

M. Etcheverry and D. Wonsever 12:5

Table 2 Table with the closest terms (to the heading) ordered by distance to the representations
of ordinal and numerical terms.2

Primero Segundo Vigésimo 1853 1850 1700 1999
luego tercer trigésimo 1855 1840 1600 1998

segundo primer décimo 1854 1849 1800 1995
mismo cuarto cuadragésimo 1856 1870 1500 1997
último último noveno 1852 1860 1400 1996
primer quinto quincuagésimo 1851 1880 1200 2002

posteriormente primero octavo 1865 1851 1100 2003
después tercero quinto 1849 1830 1300 1994

. .

Besides this tendency to preserve the order, ordinal terms and numbers present a granu-
larity issue. When considering terms such as primero (first), segundo (second) and tercero
(third), the term primero is close to terms like segundo and also to último (last). Then, when
considering the terms close to segundo, terms like tercero (third), cuarto (fourth) and quinto
(fifth) prevail. Additionally, next to the term vigésimo (twentieth) we find terms like désimo
(tenth) and trigésimo (thirtieth) (see Table 2).

Similarly, granularity is considered in the vector representation of numerical terms. For
instance, if the number is in hundreds granularity, for example 1700, other numbers from the
hundreds like 1600 or 1800 are found close. Note as well that these terms are sequentially
the previous and next ones to 1700 in the hundreds granularity. Something similar happens
with numbers from the tens such as 1850, with close numbers like 1840, 1860 and 1870; and
if 1853 is considered, its representation is close to that of 1855 and 1854.

Figure 1(b) shows the representations of a selection of numerical terms after reduction to
2 dimensions with t-sne. We can see clusters that reflect the granularity and order properties.
It is also interesting to note how the sequence 1920, 1930, . . . , 1970, 1980, 1990 connects
the cluster close to 1900 (1888, 1889, . . .) with the one close to 1990 (1991, 1992, . . .).
These order and granularity phenomena of the terms are potentially useful to interpret time
expressions. Note that these properties are inferred only from the local contexts where words
occur.

3.3 Regression on Years vectors

Experiments were conducted on neural network models trained to infer their respective
numerical value from the vector representation of a numerical term. A sampling of 300
random numbers was considered in the range from 1000 to 2000 with their respective vector
representations. The set was used to train a regression feedforward network with one 100-size
hidden layer, and the lowest absolute error was used as target function for training. Though
deeper studies are needed, the results obtained are encouraging. The experiments include
results such as 1985.21; 1986.84; 1986.72; 1988.58 and 1989.02 for the 1985− 1989 sequence,
where only 1989 was in the training data. However, not all the results were as accurated,
although, they were close to the expected value.

2 There is an English translated version in the Appendix B, Table 23.

TIME 2017

12:6 Time Expressions Recognition with Word Vectors and Neural Networks

Table 3 Labeling scheme used to classify time expressions.

Type Label
date (da) Lda, Uda

time (t) Lt, Ut

duration (du) Ldu, Udu

set (s) Ls, Us

other B, I, O

4 Timex Detection and Classification

Detecting time expressions involves identifying the expression and indicating its extension.
The classification of time expressions means to determine the type of the expressions identified
using a predefined set of types.

With a focus on the TimeML annotation system of time expressions and events [29],
the date type was considered for dates (e.g. “three years before”), time for the times of day
(e.g. “at 3 pm”), duration for durations (e.g. “5 minutes”) and set for the expressions that
represent frequencies and sets (e.g. “every Monday”).

Detection and classification are resolved simultaneously by formulating the problem as
the labeling of the words in the text. Each word is assigned a label indicating if a time
expression applies and which type of expression it is. The labels from the BILOU scheme
were used, as it has shown better results than the BIO scheme for the extraction of named
entities [30]. The original scheme determines for each word if it is the beginning (B), the
inside (I) or the last (L) token of an expression; if it is a single word expression (U) or a
word that does not belong to any expression (O).

To consider classification we distinguish the last word in the expression adding an Li and
Ui label for each type, the other labels remain unchanged (see Table 3).

4.1 Model

To resolve the detection and classification of time expressions we consider models organized
in layers to label words according to the BILOU variant presented. The model is applied
sequentially to each word giving the word label on each activation.

The input layer receives word vectors, the information is transformed along the hidden
layers to the output layer, where the softmax function is used. We consider feedforward
and recurrent models with different numbers and size of hidden layers and regularization
techniques.

We include local contextual information concatenating vector representation of fixed size
window to both sides from the word to label (window context).

For example, if a size 2 left window context and 3 size right context is considered, the input
received by the neural network would be x = [wi−2wi−1wiwi+1wi+2wi+3]; the concatenation
vector of the word representations in the input text, where wi is the representation of the word
to classify. The disadvantage of this type of context is that it has a rigid size regardless of the
case presented to the model. This might be inappropriate for selective context considerations
or to capture long-range dependencies.

M. Etcheverry and D. Wonsever 12:7

Table 4 Information about time expressions in the used corpus.

Expresiones Temporales
Name Words Date Duration Time Set Total
TEval13_es_train 46.687 585 215 49 29 878
TEval13_es_test 12.197 164 36 8 8 216

4.2 Corpus and Training
Training and evaluations were conducted with the data for Spanish included in the TempEval-
3 task [39]. As the evaluation data is not available, the training data was divided into a
training set and an evaluation set. The training set has 878 time expressions, and the
evaluation set has 216 of them. Table 4 shows information from the corpora used.

The limited size of the corpus is a setback for supervised learning approaches in contrast to
those that include rule-based knowledge. However, it is a good scene to test the unsupervised
word vector representations as a generalization tool when there is limited data. A further
disadvantage is that the reduced size of the evaluation set affects the quality of the evaluation
and reduces the impact of small variations on the experiment results.

As for training, all the models considered were trained with RMSprop [37], a variant of
backpropagation. In all cases we used a learning rate of 1× 10−4 and a moment value of 0.9.
The stopping criterion is that the improvement of the target function does not exceed 1×10−5

per 30 epochs. The experiments were conducted with Theanets package [19] implemented
over Theano [36].

The evaluation is made through precision and recall at the expression level of the output
of each model against the evaluation data. The global evaluation measure is taken through
the F-score with the same balance for both.

4.3 Experiments
There follow the experiments conducted and the results obtained. The experiments focus
on the dimensions of words and internal representations, number of layers, regularization
techniques and variations on local context.

4.3.1 Dimension
[25] and [26] show that by increasing the dimension, vector quality improves. This tendency
seems not to be unlimited, although there are no known results. Furthermore, compact
vectors have desirable characteristics and benefits regarding computational cost.

To observe the impact of dimension empirically on the detection task we considered
several dimensions representations under similar conditions. Models were trained avoiding to
alter the rest of the environment.

The models used were three-layer feedforward models with three words of symmetric
context. To preserve the proportion between layers, we adjusted the size of the hidden layer
to three times the word dimension. We observed a steady increase in the recall, but the
precision began to decrease. The results are shown in Table 5.

We observed the behavior that takes place when halving the size of the models considered
for dimensions 150 and 200. In both cases we observed a slight improvement in the results,
mainly contributed by the increase in precision, thus preserving global results. The results
are shown in Table 6.

TIME 2017

12:8 Time Expressions Recognition with Word Vectors and Neural Networks

Table 5 Comparison of detection results in similar environments varying the dimension or the
word representations using feedforward models with one hidden layer and three words (to each side)
of symmetric context were used.

Dim Train Acc Prec Rec F
25 1x10-6 72.97 50.00 59.34
50 1x10-6 76.14 62.04 68.37
100 396x10-4 82.35 64.81 72.54
150 396x10-4 80.79 66.20 72.77
200 396x10-4 78.61 68.06 72.95

Table 6 Detection and classification results when halving the hidden layer dimensions in the
most significant models in Table 5. We present between brackets the classification results.

Dim Hid Prec Rec F
150 450 80.79 (77.46) 66.20 (62.04) 72.77 (68.89)

225 82.28 (75.00) 66.67 (62.50) 73.66 (68.18)
200 600 78.61 (77.97) 68.06 (63.89) 72.95 (70.22)

300 79.14 (78.61) 68.52 (62.96) 73.45 (69.92)

4.3.2 Detection with/without Classification

As the models that resolve the classification of expressions also conduct detection tasks,
it would be interesting to know how classification affects detection. Table 7 shows the
comparison of the detection results between models with output layers for detection and the
same model but changing the output layer for classification. In general, detection precision
was improved in the models that also classify the expression. This might be due to the fact
that the classification information is used in detection.

As for lexical generalization to cases that are not included in the training data, we
observed at least one positive case with the word semestre (semester). This word does not
occur in the training data, but it does appear twice in the test data. A few of the models
can detect at least one of the two occurrences. This might be the case because the model
was able to generalize from words like trimestre (trimester) and cuatrimestre (four-month
period) that do occur in the training data.

4.3.3 Hidden Layer Size

Hidden layers are a fundamental part of the model that build intermediate representations
to resolve the task. The sizes of hidden layers correspond to the dimensions of the spaces
of intermediate representations. Hidden layers that are too small might hinder the right
resolution of the task, while a very large size is more inefficient and might lead the model to
overfit the training data.

We previously observed that the size of hidden layers (although up to now only models
with one hidden layer have been considered) has an impact on results. To observe the effect
of considering different sizes in the hidden layer, we trained a sequence of one-layer models
to classify expressions varying its size (Table 8).

As for the number of hidden layers, we conducted a initial experiment where an additional
100-size layer before output was considered for a 300-size layered model. The results mainly
improved the recall, with 79.67 precision and 67.13 recall, which entails an F-score of 72.86.

M. Etcheverry and D. Wonsever 12:9

Table 7 Comparison of results in detection in models trained for classification with the same
model but with detection output layer (between brackets).

Dim Hid Prec Rec F
150 450 82.66 (80.79) 66.20 (66.20) 73.52 (72.77) +0.75

225 80.00 (82.28) 66.67 (66.67) 72.73 (73.66) -0.93
200 600 83.05 (78.61) 68.06 (68.06) 74.81 (72.95) +1.86

300 83.81 (79.14) 67.13 (68.52) 74.55 (73.45) +1.10

Table 8 Results in the classification of expressions with feedforward models on 200-dimension
words, with three words of symmetric context, varying the size of the unique hidden layer.

Hid P R F
100 74.58 61.11 67.18
200 75.28 62.04 68.02
300 78.61 62.96 69.92
400 77.27 62.96 69.39
500 76.95 63.42 69.54
600 79.21 65.27 71.57
700 79.31 63.89 70.77
1000 76.40 62.96 69.04
2000 79.19 63.43 70.44

This looks promising in the deeper consideration of models. We will come back to this point
below.

4.3.4 Window Context Size
The local context is extremely important for time expressions. We tested various context
window configurations. Models with isolated left and right contexts were considered, and also
models with symmetric contexts. The model that served as base had a hidden layer whose
size is defined according to context length. The inclusion of any context produced better
results in all cases than the context-less version, however, large contexts can negatively affect
the results. Table 9 shows the results.

As expected, considering the symmetric context yielded far better results than considering
only the left or right context. Although the best global result was achieved with two context
words (two left and two right), the best recall result was reached with three words whose
F-score is also next to the maximum result. The results also show that the right context
seems to provide more information than the left one for this task.

4.3.5 Regularizations
Regularization techniques often can improve the way the neural network model is trained
giving as result a best generalizatión of unseen cases. We consider input and hidden noise,
dropout, l1 and l2 regularizations. We try different values for each regularization technique
considered and here we present the conclusions obtained. The details of the results obtained
are in Appendix A.

We try input and hidden noise with positive results mainly in the first. Input noise
improves substantially the recall (in comparison with the same model without any noise)

TIME 2017

12:10 Time Expressions Recognition with Word Vectors and Neural Networks

Table 9 Comparison of classification results when increasing the left context without considering
the right (left value), left (center) and symmtric context (right value). The base model is feedforward
of 200 word dimension, and according calculated hidden size.

Context Hid Prec Rec F
0 100 60.64 26.39 36.77
1 100 67.31 / 64.97 / 72.78 32.41 / 47.22 / 56.94 43.75 / 54.69 / 63.90
2 200 69.83 / 63.64 / 80.84 37.50 / 48.61 / 62.50 48.79 / 55.12 / 70.50
3 300 67.00 / 62.42 / 76.92 31.02 / 45.37 / 64.81 42.40 / 52.55 / 70.35
4 400 69.81 / 62.42 / 76.86 34.26 / 43.06 / 43.06 45.96 / 50.96 / 55.19

Table 10 Results of the classification of expressions using BLSTM models based on 200-dimension
words with no window context an one single hidden layer.

Hid Steps P R F
150 100 54.20 32.87 40.92
200 100 60.75 30.09 40.25
600 100 63.16 33.33 43.64
300 15 64.36 30.09 41.25
600 15 64.44 27.31 38.43
1000 15 71.44 30.56 42.85
2000 15 71.25 26.39 38.51
600 3 64.00 14.09 24.06

and minor improvement in precision. The grade of input noise that gives the best results
was 0.2. Respect to hidden noise, a much lesser improvement was detected with its best
configuration in 0.05.

Dropout also improved precision and recall if a very low value was considered, the value
that gives the best results was 0.01. Respect l1 (sparsity) and l2 (weight decay) a minor
improvement was noticed in both cases. In the case of l2, the results fluctuate and for that
reason is hard to determine which configuration is better. For l1, the best results were
obtained with 0.01 affecting positively to the recall of the model.

4.3.6 Recurrent Networks
A non-exclusive alternative to the window context is the context considered by recurrent
models. Previously established activations are considered through feedback in the hidden layer,
allowing the sequential application of the network to consider the context that corresponds
to the inputs previously applied.

Context considerations of the recurrent models are more flexible than the explicit inform-
ation provided by the window context. However, its interpretation is more complex, and the
experiments conducted did not produce good results without the additional consideration of
the window context.

As the results improve significantly when considering both left and right contexts, bidirec-
tional models are considered, especially Bidirectional Long-Short Term Memory (BLSTM)
[15].

In the experiments conducted with BLSTMs, the results obtained were lower than those
of the feedforward models with a window context. Table 10 shows the results. Different sizes
for the recurrent layer and depths of recurrence were considered.

M. Etcheverry and D. Wonsever 12:11

Table 11 Results of the classification of expressions using feedforward models on 200-dimension
words with 3 words of symmetric window context varying hidden layers number and sizes.

h1 h2 h3 h4 P R F
300 – – – 78.61 62.96 69.92
300 100 – – 79.67 67.13 72.86
300 200 100 – 74.07 64.81 69.13
600 400 200 100 64.25 57.41 60.64

Table 12 Results of the classification of expressions using BLSTM models on 200-dimension
words with no window context, varying hidden (recurrent) layers number and sizes.

Hid1 Hid2 Hid3 Prec Rec F
200 – – 60.75 30.09 40.25
300 150 – 68.42 54.17 60.46
300 200 100 61.15 45.83 52.52

4.3.7 Network Depth
The number of hidden layers is a key aspect when defining layered neural models. It is known
that the training of networks with several hidden layers presents difficulties. We experiment
with models up to four hidden layers empirically.

Different depths were considered in homogeneous models, that is, with all layers of the
same type. The first experiment consisted in adding an extra hidden layer between the
existing hidden layer and the output layer to the model previously used as a base. The
inclusion of the additional layer substantially improved the results, especially regarding recall
(see Table 11).

Upon observing the favorable effect of considering a model with two hidden layers (versus
the single hidden layer model), we trained and assessed models with three and four hidden
layers. In this case, results show that considering more than two hidden layers the model
was not adequately trained.

Regarding recurrent models, even though their results were far lower than those of
the feedforward models with a context window, we studied the effect of considering more
hidden layers, also formed by BLSTMs. As in the previous case, considering one additional
layer resulted in a considerable improvement and the F measure decreased when more than
two hidden layers were considered (Table 12). These models were trained considering 100
recurrence steps.

4.3.8 Combining Variations
The results yielded by different variations of neural models, including feedforward and
recurrent BLSTM models, were shown above. We tested different structural configurations
and regularization techniques.

A general observation regarding the experiments conducted is that the random initializa-
tion of the weights of the model can cause different instances to produce different results. To
reduce the impact of this situation, we repeated some of the experiments in questionable
situations and others randomly, and we found no high differences between the different
instances of the same experiment in most cases.

Regarding the structural considerations of the model, considering two hidden layers,
instead of one, had a positive effect. This behavior was not sustained for greater depths.

TIME 2017

12:12 Time Expressions Recognition with Word Vectors and Neural Networks

Table 13 Results of the classification of best models presented before (top), combinations of
which show positive effects independently (middle) and good combinations with an improved word
vectors set.

h1 h2 noiseI dropout L1 L2 P R F
300 – – – – – 78.61 62.96 69.92
600 – – – – – 79.21 65.27 71.57
300 100 – – – – 79.67 67.13 72.86
300 – 0.20 – – – 80.66 67.59 73.55
300 – – 0.01 – – 80.57 65.28 72.12
300 – – – 0.01 – 78.89 65.74 71.72
300 – – – – 0.001 80.11 65.28 71.94

300 – 0.20 – – – 80.66 67.59 73.55
700 – 0.2 – – – 81.03 65.28 72.31
700 400 0.2 – – – 81.36 66.67 73.28
400 150 0.2 0.1 – – 80.35 64.35 71.46
350 120 0.1 0.1 – – 80.32 68.06 73.68

600 – 0.1 – – – 81.21 68.06 74.05
450 200 0.1 – – – 81.92 67.13 73.79

The size of the hidden layers fluctuated for sizes over 300, gradually decreasing for lower
values. Input and hidden layer noise, dropout, L1 and L2 were considered as regularization
techniques. The most significant improvement was observed with the consideration of noise
in the input. Table 13 shows the best results obtained for each family of experiments.

In order to see how different techniques which yielded good results perform when combined,
we considered experiments with two hidden layers, input noise and dropout simultaneously.
Middle of Table 13 shows the results and bottom of the table includes results of models
trained using 300-dimension vectors provided by [6].

4.4 Comparison with SVM
We compare the obtained results with Support Vector Machines (SVM) in order to empirically
validate the advantage of considering neural models versus other alternatives. We consider
SVM classifier with a word dimension of 200 and 3 words with a local context in both
directions yelding 60.8 of F measure in time expressions recognition and classification. This
result indicates, at least initially, that neural models make a better use of word embeddings
and local context to resolve this task.

4.5 Comparison with Other Works
It is not possible to compare this to other works because we have not been able to access the
same evaluation data. Nevertheless, we think it is useful to at least include some comparative
values. As we explained before, the training set was split to have an evaluation set. In essence,
the model was trained with a part of the training set and evaluated with an evaluation set of
similar characteristics, but which was different.

The comparison is made based on the model that produced the best results in detecting
time expressions. The model considered has a single 300-size hidden layer, with 3 words with
symmetric contexts, a 200-dimension word and a variance value of 0.2 for the input noise.

M. Etcheverry and D. Wonsever 12:13

Table 14 Results of the classification for Spanish in the tempeval-3 task. ANNTime refers to
the best results obtained in this work. ANNTime* refers to the same model applying heuristics to
rectify inconsistent labels. ANNTime-nabu and ANNTime-nabu* correspond to the best models
using the vectors of [6].

P(r) R(r) F1(r) F1(s)
HeidelTime 96.0 84.9 90.1 85.3
TIPSemB-F 93.7 81.9 87.4 82.6
FSS-TimEx 86.6 52.3 65.2 49.5
ANNTime 92.8 77.8 84.6 78.6
ANNTime* 91.2 81.5 86.1 79.2
ANNTime-nabu 91.7 76.8 83.6 79.6
ANNTime-nabu* 91.4 83.3 87.2 79.9

Table 15 Information of the TempEval 2013 corpus for English.

Name Words Date Duration Time Set Total
TEval13_en_silver 718.746 11.133 1.346 192 68 12.739
TEval13_en_platinum 7.003 96 34 4 4 138

Table 14 shows the comparison of the results. We also included the results obtained with the
model that produced the best results using the vectors of [6].

For each model we include the result of applying the model and, subsequently, a basic
heuristics to correct inconsistent labels (this is marked with an asterisk in Table 14). Heuristics
consists of correcting an incorrect label in three situations. First, if an O is followed by an I,
the I is replaced by B or Uda accordingly3. Second, if an O is preceded by a B or I and
followed by an I or L, said label is replaced by I. Third and last, if an I is followed by an O,
said I is replaced by Lda o Uda accordingly. The application of heuristics improved results by
almost 4% regarding the recall of the model, and reduced precision by 1.6%, thus resulting
in a global improvement (F) of 1.5%, in the case of overlapping for basic vectors and a 3.6%
improvement for 300-dimension vectors.

4.6 Time expressions in English
The results using same neural models, but applied to resolve the task in English, are shown,
taking into account the lessons learned throughout the experiments conducted for Spanish.
We use the data conveyed for English in TempEval 2013 (see Table 15). The representations
presented by [26] of 200 dimensions, built with a six billion word corpus, are used.

The approach used is applied directly because it does not include specific knowledge of
the language or domain. We trained a feedforward model with three words with symmetric
contexts, based on the 200-dimension representations, with a single, 300-size hidden layer
and a noise level of 0.2 in the input, which was the model that produced the best results in
detection for Spanish. We also consider two hidden layers models detecting faster convergence.
Table 16 shows the results obtained.

Regarding the classification of expressions, in all cases models showed an F-score for
classification lower than the one in the work of [22], which is to be expected because this

3 The date type was used because it is the most frequent.

TIME 2017

12:14 Time Expressions Recognition with Word Vectors and Neural Networks

Table 16 Results of the detection and classification of expressions for English.

h1 h2 noiseI Pdet Rdet Fdet Accclass Fclass

300 – 0.20 93.88 66.67 77.97 93.47 72.88
300 100 – 95.83 66.67 78.63 95.65 75.21
900 200 – 96.80 65.94 78.45 95.60 75.00
600 100 0.20 95.88 67.39 79.15 93.54 74.04

[22] 86.1 80.4 83.1 93.4 85.4

Table 17 Top: Results of events detection model in Spanish with and without time expressions
detection. Middle: Results of events detection model in English with time expressions detection.
Bottom: Time expressions detection in English including events detection.

P R F

Events (without timexes) (600x200-0.2) (SP) 81.16 79.40 80.27
Events (with timexes) (600x200-0.2) (SP) 84.31 79.08 81.61
CRF+Morph+SRL+WNet [23] 83.43 79.54 81.40

Events (with timexes) (600x200-0.2) (EN) 79.31 79.62 79.46
ATT1(MaxEnt+Syn+Sem) [20] 81.44 80.67 81.05

Timexes (with Events) (600x200-0.2) (EN) 98.99 71.01 82.70
Semantic Parsing [22] 86.1 80.4 83.1

value is influenced by detection. Regarding accuracy, we obtained better results in all cases4,
but it should be noted that this value is positively affected by the lower result in detection.

5 Events Detection

The model presented only uses supervised training data and word representations built
through self-supervised methods. This means that the approach is rapidly adaptable to other
languages, as it was observed for English. Similarly, it can be considered to deal with tasks
that have a compatible formulation, for instance, events detection. The main difference is
that, as opposed to events, time expressions often include words such as the prepositions “in”
and “during”, days of the week, names of months, etc., which can act as indicators that aid
their detection.

It is interesting to notice that in events detection part-of-speech information becomes
extremely useful because of the abundance of events denoted as verbs. In this approach any
part-of-speech is included, just word embeddings. This could be interpreted as analogous to
the human common understanding of a language, where the knowledge of what is a verb or
a noun it is not particularly needed to understand. Another interesting observation is that
the jointly detection of time expressions and events performs better that each isolated task
(Table 17).

4 This measure was calculated with AttrAccuracy = AttrF 1/EntityExtractionF 1 [39].

M. Etcheverry and D. Wonsever 12:15

6 Conclusion

This work tackles the problem of detecting and classifying time expressions with approaches
based purely on distributed representations of words and artificial neural networks, and it
presents interesting results for Spanish with a relatively small dataset.

Initial results that support the possibility of interpreting time expressions purely from
data were presented. We found that word representations tend to contain information that
refers to the sequential nature of units such as the names of months, days and numbers, among
others. This trait is potentially useful for interpreting expressions. Regarding numerical and
ordinal entities, we found that they take into account granularity information in the vector
representations.

We showed the behavior of neural network models in detecting and classifying expressions,
as well as the effect of varying the definition of the model. Results show the relevance of the
local linguistic context. Recurrent models did not produce significant improvements in the
experiments conducted, when compared to simple feedforward models, and the latter have
the advantage that their training is much less costly. We also showed the effect of applying
regularization techniques, especially emphasizing the benefit of considering noise in the input
data and dropout.

Based on the previous results, we trained models for the problem in English and we
also added the events detection problem. The results for English are encouraging, and
they provide an example of the approach behavior when more data is available, both for
supervised data to train models and for unsupervised data used to build the word embeddings.
Regarding events detection, it is of special interest because it is not strongly based on specific
lexicon, as is the case of time expressions. The results obtained were encouraging and the
inclusion of said task, together with the detection and classification of time expressions brings
an improvement in the results as compared to the isolated treatment presented before.

References
1 Sisay Fissaha Adafre and Maarten de Rijke. Feature engineering and post-processing for

temporal expression recognition using conditional random fields. In Proceedings of the ACL
Workshop on Feature Engineering for Machine Learning in Natural Language Processing,
FeatureEng’05, pages 9–16, Stroudsburg, PA, USA, 2005. Association for Computational
Linguistics. URL: http://www.aclweb.org/anthology/W05-0402.

2 David Ahn, Sisay Fissaha Adafre, and Maarten de Rijke. Towards task-based temporal
extraction and recognition. In Graham Katz, James Pustejovsky, and Frank Schilder,
editors, Annotating, Extracting and Reasoning about Time and Events, number 05151 in
Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2005. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.

3 David Ahn, Joris Rantwijk, and Maarten Rijke. A cascaded machine learning approach to
interpreting temporal expressions. In in Proceedings of Human Language Technologies: The
Annual Conference of the North American Chapter of the Association for Computational
Linguistics (NAACL-HLT 2007. Citeseer, 2007.

4 Gabor Angeli, Christopher D. Manning, and Daniel Jurafsky. Parsing time: Learning to
interpret time expressions. In Human Language Technologies: Conference of the North
American Chapter of the Association of Computational Linguistics, Proceedings, June 3-8,
2012, Montréal, Canada, pages 446–455, 2012. URL: http://www.aclweb.org/anthology/
N12-1049.

5 Gabor Angeli and Jakob Uszkoreit. Language-independent discriminative parsing of tem-
poral expressions. In Proceedings of the 51st Annual Meeting of the Association for Compu-

TIME 2017

http://www.aclweb.org/anthology/W05-0402
http://www.aclweb.org/anthology/N12-1049
http://www.aclweb.org/anthology/N12-1049

12:16 Time Expressions Recognition with Word Vectors and Neural Networks

tational Linguistics, ACL 2013, 4-9 August 2013, Sofia, Bulgaria, Volume 1: Long Papers,
pages 83–92, 2013. URL: http://www.aclweb.org/anthology/P/P13/P13-1009.pdf.

6 Agustín Azzinnari and Alejandro Martínez. Representación de Palabras en Espacios de
Vectores. Proyecto de grado, Universidad de la República, Uruguay, 2016.

7 Steven Bethard. Cleartk-timeml: A minimalist approach to tempeval 2013. Second Joint
Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of
the Seventh International Workshop on Semantic Evaluation (SemEval 2013), 2013.

8 Steven Bethard. A synchronous context free grammar for time normalization. In Pro-
ceedings of the 2013 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2013, 18-21 October 2013, Grand Hyatt Seattle, Seattle, Washington, USA, A
meeting of SIGDAT, a Special Interest Group of the ACL, pages 821–826, 2013. URL:
http://www.aclweb.org/anthology/D/D13/D13-1078.pdf.

9 Angel X. Chang and Christopher Manning. Sutime: A library for recognizing and normal-
izing time expressions. In Nicoletta Calzolari (Conference Chair), Khalid Choukri, Thierry
Declerck, Mehmet Uğur Doğan, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan
Odijk, and Stelios Piperidis, editors, Proceedings of the Eight International Conference on
Language Resources and Evaluation (LREC’12), Istanbul, Turkey, may 2012. European
Language Resources Association (ELRA).

10 R. Collobert and J. Weston. A unified architecture for natural language processing: deep
neural networks with multitask learning. In Proceedings of ICML, pages 160–167, 2008.

11 R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa. Natural
language processing (almost) from scratch. JMLR, 12:2493–2537, 2011.

12 Mathias Etcheverry and Dina Wonsever. Spanish word vectors from wikipedia. Language
Resource Conference (LREC 2016), 2016.

13 Michele Filannino. Temporal expression normalisation in natural language texts. CoRR,
abs/1206.2010, 2012. URL: http://arxiv.org/abs/1206.2010.

14 Michele Filannino, Gavin Brown, and Goran Nenadic. Mantime: Temporal expression
identification and normalization in the tempeval-3 challenge. CoRR, abs/1304.7942, 2013.
URL: http://arxiv.org/abs/1304.7942.

15 A. Graves and J. Schmidhuber. Framewise Phoneme Classification with Bidirectional
LSTM and Other Neural Network Architectures. Neural Networks, 18(5–6):602–610, 2005.

16 Claire Grover, Richard Tobin, Beatrice Alex, and Kate Byrne. Edinburgh-LTG: TempEval-
2 System Description. In Proceedings of the 5th International Workshop on Semantic Eval-
uation, SemEval’10, pages 333–336, Stroudsburg, PA, USA, 2010. Association for Compu-
tational Linguistics. URL: http://dl.acm.org/citation.cfm?id=1859664.1859738.

17 Naman Gupta, Aditya Joshi, and Pushpak Bhattacharyya. A temporal expression re-
cognition system for medical documents by taking help of news domain corpora. 12th
International Conference on Natural Language Processing (ICON), 2015.

18 Ozan Irsoy and Claire Cardie. Opinion mining with deep recurrent neural networks. Pro-
ceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2014.

19 Leif Johnson, Majid alDosari, Filip Juricek, John, Kyle Kastner, Yoav Goldberg, talbaumel,
Yu Yang, mhr, Eben Olson, and Sergey Romanov. theanets: v0.6.1, July 2015. doi:
10.5281/zenodo.19930.

20 Hyuckchul Jung and Amanda Stent. ATT1: temporal annotation using big windows and
rich syntactic and semantic features. In Proceedings of the 7th International Workshop on
Semantic Evaluation, SemEval@NAACL-HLT 2013, Atlanta, Georgia, USA, June 14-15,
2013, pages 20–24, 2013.

http://www.aclweb.org/anthology/P/P13/P13-1009.pdf
http://www.aclweb.org/anthology/D/D13/D13-1078.pdf
http://arxiv.org/abs/1206.2010
http://arxiv.org/abs/1304.7942
http://dl.acm.org/citation.cfm?id=1859664.1859738
http://dx.doi.org/10.5281/zenodo.19930
http://dx.doi.org/10.5281/zenodo.19930

M. Etcheverry and D. Wonsever 12:17

21 Oleksandr Kolomiyets and Marie-Francine Moens. Kul: Recognition and normalization of
temporal expressions. In Proceedings of the 5th International Workshop on Semantic Eval-
uation, SemEval’10, pages 325–328, Stroudsburg, PA, USA, 2010. Association for Compu-
tational Linguistics. URL: http://www.aclweb.org/anthology/S10-1072.

22 Kenton Lee, Yoav Artzi, Jesse Dodge, and Luke Zettlemoyer. Context-dependent semantic
parsing for time expressions, volume 1, pages 1437–1447. Association for Computational
Linguistics (ACL), 2014.

23 H. Llorens, E. Saquete, and B. Navarro-Colorado. Timeml events recognition and classific-
ation: Learning crf models with semantic roles. In In COLING 2010, 23rd International
Conference on Computational Linguistics, Proceedings of the Conference, 23-27 August
2010, Beijing, China, page 725–733, 2010.

24 Inderjeet Mani and D. George Wilson. Robust temporal processing of news. In 38th Annual
Meeting of the Association for Computational Linguistics, Hong Kong, China, October 1-8,
2000., 2000. URL: http://www.aclweb.org/anthology/P00-1010.

25 Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. In Proceedings of Workshop at ICLR, 2013.

26 Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors
for word representation. Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2014.

27 Jordi Poveda, Mihai Surdeanu, and Jordi Turmo. An analysis of bootstrapping for the
recognition of temporal expressions. In Proceedings of the NAACL HLT 2009 Workshop
on Semi-Supervised Learning for Natural Language Processing, SemiSupLearn’09, pages
49–57, Stroudsburg, PA, USA, 2009. Association for Computational Linguistics. URL:
http://dl.acm.org/citation.cfm?id=1621829.1621836.

28 Georgiana Puscasu. A framework for temporal resolution. In Proceedings of the Fourth
International Conference on Language Resources and Evaluation, LREC 2004, May 26-
28, 2004, Lisbon, Portugal, 2004. URL: http://www.lrec-conf.org/proceedings/
lrec2004/pdf/664.pdf.

29 James Pustejovsky, José M. Castaño, Robert Ingria, Roser Sauri, Robert J. Gaizauskas,
Andrea Setzer, Graham Katz, and Dragomir R. Radev. Timeml: Robust specification of
event and temporal expressions in text. In New Directions in Question Answering, Papers
from 2003 AAAI Spring Symposium, Stanford University, Stanford, CA, USA, pages 28–34,
2003.

30 Lev Ratinov and Dan Roth. Design challenges and misconceptions in named entity re-
cognition. Proceedings of the Thirteenth Conference on Computational Natural Language
Learning , CoNLL ’09, pages 147–155, Stroudsburg, PA, USA., 2009.

31 Richard Socher, John Bauer, Christopher D, Manning, and Andrew Y. Ng. Parsing with
compositional vector grammars. Association for Computational Linguistics 2013 Confer-
ence (ACL 2013), 2013.

32 Richard Socher, Eric H. Huang, Jeffrey Pennington, Andrew Y. Ng, and Christopher D.
Manning. Dynamic pooling and unfolding recursive autoencoders for paraphrase detection.
Advances in Neural Information Processing Systems (NIPS 2011), 2011.

33 Richard Socher, Alex Perelygin, Jason Chuang Jean Wu, Chris Manning, Andrew Ng, and
Chris Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
Conference on Empirical Methods in Natural Language Processing (EMNLP 2013), 2013.

34 Jannik Strötgen and Michael Gertz. HeidelTime: High Quality Rule-based Extraction and
Normalization of Temporal Expressions. In Proceedings of the 5th International Workshop
on Semantic Evaluation, SemEval’10, pages 321–324, Stroudsburg, PA, USA, 2010. As-
sociation for Computational Linguistics. URL: http://dl.acm.org/citation.cfm?id=
1859664.1859735.

TIME 2017

http://www.aclweb.org/anthology/S10-1072
http://www.aclweb.org/anthology/P00-1010
http://dl.acm.org/citation.cfm?id=1621829.1621836
http://www.lrec-conf.org/proceedings/lrec2004/pdf/664.pdf
http://www.lrec-conf.org/proceedings/lrec2004/pdf/664.pdf
http://dl.acm.org/citation.cfm?id=1859664.1859735
http://dl.acm.org/citation.cfm?id=1859664.1859735

12:18 Time Expressions Recognition with Word Vectors and Neural Networks

35 Jannik Strötgen and Michael Gertz. Multilingual and cross-domain temporal tagging. Lan-
guage Resources and Evaluation, 47(2):269–298, 2013. doi:10.1007/s10579-012-9179-y.

36 Theano Development Team. Theano: A Python framework for fast computation of math-
ematical expressions. arXiv e-prints, abs/1605.02688, May 2016. URL: http://arxiv.
org/abs/1605.02688.

37 Tijmen Tieleman and Geoffrey E. Hinton. Lecture 6.5 – rmsprop: Divide the gradient by
a running average of its recent magnitude. COURSERA: Neural Networks for Machine
Learning, 2012.

38 Naushad UzZaman and James F. Allen. TRIPS and TRIOS System for TempEval-2: Ex-
tracting Temporal Information from Text. In Proceedings of the 5th International Work-
shop on Semantic Evaluation, SemEval’10, pages 276–283, Stroudsburg, PA, USA, 2010.
Association for Computational Linguistics. URL: http://www.aclweb.org/anthology/
S10-1062.

39 Naushad UzZaman, Hector Llorens, James F. Allen, Leon Derczynski, Marc Verhagen,
and James Pustejovsky. Tempeval-3: Evaluating events, time expressions, and temporal
relations. CoRR, abs/1206.5333, 2012. URL: http://arxiv.org/abs/1206.5333.

40 L. J. P. van der Maaten and G.E. Hinton. Visualizing high-dimensional data using t-sne.
Journal of Machine Learning Research 9(Nov):2579-2605, 2008.

A Result Tables

A.1 Noise
We tested the effects of applying noise to the input. We slightly modified the input, according
to Gaussian distribution centered at zero and using several variance values, in the input data
and intermediate representations. The variance regulates the noise level injected.

Including noise substantially improved the recall, and it slightly improved the precision
for noise values from 0.1 (Table 18). The results for noise values under 0.1 were slightly
lower. The best results were obtained when considering 0.2 injected noise variance, with
significant degradation when considering a 0.3 variance. The hidden layer noise has a less
substantial impact and is more sensitive to the amount of noise injected.

We trained a model with the best noise levels in the input and in the hidden layer to
observe the interaction of both cases. It seems that the effects add up degrading the precision.

As for expression detection, as well as in classification, we obtained the best result when
considering a 0.2 noise value at the input and with no noise in the hidden layer. This was
the same case that produced the best results in classification. The best results achieved

Table 18 Results in the classification of expressions in feedforward models on 200-dimension
words, with three words of symmetric context and a 300-size hidden layer, with varying noise levels
at the input and hidden layer. The results between brackets correspond to cases with noise in the
hidden layer.

Noise Prec Rec F
0.00 78.61 62.96 69.92
0.01 77.20 (79.41) 61.11 (62.50) 68.22 (69.95)
0.05 77.40 (77.60) 63.43 (65.74) 69.72 (71.18)
0.10 79.33 (77.40) 65.74 (63.43) 71.90 (69.72)
0.20 80.66 (77.01) 67.59 (62.04) 73.55 (68.72)
0.30 78.65 (–) 64.81 (–) 71.06 (–)

http://dx.doi.org/10.1007/s10579-012-9179-y
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
http://www.aclweb.org/anthology/S10-1062
http://www.aclweb.org/anthology/S10-1062
http://arxiv.org/abs/1206.5333

M. Etcheverry and D. Wonsever 12:19

Table 19 Results in the classification of expressions from feedforward models on 200-dimension
words, with three words of symmetric context and a 300-size hidden layer, with varying levels of
dropout in the hidden layer.

Dropout Prec Rec F
0.00 78.61 62.96 69.92
0.01 80.57 65.28 72.12
0.05 78.29 63.43 70.08
0.10 75.82 63.89 69.35
0.20 77.14 62.50 69.05

Table 20 Results in the classification of expressions from feedforward models on 200-dimension
words, with three words of symmetric context and a 300-size hidden layer, with varying levels of L2
regularization.

L2 P R F
0.00 78.61 62.96 69.92
0.0001 78.21 64.81 70.89
0.001 80.11 65.28 71.94
0.01 77.58 62.50 69.23
0.05 79.21 65.43 71.57
0.10 81.21 62.04 70.34
0.20 78.82 62.04 69.43

for detection were 78.59 F-score for the strict case and 81.42 for the relaxed case, where
displacements of a word were allowed in the extension of the expression detected.

A.2 Dropout
This section shows the behavior of dropout (or multiplicative mask) in the hidden layer. This
technique randomly turns to zero some entries in intermediate layers. It can be seen as a
partial network where some components are completely eliminated. The dropout value is the
portion of units set to zero.

We conducted an experiment with varying dropout levels for the hidden layer of a
feedforward (Table 19). Regarding detection, a dropout value of 0.01 also yielded the best
result in the hidden layer, with a 75.70 F-score in the strict case and of 81.84 for the relaxed
case.

A.3 L1 and L2 regularizations
Overfitting can be reflected on high values in the weights learned, so training the model
avoiding high values in the learned weights may help to prevent it. This technique is called
weight decay (or L2 regularization). The technique consist on adding the term λL2‖θ‖2 to
the target function, where ‖.‖2 is the L2 norm, and θ is the weights vector to fit. This aims
to a reduction in the weights magnitude besides the function to optimize.

Many instances of a base model was trained with different values for L2 regularization
each (Table 20). Results improve when considering λL2 = 0.001. Anyways, the results
fluctuate and for that reason is hard to determine which was the best configuration.

Furthermore, besides the tendency towards low values in learned parameters, there might
be a positive effect on sparse representations. A way to tend to sparse parameters is to

TIME 2017

12:20 Time Expressions Recognition with Word Vectors and Neural Networks

Table 21 Results in the classification of expressions from feedforward models on 200-dimension
words, with 3 words of symmetric context and a 300-size hidden layer, with varying levels of L1.

L1 P R F
0.00 78.61 62.96 69.92
0.001 80.00 62.96 70.47
0.01 78.89 65.74 71.72
0.05 74.85 59.26 66.15
0.10 74.30 61.57 67.34
0.20 77.21 56.50 65.24

include the term λL1‖θ‖1, where ‖.‖1 is the L1 norm. Including this term reduces some
components if the result is not affected.

Table 21 shows the results obtained in the detection and classification of expressions. We
can see that values higher than 0.05 for L1 regularization significantly degrade the results.
The best result was obtained with 0.01, which showed an improvement of 2 points in the
F-score.

B English Translated Tables

Table 22 Table with the closest terms (to the heading) ordered by distance to the time expressions
representations.

Dawn Neolithic Start Before Impromptu Hurriedly
sunset paleolithic initiation after suddenly march
morning mesolithic gave behind die retract
night chalcolitic before already perish hastily
day neolthic final days died dried out

midnight date giving then prematurely move
nightfall pleistocene arrival that tragically periodically
midday preceramic endings months early direct
twilight epipaleolytic beginning time

early morning bronze moment begin
.

Table 23 Table with the closest terms (to the heading) ordered by distance to the representations
of ordinal and numerical terms.

First Second Twentieth 1853 1850 1700 1999
then third thirtieth 1855 1840 1600 1998
second first tenth 1854 1849 1800 1995
same fourth fortieth 1856 1870 1500 1997
last last nineth 1852 1860 1400 1996
first fifth fiftieth 1851 1880 1200 2002
later first eighth 1865 1851 1100 2003
after third fifth 1849 1830 1300 1994
. .

	Introduction
	Related Work
	In Time Expressions
	In Neural Networks

	Time Related Words and Distributed Representations
	Clustering
	Ordering and Granularity
	Regression on Years vectors

	Timex Detection and Classification
	Model
	Corpus and Training
	Experiments
	Dimension
	Detection with/without Classification
	Hidden Layer Size
	Window Context Size
	Regularizations
	Recurrent Networks
	Network Depth
	Combining Variations

	Comparison with SVM
	Comparison with Other Works
	Time expressions in English

	Events Detection
	Conclusion
	Result Tables
	Noise
	Dropout
	L1 and L2 regularizations

	English Translated Tables

