
Conditional Simple Temporal Networks with
Uncertainty and Decisions∗

Matteo Zavatteri

Department of Computer Science, University of Verona, Verona, Italy
matteo.zavatteri@univr.it

Abstract
A conditional simple temporal network with uncertainty (CSTNU) is a framework able to model
temporal plans subject to both conditional constraints and uncertain durations. The combination
of these two characteristics represents the uncontrollable part of the network. That is, before the
network starts executing, we do not know completely which time points and constraints will be
taken into consideration nor how long the uncertain durations will last. Dynamic controllability
(DC) implies the existence of a strategy scheduling the time points of the network in real time
depending on how the uncontrollable part behaves. Despite all this, CSTNUs fail to model tem-
poral plans in which a few conditional constraints are under control and may therefore influence
(or be influenced by) the uncontrollable part. To bridge this gap, this paper proposes conditional
simple temporal networks with uncertainty and decisions (CSTNUDs) which introduce decision
time points into the specification in order to operate on this conditional part under control. We
model the dynamic controllability checking (DC-checking) of a CSTNUD as a two-player game in
which each player makes his moves in his turn at a specific time instant. We give an encoding into
timed game automata for a sound and complete DC-checking. We also synthesize memoryless
execution strategies for CSTNUDs proved to be DC. The proposed approach is fully automated.

1998 ACM Subject Classification G.2.2 Graph Theory, F.1.1 Models of Computation,
I.2.8 Problem Solving, Control Methods, and Search

Keywords and phrases cstnud, dynamic controllability, timed game automata, controller syn-
thesis, advanced temporal planning under uncertainty.

Digital Object Identifier 10.4230/LIPIcs.TIME.2017.23

1 Introduction

Temporal networks are a framework to model temporal plans and check the coherence of their
temporal constraints which impose a minimal and maximal temporal distance between the
occurrence of the events specified in the plan. Temporal plans mainly divide in plans having
everything under control and plans having something out of control. The main components
of a temporal network are time points and constraints. Time points are variables having
continuous domain and model the occurrence of events as soon as these variables are assigned
real values (i.e., executed). Constraints regulate the minimal and maximal temporal distance
between the occurrence of pairs of events and are formalized as linear inequalities.

Whenever both these two components are under control we simply deal with a consistency
problem asking us to find an assignment of real values to all time points satisfying all
constraints. Simple temporal networks (STNs) model exactly this case [10], whereas Drake [9]

∗ The author wants to thank Luca Viganò for his valuable feedback.

© Matteo Zavatteri;
licensed under Creative Commons License CC-BY

24th International Symposium on Temporal Representation and Reasoning (TIME 2017).
Editors: Sven Schewe, Thomas Schneider, and Jef Wijsen; Article No. 23; pp. 23:1–23:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/132422626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.TIME.2017.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Conditional Simple Temporal Networks with Uncertainty and Decisions

addresses temporal plans with choices that are, however, under control; therefore, we keep
dealing with a consistency problem asking us to further find suitable values for such choices.

Instead, when some component is out of control, satisfiability is, in general, not enough.
In such a case, we deal with a controllability problem.

Conditional simple temporal networks (CSTNs) [14, 20] address conditional constraints
to enable or disable some parts of the network (i.e., a subset of time points and constraints)
during execution. Conditionals are expressed as labels consisting of conjunctions of literals
whose atoms are Boolean propositions. The truth value assignments to such propositions are
out of control and depend on the behavior of unpredictable external events which are only
observed to occur while executing the network.

Simple temporal networks with uncertainty (STNUs) [17, 18] address uncertain (but
bounded) durations. Such durations are modeled by contingent links, i.e. pairs of distinct time
points specifying a range of allowed values between their distance. One of these time points
is called activation and it is under control, whereas the other one is called contingent and it
is not. The real value assignment to the contingent one depends again on the behavior of
unpredictable external events which are only observed to occur while executing the network.

Conditional simple temporal networks with uncertainty (CSTNUs) [7, 13] merge the
semantics of CSTNs and STNUs addressing conditional constraints and uncertain durations.

Controllability of a temporal network implies the existence of a strategy operating on the
controllable part such that all constraints will eventually be satisfied. Controllability mainly
divides in weak, strong and dynamic. Weak controllability ensures the existence of a (possible
different) strategy to operate on the controllable part whenever we are able to predict how
the entire uncontrollable part will behave before the execution starts. Strong controllability
is the opposite case ensuring the existence of a strategy operating always the same way on
the controllable part no matter how the uncontrollable part will behave. However, strong
controllability is “too strong”. If a temporal network is not strongly controllable, it could
still be executable by operating on the controllable part reacting to the uncontrollable one
as soon as it becomes known. Dynamic controllability addresses exactly this case.

However, none of the formalisms mentioned so far tackles temporal plans in which some
conditional constraints under control may influence (or be influenced by) some uncontrollable
part. An initial discussion is given in [3] where CSTNs are extended with decision nodes
regulating the truth value assignments to some propositions under control.

We give here the first attempt to address temporal plans in which decisions may influence
(or be influenced by) both conditional and temporal uncertainty.

Toward this aim our contributions are three-fold. First, we define conditional simple
temporal networks with uncertainty and decisions (CSTNUDs) as a unified formalism for
temporal networks expressing uncontrollable parts and model dynamic controllability as a
two-player game in which players make moves in their turns. Second, we provide an encoding
into timed game automata for a sound and complete DC-checking and synthesize execution
strategies by means of the UPPAAL-TIGA software [2]. Third, we automate our approach
by discussing a proof of concept tool we came up with.

The rest of the paper is organized as follows. Section 2 provides essential background
on CSTNUs, timed game automata (TGAs) and the DC-checking of CSTNUs via TGAs.
Section 3 introduces our main contribution: CSTNUs with Decisions along with a new
semantics given in move-based strategies. Section 4 extends the encoding given in Section 2
to address the DC-checking of CSTNUDs. Section 5 discusses our tool and a preliminary
experimental evaluation. Section 6 discusses the correctness and complexity of the encoding.
Section 7 discusses related work. Section 8 draws conclusions and discusses future work.

M.Zavatteri 23:3

2 Background: CSTNUs, TGAs and Dynamic Controllability

2.1 Conditional Simple Temporal Networks with Uncertainty

Given a set P of Boolean propositions, a label ` = λ1 . . . λn is any finite conjunction of
literals λi, where a literal is either a proposition p (positive literal) or its negation ¬p
(negative literal). The empty label is denoted by �. The label universe of P, denoted by
P∗, is the set of all possible (consistent) labels drawn from P; e.g., if P = {p, q}, then
P∗ = {�, p, q,¬p,¬q, p ∧ q, p ∧ ¬q,¬p ∧ q,¬p ∧ ¬q}. Two labels `1, `2 ∈ P∗ are consistent
if and only if their conjunction `1 ∧ `2 is satisfiable. A label `1 entails a label `2 (written
`1 ⇒ `2) if and only if all literals in `2 appear in `1 too (i.e., if `1 is more specific than `2). A
label `1 falsifies a label `2 iff `1 ∧ `2 is inconsistent. For instance, if `1 = p ∧ ¬q and `2 = p,
then `1 and `2 are consistent since p∧¬q ∧ p is satisfiable, and `1 entails `2 since p∧¬q ⇒ p.

IDefinition 1 (CSTNU). A Conditional Simple Temporal Network with Uncertainty (CSTNU)
is a tuple 〈T ,OT ,P, O, L,L, C〉, where:
T = {X,Y, . . . } is a finite set of time points (i.e., variables with continuous domain).
OT ⊆ T = {P?, Q?, . . . } is a set of observation time points.
P = {p, q, . . . } is a finite set of Boolean propositions.
O : P → OT is a bijection associating a unique P ? ∈ OT to each p ∈ P (i.e., O(p) = P ?).
L : T → P∗ is a function assigning a label to each time point X ∈ T .
L is a finite set of contingent links (A, x, y, C), where A,C ∈ T , 0 < x < y <∞ (x, y ∈ R).
C is a finite set of labeled constraints (Y −X ≤ k, `), where X,Y ∈ T , k ∈ R ∪ {±∞}
and ` ∈ P∗. If (Y −X ≤ k, `) 6∈ C for some ` ∈ P∗, then k =∞ (for that label).

A CSTNU is well-defined if and only if all the following properties hold.
For each X ∈ T , if λ ∈ L(X), where λ ∈ {p,¬p}, then L(X)⇒ L(O(p)) and (O(p)−X ≤
−ε, L(X)) ∈ C for some ε > 0 (time point label honesty [14]).
For any (A, x, y, C) ∈ L, A 6= C and L(A) = L(C)
For any pair (A1, x1, y1, C1), (A2, x2, y2, C2) ∈ L if A1 6= A2, then C1 6= C2.
For each constraint (Y −X ≤ k, `) ∈ C, `⇒ L(Y)∧L(X) (constraint label coherence [14]),
and for each literal λ ∈ `, where λ ∈ {p,¬p}, `⇒ L(O(p)) (constraint label honesty [14]).

We execute a time point by assigning it a real value (modeling the occurrence of some
temporal event). We execute a CSTNU by executing all relevant non-contingent time points
(see below). For any contingent link (A, x, y, C), A is the activation time point, whereas C is
the contingent time point. A is under control, C is not. Once we execute A, we can merely
observe the execution of C (by the environment). However, C is guaranteed to occur such
that C −A ∈ [x, y]. A contingent link has a unique implicit label given by ` = L(A) = L(C).

Likewise, an observation time point P? ∈ OT is under control, whereas the truth value
assignment to its associated Boolean proposition p is not. Once we execute P? we can
merely observe such an assignment. Before executing P ? the value of p is unknown, and after
executing P? is either > (true) or ⊥ (false). As we execute observation time points, their
truth value assignments to the associated propositions generate the current partial scenario.
That is, a label `cps ∈ P∗ consisting of the conjunction of these literals. Initially, `cps = �,
and whenever a proposition is assigned a truth value, the resulting literal λ is appended to
`cps. Time points and constraints are relevant if their labels are not falsified by `cps. Before
executing the network all time points and constraints are relevant. If a time point turns
irrelevant, we will not execute it. If a constraint does, we will not be obliged to satisfy it.

TIME 2017

23:4 Conditional Simple Temporal Networks with Uncertainty and Decisions

P?
[�]

A1
[p]

C1
[p]

A2
[¬p]

C2
[¬p]

D?
[�]

A3
[d]

C3
[d]

A4
[¬d]

C4
[¬d]

E
[�]

[1,
1],
p

[1, 1],¬p

[1, 1], p

[1,
1],
¬p

[1,
1],
d

[1, 1],¬d

[1, 6]

[8, 12]

[3, 5]

[6, 10]

[1, 1], d

[1,
1],
¬d

[21,∞],¬d

[−∞, 20], d

Figure 1 Example of uncontrollable CSTNU.

A CSTNU is said dynamically controllable (DC) if there exists a strategy executing all
relevant non-contingent time points such that all (relevant) constraints are satisfied no matter
which uncertain durations and truth value assignments turn out to be during execution.

We graphically represent a CSTNU as a labeled (multi)graph, where the set of nodes
coincides with the set of time points (labels are shown below the nodes), whereas the set of
edges divides in contingent links and requirement links. A contingent link (shown as a double
arrow A⇒ C labeled by [x, y]) models (A, x, y, C) ∈ L. A requirement link (shown as a single
arrow X → Y labeled by [k1, k2], `) models the pair (Y −X ≤ k2, `), (X − Y ≤ −k1, `) ∈ C.

Figure 1 shows an example of CSTNU having two observation time points P?, D? and
four contingent links (A1, 1, 6, C1), (A2, 8, 12, C2), (A3, 3, 5, C3) and (A4, 6, 10, C4). P ? is the
first time point to execute, whereas E is the last. If P ? assigns > to p, then A2 and C2 along
with the constraints labeled by ¬p turn irrelevant as `cps = p falsifies ¬p. If P? assigns ⊥ to
p, we will ignore A1, C1 and all constraints labeled by p. Likewise, if D? assigns > (resp., ⊥)
to d, we will ignore A4 and C4 (resp., A3 and C3) and all constraints labeled by ¬d (resp., d).
The CSTNU in Figure 1 is uncontrollable. For example, assume that each contingent time
point (if relevant) takes its maximal duration. If `cps = p ∧ ¬d, then the execution sequence
is P? = 0, A1 = 1, C1 = 7, D? = 8, A4 = 9, C4 = 19 and E = 20 (violating [21,∞],¬d
between P? and E requiring that E is executed from 21 on.). If `cps = ¬p ∧ d, then the
execution sequence is P? = 0, A2 = 1, C2 = 13, D? = 14, A3 = 15, C3 = 20 and E = 21
(violating [−∞, 20], d between P? and E requiring that E is executed within 20).

2.2 Timed Game Automata
A timed automaton (TA) [1] refines a finite automaton [12] by adding real-valued clocks and
clock constraints. All clocks increase at the uniform rate and may by reset many times.

I Definition 2 (TGA). A Timed Automaton (TA) is a tuple 〈Loc,Act,X ,→, Inv〉, where
Loc is a finite set of locations (one is initial). A location is urgent if time freezes in it.
Act is a finite set of actions and X is a finite set of real-valued clocks.
→⊆ Loc ×H(X) × Act × 2X × Loc is the transition relation. An edge (Li, G,A,R,Lj)
represents a transition from Li to Lj realizing action A. G ∈ H(X) is a guard consisting of
a conjunction of clock constraints having the form c1 ∼ k or c1− c2 ∼ k where c1, c2 ∈ X ,
k ∈ N and ∼∈ {<, ≤, =, >, ≥}. R ⊆ 2X is the set of clocks to reset (i.e., set to 0).
Inv : Loc → H(X) is a function assigning an invariant (modeled as a conjunction of clock
constraints) to each location. Inv(L) says when the TA is allowed to remain in L.

A Timed Game Automaton (TGA) [15] extends a TA by dividing transitions into controllable
and uncontrollable. Uncontrollable transitions have priority over controllable ones.

M.Zavatteri 23:5

L�LpL¬pLdgoal

(L¬d)

L0L1
〈>, pass, {cδ}〉

〈cδ > 0, gain, ∅〉

〈cP = ĉ, exP, {cP}〉

〈cA1 = ĉ, exA1, {cA1}〉
〈cA2 = ĉ, exA2, {cA2}〉

〈cD = ĉ, exD, {cD}〉〈cA3 = ĉ, exA3, {cA3}〉
〈cA4 = ĉ, exA4, {cA4}〉
〈cE = ĉ, exE, {cE}〉

〈Σ1, exC1, {cC1, cδ}〉
〈Σ2, exC2, {cC2, cδ}〉
〈Σ3, exC3, {cC3, cδ}〉

〈Σ4, exC4, {cC4, cδ}〉
〈cP < ĉ ∧ cP = 0∧
bP = ĉ; pFalse; {bP, cδ}〉
〈cD < ĉ ∧ cD = 0∧
bD = ĉ; dFalse; {bD, cδ}〉

〈Φ1, failC1, ∅〉
〈Φ2, failC2, ∅〉
〈Φ3, failC3, ∅〉
〈Φ4, failC4, ∅〉

〈cP < ĉ ∧ cD < ĉ ∧ cE < ĉ ∧ cδ > 0, sat�, ∅〉

〈cA1 < ĉ ∧ cC1 < ĉ∧
cP− cA1 = 1∧

cC1 − cD = 1, satp, ∅〉

〈cP = ĉ, skip1
p , ∅〉

〈bP < ĉ, skip2
p , ∅〉

〈cA2 < ĉ ∧ cC2 < ĉ∧
cP− cA2 = 1∧

cC2 − cD = 1, sat¬p, ∅〉

〈cP = ĉ, skip1
¬p, ∅〉

〈bP = ĉ, skip2
¬p, ∅〉

〈cA3 < ĉ ∧ cC3 < ĉ∧
cD− cA3 = 1∧
cC3 − cE = 1∧

cP− cE ≤ 20, satd, ∅〉

〈cD = ĉ, skip1
d , ∅〉

〈bD < ĉ, skip2
d , ∅〉

〈cA4 < ĉ ∧ cC4 < ĉ∧
cD− cA4 = 1∧
cC4 − cE = 1∧

cP− cE ≥ 21, sat¬d, ∅〉

〈cD = ĉ, skip1
¬d, ∅〉

〈bD = ĉ, skip2
¬d, ∅〉

Figure 2 TGA encoding the CSTNU in Fig. 1: L0 is the initial location, L1, L�, Lp, L¬p, Ld,
goal are urgent. Solid (resp., dashed) edges model controllable (resp., uncontrollable) transitions.
Σ1 : cA1 < ĉ∧cC1 = ĉ∧cA1 ≥ 1∧cA1 ≤ 6 and Φ1 : cA1 < ĉ∧cC1 = ĉ∧cA1 > 6. Σ2 : cA2 < ĉ∧cC2 =
ĉ∧cA2 ≥ 8∧cA2 ≤ 12 and Φ2 : cA2 < ĉ∧cC2 = ĉ∧cA2 > 12. Σ3 : cA3 < ĉ∧cC3 = ĉ∧cA3 ≥ 3∧cA3 ≤ 5
and Φ3 : cA3 < ĉ ∧ cC3 = ĉ ∧ cA3 > 5. Σ4 : cA4 < ĉ ∧ cC4 = ĉ ∧ cA4 ≥ 6 ∧ cA4 ≤ 10 and
Φ4 : cA4 < ĉ ∧ cC4 = ĉ ∧ cA4 ∧ cA4 > 10.

We graphically represent a TGA as a (multi)graph where the set of nodes coincides with
that of locations whereas the set of edges models controllable transitions (solid edges) and
uncontrollable ones (dashed edges). Figure 2 depicts a TGA encoding the CSTNU in Figure 1.
In what follows we sum up how this encoding is achieved and dynamic controllability checked.

2.3 Dynamic Controllability
The DC-checking problem is the problem of deciding if a CSTNU is DC. We can answer the
DC-checking problem by using sound and complete TGA reachability algorithms [4, 5]. We
model the DC-checking as a two-player game between a controller (ctrl) and the environment
(env). The aim of ctrl is to reach a specific location as soon as all relevant time points
have been executed and all constraints are satisfied, whereas env’s goal is to prevent ctrl
from doing that. If ctrl wins, the network is DC, otherwise it is not. An important aspect
of this encoding is that ctrl is assigned uncontrollable transitions, whereas env is assigned
controllable ones. This is necessary to allow env’s instantaneous reactions as in the TGA
semantics, uncontrollable transitions go first [4, 5, 6]. The encoding is as follows.

Clocks. X contains a clock cX for each time point X ∈ T and a clock bP for each proposition
p ∈ P . X also contains two special clocks ĉ (modeling the global time) and cδ (regulating
the interplay of the game). cX = ĉ, means that X has not been executed, whereas
cX < ĉ means that X was executed at time ĉ − cX (when this difference is > 0).
Likewise, bP = ĉ means that p = >, whereas bP < ĉ means that p = ⊥ (both when
cP < ĉ). Each cX and bP may be reset at most once. For our example we have
X = {ĉ, cδ, cP, cA1, cC1, cA2, cC2, cD, cA3, cC3, cA4, cC4, cE, bP, bD}.

Locations. Loc contains three core locations L0 (initial), L1 (urgent) and goal (urgent),
and n− 1 urgent locations L`1 , . . . , L`n−1 where n is the number of distinct labels in the
CSTNU. That is, n = |{L(X) | X ∈ T } ∪ {` | (Y −X ≤ k, `) ∈ C}|. For our example,
Loc = {L0, L1, L�, Lp, L¬p, Ld, goal(= L¬d} as the distinct labels are {�, p,¬p, d,¬d}.

TIME 2017

23:6 Conditional Simple Temporal Networks with Uncertainty and Decisions

Transitions. → contains controllable and uncontrollable transitions to model the following:
Game interplay. pass and gain are uncontrollable transitions regulating the game
interplay. In particular gain can be taken only when cδ > 0 modeling the reaction
time needed to observe how the uncontrollable part behaves.
Non-contingent time point executions. For each non-contingent time point X there is an
uncontrollable self-loop transition 〈L1, cX = ĉ, exX, {cX}, L1〉 modeling the execution
of X. The guard says that X has not been executed yet, while the reset fixes the
execution time of X to ĉ− cX by resetting cX.
Contingent time point executions. For each contingent link (A, x, y, C) ∈ L there is a
controllable self-loop transition 〈L0, cA < ĉ∧cC = ĉ∧cA ≥ x∧cA ≤ y, exC, {cC, cδ}, L0〉
to allow env to execute the contingent time point C such that C −A ∈ [x, y], and a
fail transition 〈L0, cA < ĉ ∧ cC = ĉ ∧ cA > y, failC, {cC, cδ}, goal〉 to allow ctrl to
move to goal if env fails or refuses to take the transition.
Truth value assignments. For each proposition p ∈ P there is a controllable self-loop
transition 〈L0, cP < ĉ ∧ cP = 0 ∧ bP = ĉ, pFalse, {bP, cδ}, L0〉 to allow env to assign
⊥ to p, if it decides so. If it does not, the truth value of p will remain forever >.
Winning conditions. To check that all relevant time points have been executed and all
constraints are satisfied we connect each pair of locations (L`i−1 , L`i) in the winning
path L0 → L� → · · · → L`n−1 → goal by means of a set of uncontrollable transitions.
Each set of transitions going from L`i−1 to L`i verifies that if `cps does not falsify `i, then
all time points labeled by `i must have been executed and all constraints labeled by `i are
satisfied. If `cps falsifies `i, a skip transition allows us to ignore this check. In this way,
the problem is decomposed with respect to the specific labels avoiding the combinatorial
explosion of all arising cases. For example, the set of transitions going from L� to Lp is
generated as follows. In the scenario where P ? has been executed and p assigned > (i.e.,
`cps = p), then A1 and C1 must have been executed, and A1 − P ? ≤ 1, P ?−A1 ≤ −1,
D? − C1 ≤ 1, C1 − D? ≤ −1 are satisfied. In other words, the meta conditional
constraint (cP < ĉ ∧ bP = ĉ) =⇒ (cA1 < ĉ ∧ cC1 < ĉ ∧ cP− cA1 = 1 ∧ cC1 − cD = 1)
refines to ¬(cP < ĉ ∧ bP = ĉ) ∨ (cA1 < ĉ ∧ cC1 < ĉ ∧ cP− cA1 = 1 ∧ cC1 − cD ≥ 1 = 1)
simplifying to (cP = ĉ)∨ (bP < ĉ)∨ (cA1 < ĉ∧ cC1 < ĉ∧ cP− cA1 = 1∧ cC1 − cD = 1)
since TGAs do not allow negations or disjunctions of clock constraints in the guards.
Finally, we generate a transition1 for each disjunct (satp,skip1

p,skip2
p).

DC-checking is done by looking for a control strategy for env to always prevent ctrl
from getting to goal. If such a strategy exists, the initial CSTNU is not DC, otherwise it is
(as ctrl has a counter-strategy to react to any combination of env’s moves).

3 CSTNUs with Decisions

In this section we extend CSTNUs by injecting a new kind of time point: the decision time
point. A decision time point D! dualizes an observation one P ? as the truth value assignment
to the associated proposition is under control. As a result, the controllable and uncontrollable
part may now mutually influence one another. That is, deciding some truth value may restrict
(or even exclude) some uncontrollable part and vice versa. Several interesting cases may arise
depending on if a few truth values are decided before or after having full information on how

1 We model Y −X ≤ k as (ĉ− cY)− (ĉ− cX) ≤ k simplifying to cX− cY ≤ k. We might write cX− cY ≥ k
as a short for X − Y ≤ −k and cX− cY = k as a short for the pair Y −X ≤ k and X − Y ≤ −k.

M.Zavatteri 23:7

P !
[�]

A1
[p]

C1
[p]

A2
[¬p]

C2
[¬p]

D?
[�]

A3
[d]

C3
[d]

A4
[¬d]

C4
[¬d]

E
[�]

[1, 6]

[8, 12]

[3, 5]

[6, 10]

[21,∞],¬d
[−∞, 20], d

(a) A decision before any uncon-
trollable part.

P?
[�]

A1
[p]

C1
[p]

A2
[¬p]

C2
[¬p]

D!
[�]

A3
[d]

C3
[d]

A4
[¬d]

C4
[¬d]

E
[�]

[1, 6]

[8, 12]

[3, 5]

[6, 10]

[21,∞],¬d
[−∞, 20], d

(b) A decision after all observa-
tion and some contingent.

P !
[�]

A1
[p]

C1
[p]

A2
[¬p]

C2
[¬p]

D!
[�]

A3
[d]

C3
[d]

A4
[¬d]

C4
[¬d]

E
[�]

[1, 6]

[8, 12]

[3, 5]

[6, 10]

[21,∞],¬d
[−∞, 20], d

(c) A decision after another de-
cision and a contingent.

Figure 3 Possible cases of the CSTNU in Figure 1 when substituting decision time points for
observation ones. Missing labels on requirement links X → Y are all [1, 1], L(X) ∧ L(Y) (Figure 1).

the uncontrollable part will or have behaved. We go ahead with this discussion by taking
Figure 3 as an example. There, we took the initial CSTNU in Figure 1 and substituted
decision time points for observation ones in all possible combinations. We discuss these
examples focusing on the combinations of minimal and maximal durations of contingent links
only. If it works for them, then it must work for any other combination of durations.

In Figure 3a P ! is a decision time point. The resulting CSTNUD is uncontrollable. If we
decide p (i.e., assign > to p), then observe ¬d (i.e., D? assigns ⊥ to d) and C1, C4 take their
maximal durations, then we will have to execute E at 20 violating (P?− E ≤ −21,¬d)
as P? is executed at 0. Conversely, if we decide ¬p, then observe d and C2 and C3 take
their maximal durations, then we will have to execute E at 21 (violating E −P? ≤ 20, d).
In Figure 3b D! is a decision time point. The resulting CSTNUD is DC. Assume that we
observe p. Regardless on what duration C1 takes, we can only decide d. Indeed, if we
decided ¬d, regardless of the duration of C4 we would have to execute E before time 21
violating (P?−E ≤ −21,¬d). Assume now that we observe ¬p. If C2 takes its minimal
duration, d is the only good decision. If we decided ¬d and then C4 took its minimal
duration, we would execute E at 18 violating (P?−E ≤ −21,¬d). On the contrary, if
C2 takes its maximal duration then we can only decide ¬d. If we decided d and C3 took
its maximal duration, we would have to execute E at 21 violating (E − P? ≤ 20, d).
In Figure 3c P ! and D! are both decision time points. The resulting CSTNUD is of
course2 dynamically controllable. If we decide p, then deciding d is always going to be
fine. If we decide ¬p, then we will decide either d or ¬d depending on how long C2 lasts.
If C2 takes its minimal duration, then we will decide d (but not ¬d since C4 could then
take its minimal duration). If C2 takes its maximal duration, then we will decide ¬d (but
not d since if C3 could then take its maximal duration).

Hence, decisions are dynamic.

I Definition 3 (CSTNUD). A Conditional Simple Temporal Network with Uncertainty and
Decisions (CSTNUD) is a tuple 〈T ,OT ,DT ,P, O, L,L, C〉, where:
T ,OT ,P, L,L, C are exactly the same of those given for CSTNUs. Furthermore, we
denote the set of contingent time points as Contingent = {C | (A, x, y, C) ∈ L}.
DT ⊆ T = {D!, E!, . . . } is a set of decision time points such that OT ∩ DT = ∅.
O : P → DT ∪ OT is a bijection associating a unique observation or decision time point
to each proposition. If O(p) ∈ OT , then p is called observable, whereas if O(d) ∈ DT ,

2 If a network is DC (e.g., Figure 3b), then turning controllable some uncontrollable part (e.g., Figure 3c)
cannot worsen the situation turning the network uncontrollable. The vice versa does not hold.

TIME 2017

23:8 Conditional Simple Temporal Networks with Uncertainty and Decisions

then d is called decidable. OP ⊆ P = {p | O(p) ∈ OT } and DP ⊆ P = {d | O(d) ∈ DT }
shorten the sets of all observable and decidable propositions, where OP ∩ DP = ∅.

A CSTNUD is well-defined if and only if the underlying CSTNU is well-defined and time
point label honesty extends to decidable propositions as follows: For each X ∈ T , if λ ∈ L(X),
where λ = {d,¬d} and d ∈ DP, then L(X) ⇒ L(O(d)) and (O(d) − X ≤ 0, L(X)) ∈ C).
That is, X can be executed at the same time of D! (but instantaneously after D! since time
points executed at the same instant must in general follow an order of execution).

We model the execution semantics of a CSTNUD as a two-player game in which Player1
models the controller and Player2 models the environment. We employ execution sequences
[16] to model the state of the game and define players’ strategies as mappings from execution
sequences considered at specific time instants to moves.

A sequence {x1, x2, . . . , xn} is a totally ordered collection of elements such that for any
pair of elements xi, xj , if i < j (resp., i > j), then it means that xi is before (resp., after)
xj . We abuse notation and write {x1, x2, . . . , xn} ∪ {xp} to mean the appending operation
resulting in {x1, x2, . . . , xn, xp} where n < p. We write xi ∈ {x1, x2, . . . , xn} iff there exists
j ∈ N, 1 ≤ j ≤ n such that xi = xj (membership), and |{x1, x2, . . . , xn}| = n (cardinality).
A partial schedule for a subset of time points T ′ ⊆ T is a mapping ST ′ : T ′ → R assigning a
real value to each X ∈ T ′. A partial schedule for a subset of Boolean propositions P ′ ⊆ P
is a mapping SP′ : P ′ → {>,⊥} assigning either > or ⊥ to each p ∈ P ′. We write b for a
generic Boolean value (i.e., b ∈ {>,⊥}). We write ST ′ ∪ {ST ′(Y) = k} to shorten that the
domain of ST ′ extends by adding time point Y such that ST ′(Y) = k. Similarly, we write
SP′ ∪ {SP′(p) = b} for Boolean propositions.

IDefinition 4 (Instantiation sequence). An instantiation sequence is a quadruple 〈E,K, SE , SK〉,
where E is a finite sequence of distinct time points in T , K is a finite sequence of distinct
propositions in P , and SE , SK are partial schedules whose domains are E and K, respectively.

I Definition 5 (Execution sequence). An execution sequence Z = 〈E,K, SE , SK〉 is an
instantiation sequence satisfying the following properties:
SE Monotonicity For any pair Xi, Xj ∈ E if i < j, then SE(Xi) ≤ SE(Xj).
(Time Point Label) Honesty For each X ∈ E and each literal λ ∈ L(X) where λ ∈ {p,¬p},

then O(p) ∈ E and O(p) is before X, p ∈ K, SK(p) = > (if λ = p) and SK(p) = ⊥ (if
λ = ¬p). Also, SE(O(p)) < SE(X) (if p ∈ OP) and SE(O(p)) ≤ SE(X) (if p ∈ DP).

Z∗ represents the set of all execution sequences. tlast(Z) = max {SE(X) | X ∈ E} represents
the last time instant in which a time point was executed in Z. last(Z) = {X | X ∈
E ∧ SE(X) = tlast} represents the set of the last executed time points.

Therefore, an execution sequence models the ordered sequence of executed time points
and assigned propositions according to the well-definedness of a CSTNUD. As an example,
consider again Figure 3b. Assume that we execute P ? at 0 and observe ¬p. Assume then that
we execute A2 at 1 and observe C2 to occur at 13 (i.e., at its maximal duration). The execution
sequence is Z = 〈{P?, A2, C2}, {p}, {SE(P?) = 0, SE(A2) = 1, SE(C2) = 13}, {SK(p) = ⊥}〉.
We can now compute the current partial scenario as the conjunction of all positive and negative
literals arising from all propositions in K according to SK and define local consistency.

I Definition 6 (Current partial scenario). Given any Z = 〈E,K, SE , SK〉, the current partial
scenario is given by `cps = λ1 ∧ · · · ∧ λk, where for each pi ∈ K, λi = pi (if SK(pi) = >) and
λi = ¬pi (if SK(pi) = ⊥).

For Z we have that `cps = ¬p since p ∈ K and SK(p) = ⊥.

M.Zavatteri 23:9

I Definition 7 (Local consistency). An execution sequence E = 〈E,K, SE , SK〉, is locally
consistent if and only if for each (Y − X ≤ k, `) ∈ C where X,Y ∈ E and `cps ⇒ `,
SE(Y)− SE(X) ≤ k holds.

Z is locally consistent since the schedule SE satisfies (A2 − P? ≤ 1,¬p) and (P?−A2 ≤
−1,¬p). An execution sequence evolves over time according to the evolution of the game
that Player1 (the controller) plays against Player2 (the environment). Each player follows
a strategy saying what moves to make and when. Moreover, many moves can be made at the
same time instant (provided that they respect an order) and sometimes moves are mandatory.

I Definition 8 (Move). A move m is either X meaning “execute time point X” or (p, b)
meaning “assign b ∈ {>,⊥} to proposition p”. A move for Player1 requires that X is a
non-contingent time point and p is a decidable proposition. A move for Player2 requires
that X is a contingent time point and p is an observable proposition. M∗1 and M∗2 represent
the sets of all moves for Player1 and Player2, respectively.

A move-based strategy is a mapping from execution sequences considered at particular
time instants to moves augmented with a wait condition modeling the absence of move.
A strategy tells a player to make a move at a particular time instant only if the move is
applicable at that particular time. Therefore, a strategy specifies applicability conditions
saying when a move can be made, obligations saying when a move has to be made and
postconditions saying how the execution sequence evolves accordingly.

I Definition 9 (Move-based strategy). A move-based strategy for Player1 is a mapping
σ1 : Z∗ × R→M∗1 ∪ {wait} such that its applicability conditions are:
1. For any execution sequence Z and any time instant t, σ1(Z, t) is applicable iff t ∼ tlast(Z),

where ∼ is > if last(Z) contains a contingent time point C or an observation time point P ?
such that K contains its related proposition p (reaction time enforcement), ≥ otherwise.

2. For any execution sequence Z and any time instant t, σ1(Z, t) = X is applicable if (1)
holds and X is an unexecuted non-contingent time point such that the current partial
scenario entails L(X) (i.e., X 6∈ E ∧X 6∈ Contingent ∧ `cps ⇒ L(X)).

3. For any execution sequence Z and any time instant t, σ1(Z, t) = wait is applicable if (1)
holds and there is no obligation at time t.

The unique obligation involves decidable propositions requiring that whenever a decision
time point D! has been executed and its related proposition d has not been assigned yet,
then the strategy must issue a move to assign d a truth value instantaneously. In symbols:
D! ∈ E ∧ d 6∈ K =⇒ σ1(Z, SE(D!)) = (d, b).

A move-based strategy for Player2 is a mapping σ2 : Z∗ × R→M∗2 ∪ {wait} such that
its applicability conditions are:
1. For any execution sequence Z and any time instant t, σ2(Z, t) is applicable iff t ≥ tlast(Z).
2. For any execution sequence Z, any time instant t and any contingent link (A, x, y, C) ∈ L,

σ2(Z, t) = C is applicable if (1) holds, A has already been executed, C has not, and
executing C at this time satisfies C − A ∈ [x, y] (i.e., A ∈ E ∧ C ∈ Contingent ∧ C 6∈
E ∧ t− SE(A) ∈ [x, y]).

3. For any execution sequence Z and any time instant t, σ2(Z, t) = wait is applicable if (1)
holds and there is no obligation at time t.

Obligations are of two kinds. The first obligation involves observable propositions requiring
that whenever an observation time point P? has been executed and its related proposition p
has not been assigned yet, then the strategy must issue a move to assign p a truth value

TIME 2017

23:10 Conditional Simple Temporal Networks with Uncertainty and Decisions

instantaneously. In symbols: (P? ∈ E ∧ p 6∈ K) =⇒ σ2(Z, SE(P?)) = (p, b). The second
obligation involves contingent links (A, x, y, C) requiring that if A has already been executed,
C has not and the current time t is the last instant in which C can be executed, then the
strategy must issue a move to execute C at t. In symbols: ∀(A, x, y, C) ∈ L,∀t ∈ R, (A ∈
E ∧ C 6∈ E ∧ t− SE(A) = y) =⇒ σ2(Z, t) = C.

Postconditions for both σ1 and σ2 are the same. If the strategy tells the player to execute
a time point X at time t then Z updates by appending X to E and extending SE such that
SE(X) = t. If the strategy tells the player to assign the truth value b to the proposition p,
then Z updates by appending p to K and extending SK such that SK(p) = b. In symbols:

If σi(Z, t) = X, then Post(Z, σi, t) = 〈E ∪ {X},K, SE ∪ {SE(X) = t}, SK〉.
If σi(Z, t) = (p, b), then Post(Z, σi, t) = 〈E,K ∪ {p}, SE , SK ∪ {SK(p) = b}〉.

Getting back to our example we have that tlast(Z) = 13 and last(Z) = {C2}. Suppose
that current time is t = 14. σ1(Z, 14) = D! is applicable since t > tlast and D! has not been
executed yet, whereas σ1(Z, 14) = (d,>) is not since D! 6∈ E. If σ1(Z, 14) = D! is taken into
consideration (i.e., Z ′ = Post(Z, σ1, t)), then σ1(Z ′, 14) = (d,>) instantaneously after.

We now model Player2 as the most powerful player possible. If Player1 can beat this
(worst-case of) environment, then Player1 must be able to beat any other less powerful
environment playing the same game. To achieve this purpose we model the game in turns.
That is, at any time instant t, there exist two turns: T1(t) (occurring first) and T2(t)
(occurring last). Player1 makes his moves in T1(t), whereas Player2 makes his in T2(t). If
player i does not make any move in Ti(t), then he loses forever the possibility to play at
time t. As a result, Player2, making his moves in T2(t), is guaranteed to always have full
information on what Player1 has done in T1(t) (worst-case scenario). In what remains of
this section we define the concept of snapshot modeling an execution sequence a particular
time instant t (after the players are done in T1(t) and T2(t)), continuous game evolution
modeling how the execution sequence evolves and winning conditions for each player.

I Definition 10 (Snapshot). Let Z = 〈E,K, SE , SK〉 be any execution sequence. Z(t) =
〈E′,K ′, S′E , S′K〉 models the snapshot of Z at time t, where E′ = {X | X ∈ E ∧ SE(X) ≤ t},
K ′ = {p | p ∈ K ∧O(p) ∈ E′}, ∀X ∈ E′, S′E(X) = SE(X), and ∀p ∈ K ′, S′K(p) = SK(p).

To give an example, let us get back to the execution sequence we have discussed before.
At t = 11, we have Z(11) = 〈{P?, A2}, {p}, {SE(P?) = 0, SE(A2) = 1}, {SK(p) = ⊥}〉.

I Definition 11 (Continuous game evolution). Let t ∈ R≥0 be the global time. The continuous
game evolution is modeled by an infinite sequence of snapshots Z(t) defined as:

Z(t) =
{
T2(T1(〈∅, ∅, ∅, ∅〉, t), t) if t = 0
T2(T1(Z(t− ε), t), t) if t > 0

Ti(Z, t) =
{
Z if σi(Z, t) = wait

Ti(Post(Z, σi, t), t) otherwise

where Ti(t) models the evolution of Z during turn i at time t according to σi, whereas ε > 0.

IDefinition 12 (Winning conditions). Player1 wins the game if and only if the game evolution
leads to a snapshot Z(t) such that for each unexecuted time point X, `cps falsifies L(X) and
for each constraints (Y −X ≤ k, `) where X,Y ∈ E and `cps ⇒ `, SE(Y)−SE(X) ≤ k holds.
Player2 wins otherwise. σi is a winning strategy if player i wins the game by following σi.

I Definition 13 (Dynamic controllability). A CSTNUD is dynamically controllable if Player1
has a winning strategy such that for any t > 0 and any pair of execution sequences Z1, Z2, if
σ2(Z1, t

′) = σ2(Z2, t
′) for 0 ≤ t′ < t, then σ1(Z1, t) = σ1(Z2, t).

In other words, whenever Player2 has made the same (infinite) sequence of moves up to
time t− ε, then Player1 will make the same move(s) at time t.

M.Zavatteri 23:11

4 Dynamic Controllability of CSTNUDs via TGAs

In this section we extend the encoding given for CSTNUs in Section 2. As an example, we
consider Figure 4 depicting the encoding of the CSTNUD in Figure 3b.

Once again, we have three core locations but this time we borrow a few names from
Section 3 and rename them to T1 (ex L1), T2 (ex L0) and win (ex goal). T1 and T2 model
the two turns T1(t) and T2(t) when global time is > 0. T2 is the initial location. The winning
path is computed the same way only renaming each L`i to w`i . gain and pass regulate the
turns at any time instant t. We still have a clock cX for each X ∈ T (considering decision
time points too) and a clock bP for each p ∈ P (considering decidable propositions too).

We optimize the guard of each uncontrollable self-loop at T1 by exploiting what we know
of the CSTNUD. That is, we extend the guards so that they enforce time point label honesty
as well as the partial order among the time points when not ambiguous. This optimization
was first discussed in [8] but there it dealt with disjunctive constraints and exploited internal
data structures provided by the UPPAAL-TIGA software. Here, we propose a more formal
definition avoiding such data structures. Moreover, [8] does not address decisions.

To give an example of this optimization, consider time points A1 and A4 of the CSTNUD
in Figure 3b. L(A1) = p and L(A4) = ¬d. Recall that the encoding models p and d as
two dedicated clocks bP and bD such that if each of these clocks is equal to (resp., less
than) ĉ, once its related observation or decision time point has been executed, then the
related proposition is > (resp., ⊥). Moreover, time point label honesty also requires that
P?−A1 ≤ −ε (observation) and D!−A4 ≤ 0 (decision).

Therefore, considering the time point label honesty property for CSTNUDs, it is possible
to extend the guards of exA1 and exA4 by appending bP = ĉ ∧ cP < ĉ ∧ cP > 0 and
bD < ĉ∧cD < ĉ∧cD ≥ 0, respectively. The former models the fact that A1 must be executed
if only if p = > (i.e., bP = ĉ), which also implies that A1 must be executed after P? (i.e.,
P? have been executed (cP < ĉ)) and a positive amount of time ε has elapsed (cP > 0).
The latter models the fact that A4 must be executed if only if d = ⊥ (i.e., bD < ĉ), which
also implies that A4 must be executed after D! (i.e., D! have been executed (cD < ĉ)) and
possibly immediately or after a positive amount of time has elapsed (cD ≥ 0).

I Definition 14 (Encoding time point label honesty). A label encoder is a mapping Lenc : T →
H(X) translating the label of a time point into the equivalent clock constraint Lenc(X) =
LOPenc(X) ∧ LDPenc(X), where LOPenc(X) and LDPenc(X) encode all literals containing observable
and decidable propositions, respectively.

LOPenc(X) :
∧
p∈L(X)(bP = ĉ ∧ cP < ĉ ∧ cP > 0)

∧
¬q∈L(X)(bQ < ĉ ∧ cQ < ĉ ∧ cQ > 0)

LDPenc(X) :
∧
d∈L(X)(bD = ĉ ∧ cD < ĉ ∧ cD ≥ 0)

∧
¬f∈L(X)(bF < ĉ ∧ cF < ĉ ∧ cF ≥ 0)

We now focus on constraints. Consider the requirement link P?→ A1 labeled by [1, 1], p
in the CSTNUD that we are discussing. Such a constraint says that A1 must be executed
after 1 and within 1 since P? (thus, exactly after 1 since P?). This requirement link has
also an important characteristic: L(A1) coincides with the label of the link. Therefore,
whenever A1 is executed, the constraint must hold. Thus, we extend the original guard of
exA1 (formerly cA1 = ĉ) to cA1 = ĉ ∧ cP < ĉ ∧ cP = 1, where the new conjuncts say that P?
has already been executed (cP < ĉ) and A1 − P? ∈ [1, 1] (cP = 1). More formally:

I Definition 15 (Encoding predecessors). Given a CSTNUD, a predecessor of a time point
Y ∈ T is a time point X ∈ T such that there exists a constraint (X − Y ≤ −x, L(Y)) ∈ C
where x > 0. Π : T → 2T returns the predecessors of a given time point and it is formalized
as Π(Y) = {X | (X − Y ≤ −x, `) ∈ C ∧ x > 0 ∧ ` = L(Y)}. A predecessor encoder is a

TIME 2017

23:12 Conditional Simple Temporal Networks with Uncertainty and Decisions

w�wpw¬pwdwin

(w¬d)

T2T1
〈>, pass, {cδ}〉

〈cδ > 0, gain, ∅〉

〈cP = ĉ, exP, {cP}〉

〈ΩA1 , exA1, {cA1}〉
〈ΩA2 , exA2, {cA2}〉

〈cD = ĉ, exD, {cD}〉〈ΩA3 , exA3, {cA3}〉
〈ΩA4 , exA4, {cA4}〉

〈cE = ĉ, exE, {cE}〉

〈cD < ĉ ∧ cD = 0∧
bD = ĉ; dFalse; {bD}〉

〈Σ1, exC1, {cC1, cδ}〉
〈Σ2, exC2, {cC2, cδ}〉

〈Σ3, exC3, {cC3, cδ}〉

〈Σ4, exC4, {cC4, cδ}〉

〈cP < ĉ ∧ cP = 0∧
bP = ĉ; pFalse; {bP, cδ}〉

〈Φ1, failC1, ∅〉
〈Φ2, failC2, ∅〉
〈Φ3, failC3, ∅〉
〈Φ4, failC4, ∅〉

〈cP < ĉ ∧ cD < ĉ ∧ cE < ĉ ∧ cδ > 0, sat�, ∅〉

〈cA1 < ĉ ∧ cC1 < ĉ∧
cP− cA1 = 1∧

cC1 − cD = 1, satp, ∅〉

〈cP = ĉ, skip1
p , ∅〉

〈bP < ĉ, skip2
p , ∅〉

〈cA2 < ĉ ∧ cC2 < ĉ∧
cP− cA2 = 1∧

cC2 − cD = 1, sat¬p, ∅〉

〈cP = ĉ, skip1
¬p, ∅〉

〈bP = ĉ, skip2
¬p, ∅〉

〈cA3 < ĉ ∧ cC3 < ĉ∧
cD− cA3 = 1∧
cC3 − cE = 1∧

cP− cE ≤ 20, satd, ∅〉

〈cD = ĉ, skip1
d , ∅〉

〈bD < ĉ, skip2
d , ∅〉

〈cA4 < ĉ ∧ cC4 < ĉ∧
cD− cA4 = 1∧
cC4 − cE = 1∧

cP− cE ≥ 21, sat¬d, ∅〉

〈cD = ĉ, skip1
¬d, ∅〉

〈bD = ĉ, skip2
¬d, ∅〉

Figure 4 TGA encoding the CSTNUD in Figure 3b. T2 (ex L0) is the initial location (modeling
T2(t) for t > 0). T1 (ex L1) models T1(t) for t > 0). w�, wp, w¬p, wd, win model the winning path.
ΩA1 : cA1 = ĉ∧ cP < ĉ∧ bP = ĉ∧ cP > 0∧ cP = 1. ΩA2 : cA2 = ĉ∧ cP < ĉ∧ bP < ĉ∧ cP > 0∧ cP = 1.
ΩA3 : cA3 = ĉ∧cD < ĉ∧bD = ĉ∧cD ≥ 0∧cD = 1. ΩA4 : cA4 = ĉ∧cD < ĉ∧bD < ĉ∧cD ≥ 0∧cD = 1.

mapping Πenc : T → H(X) translating each X ∈ Π(Y) (along with its temporal bounds) into
an equivalent clock constraint as follows. Πenc(Y) =

∧
X∈Π(Y) cX < ĉ ∧ cX ≥ x ∧ cX ≤ y,

where cX ≥ x models (X − Y ≤ −x, L(Y)) and cX ≤ y models (Y −X ≤ y, L(Y)) (if any).

Therefore, for each non-contingent time point X, the guard of exX becomes ΩX : cX =
ĉ ∧ Lenc(X) ∧Πenc(X). In Figure 4 we shortened the guards of exA1, exA2, exA3 and exA4
as ΩA1 , ΩA2 , ΩA3 and ΩA4 and detailed them in the caption.

After optimizing the guard of each exX transition we now discuss how to model the
truth value assignment to the decidable propositions. Dually to observable propositions,
for each decidable proposition d ∈ DP we generate an uncontrollable self-loop transition
〈T1, cD < ĉ ∧ cD = 0 ∧ bD = ĉ, dFalse, {bD}, T1〉 at T1. If we take this transition, it means
that we decide ¬d. If we do not, it means that we decide (actually confirm) d. In the former
case, such a transition has to be taken at the same instant in which D! was executed but after
exD was taken. In this way we model “how” to decide the truth values of the propositions in
DP. All other transitions remain the same of those given for CSTNUs.

5 Automated Planning: A Tool for the Experimental Evaluation

We made a tool3 for CSTNUDs which takes as input a CSTNUD specification and al-
lows for the automated encoding into the corresponding UPPAAL-TIGA specification as
well as execution simulation. To get the UPPAAL-TIGA specification we run ./Cstnud
Network.cstnud --encode TGA.xml, where Network.cstnud is the CSTNUD specification
and TGA.xml the encoding into a TGA the tool returns in output. To synthesize a strat-
egy we use UPPAAL-TIGA by querying the TGA with verifytga -s -q -w0 TGA.xml
dc.q > strategy, where dc.q contains the TCTL query control: A[] not tga.win and

3 Available at http://regis.di.univr.it/TIME2017.tar.gz along with the case studies of this paper
and further 1000 randomly generated CSTNUDs as an initial set of benchmarks.

http://regis.di.univr.it/TIME2017.tar.gz

M.Zavatteri 23:13

$./ Cstnud ...
P = 0.1
p = true
A1 = 1.1
C1 = 6.0
D = 7.0
d = true
A3 = 8.0
C3 = 11.7
E = 12.7
Verifying ... SAT!

(a) Player1 observes p and C1 =
6, therefore decides d.

$./ Cstnud ...
P = 0.1
p = false
A2 = 1.1
C2 = 9.2
D = 10.2
d = true
A3 = 11.2
C3 = 14.7
E = 15.7
Verifying ... SAT!

(b) Player1 observes ¬p and
C2 = 9.2, therefore decides d.

$./ Cstnud ...
P = 0.1
p = false
A2 = 1.1
C2 = 12.7
D = 13.7
d = false
A4 = 14.7
C4 = 21.5
E = 22.5
Verifying ... SAT!

(c) Player1 observes ¬p and
C2 = 12.7, therefore decides ¬d.

Figure 5 Execution simulations for Figure 3b (./Cstnud Fig3b.cstnud --execute Fig3b.s).

strategy is the memoryless execution strategy that UPPAAL-TIGA spits out. To execute
a controllable CSTNUD we run ./Cstnud Network.cstnud --execute strategy.

We encoded the CSTNUDs in Figure 3a, Figure 3b and Figure 3c to get the UPPAAL-
TIGA specifications. We ran UPPAAL-TIGA on such specifications. We used a Linux
virtual machine run on top of a VMWare ESXi hypervisor using a physical machine equipped
with an Intel i7 2.80GHz and 20GB of RAM for the experimental evaluation. The VM was
assigned 5GB of RAM and full CPU power. For Figure 3a the analysis took 2 minutes
and 4 seconds answering Property is satisfied and spitting out an execution strategy
of 68K for Player2. For both Figure 3b and Figure 3c the analysis took 1 minute and
53 second spitting out a strategy of 44K for Player1. Finally, we executed the latter two
controllable cases. The simulator correctly scheduled all non contingent time points satisfying
all constraints. We show the output of a few simulations for Figure 3b in Figure 5.

Furthermore, we randomly generated 1000 CSTNUDs as an initial set of benchmarks and
ran the analysis on those networks imposing a time out of 900 seconds each. The analysis
proved that 169 networks were DC and 14 non-DC. The remaining networks reached the
timeout limit. Each CSTNUD proved DC was correctly executed.

6 Correctness of the Encoding

We prove the correctness and discuss the complexity of the encoding provided in Section 4.

I Theorem 16. The encoding in Section 4 is correct.

Proof. To prove that we start by showing that the encoding in Section 4 correctly models
the move-based semantics of Section 3. A state of the TGA is given by a pair (L,~c), where
L is a locations and ~c represents the values of all clocks. The state of a CSTNUD during
execution is given by its execution sequence Z. We show that the game interplay correctly
models the continuous game evolution given in Definition 11 for all t > 0. We exclude the
case for t = 0, so Player1 does not play in T1(0) and Player2 does not play in T2(0).

(Invariant) At any instant t > 0 the snapshot Z(t) = 〈E,K, SE , SK〉 corresponds to a state
of the TGA (L,~c) in which L = T2 and ~c is as follows: ĉ = t, cδ = 0, for each X ∈ T , cX < ĉ
and ĉ− cX = k (if X ∈ E ∧ SE(X) = k), cX = ĉ otherwise. For each p ∈ P , cP < ĉ ∧ bP = ĉ

TIME 2017

23:14 Conditional Simple Temporal Networks with Uncertainty and Decisions

(if p ∈ K and SK(p) = >) and cP < ĉ ∧ bP < ĉ (if p ∈ K and SK(p) = >), cP = bP = ĉ
otherwise. Finally, Player2 has finished taking controllable transitions at t.

When t = 0 (i.e., ĉ = 0) Player2 cannot play in T2 as no controllable transition is enabled.
Player1 cannot play either because the current location is not T1 and he can only got there
after a positive amount of time has elapsed. Therefore, at t = 0, Z(0) = 〈∅, ∅, ∅, ∅〉.

When t > 0 (i.e., ĉ > 0) both Player1 and Player2 can play in their respective turns
T1(t) and T2(t). Player1 can take gain to enter T1 at time t. Player2 cannot prevent him
from doing so because gain, being urgent, has priority over any other controllable transition
that Player2 could take at that time. So, Player1 plays first. Once got in T1, Player1
can take (in general) a non-empty sequence of transitions to execute a few non contingent
time points and decide the truth values of some decidable propositions if he has executed
some decision time points. Such a sequence is finite since there is a finite number of time
points to execute and a finite number of propositions to assign. Furthermore, each time
point (resp., proposition) can be executed (resp., assigned a value) only once. When this
sequence of transitions is over, Player1 ends his turn by taking pass to lead the run back
to T2. Since T1 is urgent, time has not elapsed. Therefore, the sequence of transitions taken
at T1 corresponds to the sequence of moves made by Player1 in T1(t). Instead, if Player1
wants to wait at time t, he can either take gain and pass immediately after or just avoid
taking gain. Now, at T2, Player2 does the same for contingent time points and observable
propositions if some observation time points have been executed by Player1 in T1(t). When
Player2 is done, the sequence of transitions taken, models the sequence of moves made in
T2(t). Since Player2 does not make any other move in T2(t), Z(t) can no longer be modified.

Player1 and Player2 are driven by their strategies σ1 and σ2 which say what moves to
make (i.e., transitions to take) in T1(t) and T2(t) at any time t depending on the current Z.
The purpose of σ1 is to keep Z(t) locally consistent, whereas that of σ2 is the opposite.

The strategies also satisfy their applicability conditions as Player1 can make his moves
in T1(t) according to σ1 iff Player2 has not played yet in T2(t), whereas Player2 can make
his moves in T2(t) according to σ2 iff either Player1 has not played in T1(t) or Player2 is
not done in T2(t). We have already proved that for any t > 0, Player1 plays first.

The strategies satisfy their obligations as each time Player1 executes a decision time
point D!, he also assigns the associated decidable proposition d a truth value as well. This
occurs at the same time but sequentially after the execution of D!. Player1 assigns > to d
by not taking dFalse and assigns ⊥ to d by taking pFalse. If Player1 takes the transition
then he cannot take it again in the same turn (as the guard of pFalse invalidates). If he
does not, then he will never be able to take dFalse in any T1(t′) where t′ > t. Likewise, σ2
satisfies its similar obligation for observable propositions. Furthermore, σ2 also satisfies the
obligation regarding contingent time points as the encoding generates a failC transition for
each contingent time point C (belonging to a (A, x, y, C) ∈ L) allowing Player1 to move to
win if Player2 does not take exC within its maximum upper bound y. Since Player2 wants
to prevent Player1 from getting to win, σ2 is obliged to schedule C such that C −A ∈ [x, y].

Both σ1 and σ2 satisfy their postconditions: the reset of cX clocks says when the time
points were executed, whereas the values of bP clocks say what truth values the propositions
have been assigned. Finally, winning conditions are modeled differently with respect to
the player. For Player1 they are abstracted as a winning path checking that all time
points and constraints whose labels are not falsified by `cps have been executed and satisfied,
respectively. For Player2 winning conditions correspond to schedule a contingent time point
at a particular time or decide a truth value for an observable propositions (or any combination
of these moves) such that Player1 is unable to satisfy at least one constraint and ends up
blocked somewhere while going through the winning path before entering win. J

M.Zavatteri 23:15

I Theorem 17. Any CSTNUD can be encoded into a TGA in polynomial time.

Proof Sketch. Our encoding subsumes that for CSTNUs which runs in polynomial time
[4, 5]. We “worsen” that encoding by adding a dFalse transition for each d ∈ DP. For each
X ∈ T , Lenc(X) and Πenc(X) are computed in polynomial time by analyzing L(X) and
C. J

7 Related Work

STNs [10] and Drake [9] differ from CSTNUDs since they do not specify any uncontrollable
part. Therefore, they are incomparable with CSTNUDs.

STNUs [18] specify contingent durations as the unique uncontrollable part. The execution
of non-contingent time points cannot influence any contingent duration. Instead, contingent
durations do influence the real-value assignment to the non-contingent time points. However,
such durations never prevent any non-contingent time point from being executed. This work
also addresses the influence of the controllable part over the uncontrollable one.

CSTNs [14, 20] specify conditional constraints as the unique uncontrollable part. Again,
the execution of non-contingent time points cannot prevent any truth value assignment from
happening. Instead, depending on what truth value a propositional variable is assigned
some time point might be excluded, runtime, from the execution of the network. Similar
explanations hold for CSTNUs [7, 13] which merge CSTNs and STNUs. CSTNUDs are also
able to prevent uncontrollable truth value assignments and durations from happening.

In [3] CSTNs are extended with decision nodes regulating the truth value assignments
to some propositions under control. That work focuses on the complexity analysis of the
DC-checking problem and provides constraint-propagation algorithms for special cases in
which either the network specifies only decisions and no observations or all decisions are
made before any observation. Moreover, contingent durations are not addressed. This work
follows a complete different direction starting from CSTNUs and it is based on TGAs.

In temporal workflow management, the difference between controllable and uncontrollable
XOR splits is introduced in [11] and a technique based on PERT-nets computes internal
activity deadlines in order to meet the global ones. Some missed deadlines require human
interaction for recovery. We rely on DC, which guarantees that we never miss any deadline.

In [19] UPPAAL-TIGA is used to synthesize a controller for timeline-based plans which
consider multivalued state variables and networks of TGAs. Apart from time points, our
variables are Boolean and our encoding involves one TGA only.

8 Conclusions and Future Work

We defined conditional simple temporal networks with uncertainty and decisions (CSTNUDs)
as a unified formalism. CSTNUDs implicitly embed all minor temporal network formalisms
such as STNs (if L = OT = DT = ∅), CSTNs (if L = DT = ∅), STNUs (if OT = DT = ∅),
CSTNUs (if DT = ∅), STNDs (if L = OT = ∅), CSTNDs (if L = ∅), and STNUDs (if
OT = ∅). We modeled the DC-checking of a CSTNU as a two-player game where Player1
models the controller and Player2 models the environment and gave the execution semantics
in move-based strategies. We provided an encoding from CSTNUDs into TGAs as an
optimized extension of that given for CSTNUs and discussed the correctness and complexity
of such an encoding. We automated the approach by making a tool we used to analyze
and simulate the execution of the examples discussed in this paper. We also provided a

TIME 2017

23:16 Conditional Simple Temporal Networks with Uncertainty and Decisions

preliminary experimental evaluation of the approach against a set of 1000 randomly generated
CSTNUDs. As future work, we plan to address weak and strong controllability of CSTNUDs.

References
1 Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183–235, 1994. doi:10.1016/0304-3975(94)90010-8.
2 Gerd Behrmann, Agnès Cougnard, Alexandre David, Emmanuel Fleury, Kim G. Larsen,

and Didier Lime. Uppaal-tiga: Time for playing games! In CAV 2007. Springer Berlin
Heidelberg, 2007. doi:10.1007/978-3-540-73368-3_14.

3 Massimo Cairo, Carlo Combi, Carlo Comin, Luke Hunsberger, Roberto Posenato, Romeo
Rizzi, and Matteo Zavatteri. Incorporating decision nodes into conditional simple temporal
networks. In S. Schewe, T. Schneider, and J. Wijsen, editors, 24th International Symposium
on Temporal Representation and Reasoning (TIME 2017), volume 91 of LIPIcs, pages 9:1–
9:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.TIME.
2017.9.

4 Alessandro Cimatti, Luke Hunsberger, Andrea Micheli, Roberto Posenato, and Marco
Roveri. Sound and complete algorithms for checking the dynamic controllability of tempo-
ral networks with uncertainty, disjunction and observation. In 21st International Sym-
posium on Temporal Representation and Reasoning (TIME 2014), pages 27–36, 2014.
doi:10.1109/TIME.2014.21.

5 Alessandro Cimatti, Luke Hunsberger, Andrea Micheli, Roberto Posenato, and Marco
Roveri. Dynamic controllability via timed game automata. Acta Informatica, 53(6-8):681–
722, 2016. doi:10.1007/s00236-016-0257-2.

6 Alessandro Cimatti, Luke Hunsberger, Andrea Micheli, and Marco Roveri. Using timed
game automata to synthesize execution strategies for simple temporal networks with un-
certainty. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelli-
gence, July 27-31, 2014, Québec City, Québec, Canada., pages 2242–2249, 2014. URL:
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8512.

7 Carlo Combi, Luke Hunsberger, and Roberto Posenato. An algorithm for checking the
dynamic controllability of a conditional simple temporal network with uncertainty. In Pro-
ceedings of the 5th International Conference on Agents and Artificial Intelligence – Volume
2: ICAART, pages 144–156. INSTICC, ScitePress, 2013. doi:10.5220/0004256101440156.

8 Carlo Combi, Roberto Posenato, Luca Viganò, and Matteo Zavatteri. Access controlled
temporal networks. In Proceedings of the 9th International Conference on Agents and
Artificial Intelligence – Volume 2: ICAART, pages 118–131. INSTICC, ScitePress, 2017.
doi:10.5220/0006185701180131.

9 Patrick R. Conrad and Brian C. Williams. Drake: An efficient executive for temporal plans
with choice. J. Artif. Int. Res., 42(1):607–659, September 2011.

10 Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Artificial Intel-
ligence, 49(1-3):61–95, 1991. doi:10.1016/0004-3702(91)90006-6.

11 Johann Eder, Euthimios Panagos, Heinz Pozewaunig, and Michael Rabinovich. Time Man-
agement in Workflow Systems, pages 265–280. Springer London, 1999. doi:10.1007/
978-1-4471-0875-7_22.

12 John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, 1979.

13 Luke Hunsberger, Roberto Posenato, and Carlo Combi. The Dynamic Controllability of
Conditional STNs with Uncertainty. In Workshop on Planning and Plan Execution for
Real-World Systems (PlanEx) at ICAPS-2012, pages 1–8, Atibaia, June 2012. URL: http:
//arxiv.org/abs/1212.2005.

http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1007/978-3-540-73368-3_14
http://dx.doi.org/10.4230/LIPIcs.TIME.2017.9
http://dx.doi.org/10.4230/LIPIcs.TIME.2017.9
http://dx.doi.org/10.1109/TIME.2014.21
http://dx.doi.org/10.1007/s00236-016-0257-2
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8512
http://dx.doi.org/10.5220/0004256101440156
http://dx.doi.org/10.5220/0006185701180131
http://dx.doi.org/10.1016/0004-3702(91)90006-6
http://dx.doi.org/10.1007/978-1-4471-0875-7_22
http://dx.doi.org/10.1007/978-1-4471-0875-7_22
http://arxiv.org/abs/1212.2005
http://arxiv.org/abs/1212.2005

M.Zavatteri 23:17

14 Luke Hunsberger, Roberto Posenato, and Carlo Combi. A sound-and-complete propagation-
based algorithm for checking the dynamic consistency of conditional simple temporal net-
works. In 22st International Symposium on Temporal Representation and Reasoning (TIME
2015), pages 4–18, 2015. doi:10.1109/TIME.2015.26.

15 Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete controllers
for timed systems. In Ernst W. Mayr and Claude Puech, editors, STACS’95: 12th An-
nual Symposium on Theoretical Aspects of Computer Science Munich, Germany, March
2–4, 1995 Proceedings, pages 229–242, Berlin, Heidelberg, 1995. Springer. doi:10.1007/
3-540-59042-0_76.

16 Paul Morris. The mathematics of dispatchability revisited. In Proceedings of the Twenty-
Sixth International Conference on International Conference on Automated Planning and
Scheduling, ICAPS’16, pages 244–252. AAAI Press, 2016.

17 Paul Morris and Nicola Muscettola. Temporal Dynamic Controllability Revisited. In Pro-
ceedings of the Twentieth National Conference on Artificial Intelligence and the Seventeenth
Innovative Applications of Artificial Intelligence Conference, pages 1193–1198. AAAI Pr.,
2005.

18 Paul H. Morris, Nicola Muscettola, and Thierry Vidal. Dynamic control of plans with tem-
poral uncertainty. In Proceedings of the 17th International Joint Conference on Artificial
Intelligence (IJCAI-01), pages 494–502, 2001.

19 Andrea Orlandini, Alberto Finzi, Amedeo Cesta, and Simone Fratini. TGA-Based Con-
trollers for Flexible Plan Execution. In Joscha Bach and Stefan Edelkamp, editors, KI
2011: Advances in Artificial Intelligence: 34th Annual German Conference on AI, Berlin,
Germany, October 4-7,2011. Proceedings, pages 233–245. Springer Berlin Heidelberg, 2011.
doi:10.1007/978-3-642-24455-1_22.

20 Ioannis Tsamardinos, Thierry Vidal, and Martha E. Pollack. CTP: A new constraint-
based formalism for conditional, temporal planning. Constraints, 8(4):365–388, 2003. doi:
10.1023/A:1025894003623.

TIME 2017

http://dx.doi.org/10.1109/TIME.2015.26
http://dx.doi.org/10.1007/3-540-59042-0_76
http://dx.doi.org/10.1007/3-540-59042-0_76
http://dx.doi.org/10.1007/978-3-642-24455-1_22
http://dx.doi.org/10.1023/A:1025894003623
http://dx.doi.org/10.1023/A:1025894003623

	Introduction
	Background: CSTNUs, TGAs and Dynamic Controllability
	Conditional Simple Temporal Networks with Uncertainty
	Timed Game Automata
	Dynamic Controllability

	CSTNUs with Decisions
	Dynamic Controllability of CSTNUDs via TGAs
	Automated Planning: A Tool for the Experimental Evaluation
	Correctness of the Encoding
	Related Work
	Conclusions and Future Work

