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Abstract
We study the earliest arrival and profile problems in road networks with time-dependent functions
as arc weights and dynamic updates. We present and experimentally evaluate simple, sampling-
based, heuristic algorithms. Our evaluation is performed on large, current, production-grade
road graph data with time-dependent arc weights. It clearly shows that the proposed algorithms
are fast and compute paths with a sufficiently small error for most practical applications. We
experimentally compare our algorithm against the current state-of-the-art. Our experiments
reveal, that the memory consumption of existing algorithms is prohibitive on large instances.
Our approach does not suffer from this limitation. Further, our algorithm is the only competitor
able to answer profile queries on all test instances below 50ms. As our algorithm is simple to
implement, we believe that it is a good fit for many realworld applications.
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1 Introduction

Routing in road networks is an important and well-researched topic [1]. It comes in many
varieties. Nearly all formalize the road network as a weighted, directed graph. Nodes
correspond to positions in the network. Edges correspond to road segments. The weight
of an edge is the travel time a car needs to traverse the corresponding road segment. A
common assumption is that these travel times are time-independent scalars that do not
change throughout the day. With this assumption, the problem boils down to the classical
shortest path problem: Given a weighted graph, a source node s and a target node t, find a
shortest st-path.

A problem is that road networks are huge. Even near-linear-running-time algorithms,
such as Dijkstra’s algorithm [14], are too slow. Therefore, speedup based techniques were
developped [1]: In a first slow preprocessing phase, auxiliary data is computed. In a second
fast query phase, shortest path queries are answered in sublinear time using this auxiliary
data. Contraction Hierarchies (CH) [18] are a popular technique following this setup.

We study extensions of this problem setting: the earliest arrival and profile problems [7].
The input of the earliest arrival problem consists of nodes s, t, and a departure time τ . The
task consists of computing a st-path with minimum arrival time. The input of profile problem
consists only of s and t. The output consists of a function that maps a departure time onto
the corresponding minimum arrival time. Formulated differently, the profile problem solves
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3:2 Dynamic TD-Routing Through Sampling

the earliest arrival time problem for every departure time. We refer to the scenario without
congestions as time-independent. Dijkstra’s algorithm [14] can be augmented to solve the
earliest arrival problem [15]. However, it remains too slow.

Predicted congestions are usually modeled using functions as edge weights. Every edge
e is associated with a function fe(x) that maps the entry time x of a car into e onto the
travel time fe(x). Following [26], we require that waiting must not be beneficial. This
property is called the FIFO-property and formally states that x + fe(x) ≤ y + fe(y) for
all x ≤ y. Without this property, the problem is NP-hard. We further assume that the
functions are periodic with a period length of one day. We refer to the lower bound of fe

as e’s freeflow weight. The set of functions is the congestion prediction. The prediction is
often done months in advance. All functions are available during preprocessing. Predictions
are usually derived from past GPS traces or a traffic simulation. Routing with predicted
congestions is a well-researched topic [11, 12, 8, 25, 10, 4, 17, 6, 22].

Predicted congestions give a very rough traffic estimation. Often the actual traffic
situation differs significantly from the prediction. For this reason, we also consider realtime
congestions. We assume that there is a system that measures the current realtime travel time
for every edge. A realtime routing system computes shortest paths according to the realtime
travel times. Such a routing system usually works in three phases. In the first preprocessing
phase, only the road network but not the travel times are known. This phase can be slow.
The second customization phase introducess the travel times. The third phase is the query
phase and computes paths. The customization should run within a few seconds. It is rerun
at regular intervals, such as for example every 10s, to incorporate the current traffic situation.
Solutions to routing with only realtime congestions problem are MLD/CRP [28, 21, 9] and
Customizable Contraction Hierarchies (CCH) [13].

Ideally, we want a routing system that accounts for predicted and realtime congestions.
This scenario is also known as dynamic time-dependent routing. There are on this topic [10, 6].
In this paper, we propose an algorithm TD-S that solves the earliest arrival problem with
predicted congestions. The acronym stands for Time-Dependent Sampling. We extend it to
TD-S+P, which solves the profile problem, and to TD-S+D which additionally takes realtime
congestions into account.

The routing problem with no congestion and with only realtime congestions can be solved
efficiently and exactly, i.e., the computed paths are shortest paths. However, when taking
predicted congestions into account, many proposed algorithms compute paths with an error.
Let d denote the length of the computed path and dopt the length of a shortest path. We
define the absolute error as |d − dopt| and the relative error as |d−dopt|

dopt
. Ideally, we would

like to compute paths with no error but this is not an easy task.
Fortunately, for most applications a small error is acceptable as a traveler will not notice

a slightly suboptimal path. Further, the employed predictions have associated uncertainties.
Minimizing the error when it is below the uncertainty is not useful. A shortest path with
respect to the prediction is not necessarily shortest with respect to reality. Paths with a
small error are therefore indiscernible from “optimal” ones in terms of quality in practice.
Unfortunately, the predictions that we have access to do not quantify these uncertainties.
However, it is easy to see that the uncertainty is huge: The time a typical German traffic
light needs to cycle though its program is between 30s and 120s [16]. Traffic lights often
adapt to the actual realtime traffic. Predictions can therefore not take red light phases into
account as they cannot be predicted months in advance. Every traffic light on a shortest
path thus induces an uncertainty on the same scale as its program cycle length. Consider
a 2h path with a relative error of 1%. The corresponding absolute error is 72s, i.e., one to
three traffic lights. An error of 1% is thus small.
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On sufficiently small instances, the routing problem with predicted congestions can be
solved optimally using TCH [4]. Unfortunately, TCH requires a lot of memory. We compare
against an open-source implementation by the primary author [3]. We cannot answer queries
on a current Europe instance even with a 128GB machine – a show stopper if the program
needs to run on a client’s desktop machine, which usually has far less memory. A further
downside of TCH is its complexity. It also makes extensions, for example realtime congestions,
difficult. Further, TCHs are only optimally if one assumes arbitrary precise numbers with
O(1)-operations. Making sure that numeric instabilities do not get out of hand is possible
but not easy. The simplicity of an algorithm is a huge asset in applications. Unfortunately, it
is difficult to formalize when an algorithm is “simple” and when not. For the context of this
paper, we use the following crude approximation: An algorithm is complex, if it combines
functions using linking and merging operations1. Numeric stability issues are typically caused
by these operations. Avoiding these operations thus also avoids these issues.

Even though a lot of research into time-dependent routing exists, in-depth experimental
studies of the very simple approaches are, to the best of our knowledge, lacking. How good
is an optimal solution to the time-independent routing problem with respect to the routing
problem with predicted congestions? We refer to this simple approach as Freeflow heuristic.
A further interesting question is, how good is an optimal solution to the earliest arrival
problem with predicted congestions with respect to the earliest arrival problem with both
congestion types? We refer to this approach as Predicted-Path heuristic. Both heuristics
obviously compute paths with an error. However, how bad are these errors in practice? To
the best of our knowledge, this fundamental question has not been investigated in existing
papers. One of the objectives of our work is to fill this gap.

Our proposed algorithms are extensions of the Freeflow heuristic that trade an increased
query running time for a significant decrease in error. TD-S and TD-S+P can be implemented
with minimum effort assuming that a blackbox solution to the routing problem with no
congestions is available. TD-S+D additionally needs a blackbox that can handle realtime
congestions. Our program is build on top of the open-source CH and CCH implementations
of RoutingKit [30]. Fortunately, one can swap them out for any other algorithms that fulfills
the requirements. An open-source TD-S implementation is available [31].

An experimental error evaluation crucially depends on high quality realworld data.
Fortunately, PTV [27] has given us access to their current production-grade congestion data
for 2017 specifically to evaluate TD-S. As this data has a significant commercial value, we
are not allowed to freely share it without explicitly consent of PTV. We are not aware of
high-quality open congestion prediction data. OSM does not include predictions.

1.1 Related Work
There exist a lot of papers beside the already mentioned ones. We do not build upon them
nor rerun their experiments. We therefore limit our description to a brief overview. For a
detailed survey, we refer to [2].

The authors of [25] observed that ALT [19], a time-independent speedup technique,
can be applied to the graph weighted with the freeflow weights. This yields the simple
algorithm named TD-ALT. In [10], the technique was extended to TD-CALT by first
coarsening the graph and then applying TD-ALT to the core. TD-CALT was evaluated

1 Definitions: Merge respectively link of f and g is h such that h(x) = min{f(x), g(x)} respectively
h(x) = f(x) + g(f(x) + x)
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with respect to realtime congestion. Coarsening, and thus TD-CALT, requires linking and
merging operations. In [8], SHARC [5] (a combination of Arc-Flags [24] with shortcuts and
coarsening) was extended to the time-dependent setting. SHARC was combined with ALT
yielding L-SHARC [8]. Another technique is FLAT [22]. Here the idea is to precompute the
solutions from a set of landmarks to every node and during the query phase to route all
sufficiently long paths through a landmark. FLAT also works without linking- and merging
operations. In [23], it was extended to CFLAT. In [6], MLD/CRP was combined with travel
time functions yielding TD-CRP, which can also be used in the dynamic scenario.

A deep structural insight was shown in [17]. Graphs and source and target nodes s and
t exist, such that the st-profile contains a superpolynomial number of paths. This implies
that the profile problem cannot be solved on every instance with polynomial running time.
Fortunately, realworld graphs do not have this worst-case structure.

1.2 Outline
We start by describing our implementation of the Freeflow heuristic. We further present
a slight variation called Avgflow heuristic. Afterwards, we describe TD-S and the profile
extension TD-S+P. In the next step, we introduce the dynamic extension TD-S+D. Finally,
we experimentally evaluate all three algorithms on production-grade instances and compare
our results with TCH.

2 The Freeflow and Avgflow Heuristic

The freeflow travel time along an edge assumes that there is no congestion. Formally, the
freeflow travel time of an edge e is the minimum value of e’s travel time function fe. The
Freeflow heuristic works in two steps:
1. Find shortest time-independent path H with respect to the freeflow travel time.
2. Compute the time-dependent travel time along H for the given departure time.
The first step is independent of the edge function weights. The functions are only used in
the second step. The running time is dominated by the first step. Fortunately, this step can
be accelerated using any time-independent speedup technique. In our implementation, we
use a CH. In a preprocessing step, we compute a CH for the road graph weighted by freeflow
travel times. The first step of the Freeflow heuristic computes H using a CH-query.

A slight variation is the Avgflow heuristic. It is exactly the same as the Freeflow heuristic
but uses the average travel time instead of the minimum travel time for every edge.

3 Time-Dependent-Sampling: TD-S

The Freeflow heuristic never reroutes based on the current traffic situation. TD-S tries to
alleviate this problem. Similarly to the Freeflow heuristic, TD+S’s query algorithm works in
two steps:
1. Compute a subgraph H.
2. Run the time-dependent extension of Dijkstra’s algorithm on the subgraph.
If a shortest time-dependent path P is part of H, then P is found by TD-S and the computed
arrival time is exact. Otherwise, TD-S’s solution has an error.

We compute the subgraph using a sampling approach. We define a constant number k of
time-intervals. Within each time-interval, we average the time-dependent travel times. For
every interval, we thus obtain a time-independent graph. For every graph, we compute a
shortest time-independent path. The union of these paths is the subgraph H.
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Figure 1 The st-profile is the solid line. It must be in the orange area. The dashed function is
our approximation.

Similarly to the Freeflow heuristic, the shortest time-independent path computations can
be accelerated using existing speedup techniques. In our implementation, we compute for
each time-interval a time-independent CH. The first step of TD+S executes k CH-queries.
The second step uses the time-dependent extension of Dijkstra’s algorithm restricted to the
subgraph H.

The Freeflow heuristic can be seen as a special case of TD+S, where subgraph consists of
a shortest freeflow path. The number of time-intervals k is a trade-off between query and
preprocessing running times, and space consumption on the one hand, and solution error on
the other hand. We recommend using small numbers below 10 for k. The chosen interval
boundaries should reflect rush hours in the input data.

4 Computing Profiles: TD-S+P

The query algorithm of TD-S+P also works in two steps:
1. Compute a subgraph H.
2. Sample at regular intervals the travel time by running the time-dependent extension of

Dijkstra’s algorithm restricted to the subgraph H.
The subgraph computation step is the same as for TD-S.

We interpolate linearly between the sampled travel times. For a sampling rate of 10
min, our algorithm first computes the subgraph H, then runs Dijkstra’s algorithm with the
departure times 0:00, 0:10, 0:20. . .23:50 restricted to H. Denote by a1, a2, a3 . . . a144 the
computed arrival times. For example, the computed arrival time for departure time 0:07 is
0.3a1 + 0.7a2.

We can bound the error that the profile algorithm induces on top of the error of TD-S
using a theoretical argument: Denote by Λmax the maximum and by −Λmin the minimum
slope of every linear piece in every profile function and by r the sample rate. As shown in
the appendix B, the maximum absolute error is bounded by r(Λmax + Λmin)/4. The proof
idea is illustrated in Figure 1. Following [22], we assume that Λmax and −Λmin are bounded
by a small constant. In the same paper, the values Λmax = 0.19 and Λmin = 0.15 were
experimentally estimated for the Berlin instance. With r = 10min this gives a maximum
error of 51 seconds. Our analysis is very similar to the TRAP oracle from [22]. Unfortunately,
this bounds on the error induced by the profile algorithm. The base algorithm TD-S induces
additional error, which were not able to bound using theoretical arguments.

TD-S+P is faster than iteratively running TD-S as the subgraph is only computed once.
Further, Dijkstra’s algorithm iteratively runs on the same small subgraph H. The first run
loads H into the cache and thus all subsequent runs incur nearly no cache misses.

Figure 2 illustrates a typical profile computed with TD-S+P. The source node of the
example is near the inner city of Stuttgart, a city notoriously known for its large daily traffic

ATMOS 2017
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Figure 2 Example profile over 24h. The red curve (top) was computed with TD-S+P, while the
blue one (bottom) is the exact solution. The middle overlapping curves are the actual profiles. To
improve readability, we plot both curves a second time shifted by one unit on the y-axis.

congestions, in front of the central train station. The target node lies in Denkendorf, a village
about 20min south-east outside of Stuttgart. The computed profile is smoother than the
“exact” profile, which has a lot of small fluctuations. However, this does not mean that the
“exact” profile is more accurate. Most of the small fluctuations are within only a few seconds,
i.e., well below the accuracy of the input data. Formulated differently, these fluctuations
are imprecisions in the input that are propagated to the output. Fortunately, the general
form of both curves is very similar, which is the important information. The largest absolute
error is 19s, respectively 1.17% relative error, at the peak of the evening spike. Recall, that
crossing a single red traffic light can induce a delay of more than 19s.

5 Dynamic Traffic: TD-S+D

TD-S and TD-S+P work with predicted congestions. However, in many applications we must
also take realtime congestions into account. We adapt TD-S by modifying the computation
of the subgraph H yielding TD-S+D. The second step is left unchanged.

The subgraph H is the union of k paths. TD-S+D adds a shortest st-path according to
the current realtime traffic as k + 1-th path to the union. To efficiently determine this path,
a efficient solution to the routing problem with realtime congestions is needed. We use the
CCH algorithm [13] with a FlowCutter contraction order [20].

In the preprocessing step, TD-S+D computes a CCH in addition to the k CHs of TD-S.
At regular time intervals, such as every 10s, TD-S+D updates the CCH edge weights to reflect
the realtime traffic situation. This update involves a CCH customization, which runs within
at most a few seconds. A TD-S+D query consists of running k CH queries and one CCH
query. The subgraph H is the union of the k + 1 shortest paths. Finally, the time-dependent
extension of Dijkstra’s algorithm is run restricted to the subgraph H.

5.1 Simulating Traffic
We have access to production-grade time-dependent edge data. Unfortunately, we do not
have access to good measured realtime traffic. We therefore simulate realtime congestions to
study the performance of TD-S+D.

For an earliest arrival time query from s to t with departure time τ , we first compute the
shortest time-dependent path P with respect to the historic travel times. On P we generate
three traffic congestions by picking three random start edges. From each of these edges we
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Figure 3 Travel-time weight function with simulated congestion.

Table 1 Node count, edge count, percentage of time dependent edges, and number of break
points per time-dependent weight function for all instances.

Nodes Directed TD-Edges avg. Break Points
[K] Edges [K] [%] per TD-Edge

Lux 54 116 34 30.9
Ger 7 248 15 752 29 29.6
OGer 4 688 10 796 7 17.6
CEur 25 758 55 504 27 27.5

follow P for 4min, yielding three subpaths. For every edge e in a subpath, we generate a
congestion according to the construction illustrated in Figure 3. The red line is the original
travel time function f . The blue line is the congested function.

Denote by f the travel time function of e. We modify f by doubling the travel time at
f(τ) and assume that it remains constant for some time. The congestion should be gone at
τ + 1h. To maintain the FIFO-property, the modified function must have slope of -1 before
τ + 1 before joining the predicted travel time. In the awkward and rare situation where
2f(τ) < f(τ + 1h), we do not generate a congestion.

6 Experimental Results

6.1 Setup
We use three production-grade instances (Lux, Ger, CEur) with traffic predictions for the
first half of 2017. To compare with related work, we further include an a decade-old Germany
instance (OGer) in our study. We thank PTV for giving us access to this data. All instances
model a car on a typical Tuesday. The instance sizes are depicted in Table 1. The European
graph contains several central European countries as illustrated in Figure 4. Experiments
on further instances are reported in an older ArXiv version of our work [29]. The results
are essentially comparable to the experiments presented in this paper on all non-synthetic,
realworld instances. Additional experiments that evaluate the achieved errors in detail are in
the appendix.

Our experiments were run on a machine with a E5-2670 processor and 64GB of DDR3-
1600. All reported running times are sequential. For every instance, we generated 105 queries
with source stop, target stop and source time picked uniformly at random. All experiments
use the same set of test queries.

The large instances (Ger, CEur) are useful to investigate scaling behavior. The old
instance (OGer) is useful to compare with related work. The city with periphery instance
(Lux) is useful to investigate errors in urban contexts.

ATMOS 2017
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Figure 4 Central Europe.

Table 2 Number of exact time-dependent queries and absolute and relative errors for Freeflow,
TD-S+4, and TD-S+9. “Q99” refers to the 99%-quantile and “Q99.9” the 99.9%-quantile.

Exact
[%]

Relative Error [%] Absolute Error [s]

Graph Algo Avg Q99 Q99.9 Max Avg Q99 Q99.9 Max

Lux Freeflow 80.0 0.244 5.1 11.5 28.1 5.0 106 235 356
Lux Avgflow 81.0 0.123 2.5 6.4 19.4 2.5 49 143 329
Lux TD-S+4 97.7 0.008 0.2 1.5 4.9 0.2 4 30 141
Lux TD-S+9 99.6 <0.001 0.0 0.1 1.7 <0.1 0 3 27

Ger Freeflow 67.9 0.085 1.5 3.1 12.4 11.1 200 417 825
Ger Avgflow 69.2 0.044 0.8 1.9 10.3 5.9 113 284 587
Ger TD-S+4 94.6 0.005 0.1 1.0 3.0 0.8 17 159 474
Ger TD-S+9 98.2 0.001 <0.1 0.4 3.0 0.3 1 76 374

OGer Freeflow 60.7 0.140 2.0 4.7 12.4 15.9 219 465 1 104
OGer Avgflow 68.8 0.050 0.9 2.2 6.5 5.7 96 227 619
OGer TD-S+4 96.4 0.002 0.1 0.4 2.0 0.3 6 47 333
OGer TD-S+9 98.5 0.001 <0.1 0.2 2.0 0.1 1 24 276

CEur Freeflow 54.9 0.089 1.4 2.7 10.8 26.4 428 833 1 477
CEur Avgflow 55.8 0.048 0.8 1.7 6.6 14.2 235 507 1 069
CEur TD-S+4 91.1 0.006 0.2 0.7 3.8 1.8 47 226 547
CEur TD-S+9 96.8 0.001 <0.1 0.3 1.2 0.5 6 109 397

We evaluate TD-S with two selections of time windows. TD-S+4 uses the windows
0:00–5:00, 6:00–9:00, 11:00–14:00, and 16:00–19:00. TD-S+9 uses the windows 0:00–4:00,
5:50–6:10, 6:50–7:10, 7:50–8:10, 10:00–12:00, 12:00–14:00, 16:00–17:00, 17:00–18:00, and
19:00–21:00. These time windows reflect the rush hours in the dataset and were created using
manual trial-and-error. Developing algorithms to automatically determine time windows
bounds is an interesting avenue for future research.

To provide an in-depth comparison with related work, we run TCH on our test instances
and test machine. The implementation we used is based on KaTCH [3], an open-source reim-
plementation of the algorithm of [4] by the primary author. Unfortunately, it only supports
earliest arrival queries and no profile queries. We do not have access to implementations of
other competing algorithms.

In Table 2, we report the errors for various algorithms and all instances. We report the
percentage of queries that are solved exactly, the average, maximum, and quantiles2 of the

2 Definition x-quantile of n values: Sort n values increasingly, pick the (n·x)-th value. 0-quantile is min.
0.5-quantile is median. 1-quantile is max.
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Table 3 Average preprocessing and running times and memory consumption of various algorithms.

Graph TD-Dijkstra Freeflow Avgflow TD-S+4 TD-S+9 TCH

Average Query Running Time [ms]

Lux 4 0.02 0.02 0.11 0.26 0.18
Ger 1 116 0.19 0.20 0.99 3.28 1.81
OGer 813 0.12 0.14 0.97 2.09 1.12
CEur 4 440 0.42 0.29 3.83 6.85 OOM

Max. Query Memory [MiB]

Lux 13 17 17 29 47 328
Ger 1 550 2 132 2 130 3 630 6 127 42 857
OGer 461 855 854 1 880 3 589 8 153
CEur 4 980 7 058 7 053 12 411 21 336 >131 072

Total Preprocessing Running Time [min]

Lux — <0.1 <0.1 <0.1 0.1 0.6
Ger — 1.6 2.2 7.6 14.7 86.2
OGer — 1.5 1.6 5.9 16.4 26.8
CEur — 8.6 8.1 33.9 70.7 381.4

relative and absolute errors. The number of exactly solved queries decreases with instance
size as the paths lengths grow with size. A longer path has more opportunities for errors.
Similarly, the absolute errors grow with instance size as the paths get longer. The relative
errors quantiles shrink with growing instance size, as individual errors have a smaller impact.
The average errors are very small, as most queries are answered exactly. We report maximum
error values as most related papers report them. However, these values are very sensitive
to the random seed used during the query generation. The Freeflow heuristic achieves
significantly lower error values than we expected at first. The Avgflow heuristic slightly beats
the Freeflow heuristic. For some applications, these errors are low enough. However ideally,
we want to have even lower error values. Fortunately, using TD-S significantly lower values
are achievable. TD-S+9 answers 99.6% of the queries exactly in an urban scenario and 96.8%
on a continental-sized instance. Even the 99.9%-quantiles are well below a relative error
of 0.5%. TD-S+4 has larger errors as it uses fewer time windows. Fortunately, the query
running times and the memory footprint of TD-S+4 are lower.

In Table 3, we compare query and preprocessing running times and memory consumption.
We observe that the lower the solution error of an algorithm is, the more memory it requires.
TCH is guaranteed to be exact. Unfortunately, its memory requirements are prohibitive
on CEur. We tried to run it on a 128GB machine but got out-of-memory crashes while
executing queries. The TCH preprocessing algorithm writes no longer needed data to the
disk and evicts it from main memory. We were therefore able to run the preprocessing step.
However, the whole data structure must be loaded into main memory to answer queries.
TD-S+9 only needs 21GB on the same instance and TD-S+4 only 12GB. The 5GB memory
consumption of TD-Dijkstra consists essentially of the input data. TD-S+4 only needs about
2.4 times the memory required by the input. TD-S+9 needs 4.1 times the memory. TD-S+4
has an about a factor 10 lower preprocessing time than TCH. The Freeflow heuristic has, for
obvious reasons, the fastest query running time. It is followed by TD-S+4 which is about
33% to 50% faster than TCH. TD-S+9 is slightly slower than TCH.

ATMOS 2017
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Table 4 Average 24h-profile running times in milliseconds. “SubG” is the subgraph comp. time.

Freeflow Avgflow TD-S+P4 TD-S+P9

Graph SubG. Total SubG. Total SubG. Total SubG. Total

Lux <0.1 2.6 <0.1 2.6 0.1 3.0 0.3 3.4
Ger 0.2 18.1 0.2 18.3 0.7 19.5 1.7 22.2
OGer 0.1 10.0 0.1 9.5 0.8 11.2 1.8 12.4
CEur 0.4 36.8 0.4 36.8 2.1 49.9 5.3 53.4

0 20 40 60 80 100
Query count [%]

0

5

10

15

20
Pa

th
 c

ou
nt

CEur
Ger
OGer
Lux

Figure 5 The number of optimal paths (y-axis) in function of number of queries (x-axis) for a
24h-profile of TD-S+P9.

In Table 4, we report profile query running times. In addition to the total running time,
we report the amount of time needed to compute the subgraph. Even with TD-S+P9 on
the large CEur graph the average running times are only slightly above 50ms for a 24h
profile. The query running time of TD-S+P4 is only slightly lower than the running time of
TD-S+P9. However, the later has a significantly lower error. TD-S+P9 is therefore superior
to TD-S+P4 with respect to profile queries, if the larger memory footprint is not prohibitive.

A path can be optimal for several departure times throughout a day. For an st-query, we
can count the number of paths that are optimal for at least one departure time. Two paths
are the same if they have the same sequence of edges. It is not necessary that the travel
times are the same. In Figure 5, we depict the number of optimal paths as function of the
percentage of queries with at most that many paths. For most st-query there are only very
few paths. However, there are outliers for which there can be a significant number of paths.
The maximum number of observed paths on CEur is 34.

In theory, it is possible that the low errors we observe in our experiments are an artifact
of the test query generation method. It is known that uniform random queries are with
near certainty long-distance queries. If only short-distance queries were answered incorrectly,
our evaluation method would not detect these errors. In Appendix A, we investigate this
question using Dijkstra-rank plots and conclude that this effect luckily does not occure and
that the presented results are representative.

6.2 Dynamic Time-Dependent Routing

In the dynamic scenario, we consider two types of congestions: (a) the predicted congestion,
and (b) the realtime congestion. The predicted congestions are formalized as edge weight
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Table 5 Average query running times.

Lux Ger OGer CEur

TD-S+D4 0.3 2.3 1.7 4.3
TD-S+D9 0.5 3.6 2.9 7.8

Table 6 Number of exact dynamic, time-dependent queries and absolute and relative errors for
the predicted path, TD-S+D4, and TD-S+D9. “Q99” refers to the 99%-quantile and “Q99.9” the
99.9%-quantile.

Exact
[%]

Relative Error [%] Absolute Error [s]

Graph Algo Avg Q99 Q99.9 Max Avg Q99 Q99.9 Max

Lux Predict.P 1.6 17.228 56.1 75.0 93.8 323.0 739 826 997
Lux TD-S+D4 94.7 0.017 0.5 2.3 6.2 0.6 15 93 231
Lux TD-S+D9 95.0 0.016 0.5 2.2 6.2 0.5 14 89 231

Ger Predict.P 55.1 1.2 17.9 36.9 79.3 78.5 552 741 1 001
Ger TD-S+D4 90.9 0.032 1.0 2.6 7.0 3.5 116 233 474
Ger TD-S+D9 93.4 0.026 0.9 2.5 6.2 2.8 99 216 469

OGer Predict.P 52.3 1.352 18.7 38.3 65.8 84.9 563 738 934
OGer TD-S+D4 91.5 0.031 1.0 2.6 5.4 3.2 108 224 462
OGer TD-S+D9 92.9 0.028 0.9 2.5 5.4 2.9 102 219 462

CEur Predict.P 72.6 0.392 7.0 25.9 81.9 41.0 443 653 1 870
CEur TD-S+D4 89.5 0.015 0.5 1.6 5.2 3.3 106 244 547
CEur TD-S+D9 94.0 0.011 0.3 1.4 5.2 1.9 69 205 397

functions. The predicted congestions used in our setup come from realworld production-grade
data. The realtime congestions are randomly generated according to the scheme described in
Section 5.1. In Table 6, we compare the errors induced by three approaches: The Predicted
Path heuristic (Predict.P) as baseline, TD-S+D4, and TD-S+D9. The Predicted Path
heuristic computes a shortest path P with respect to only the predicted congestion. P

is then evaluated with respect to both congestion types. In Table 5, we report the query
running times of TD-S+D4 and TD-S+D9. Freeflow and Predicted Path are similar in spirit.
Freeflow solves the time-dependent routing problem with predicted congestions by ignoring
predicted congestions. Similarly, Predicted Path solves the dynamic time-dependent routing
problem by ignoring realtime congestion. The Freeflow heuristic produces surprisingly small
errors. This contrasts with the predicted path heuristic, whose measured errors in Table 6
are very large. On the Luxembourg instance only 1.6% of the queries are solved optimally.
Fortunately, TD-S+D significantly reduces these errors. Over all instances, the minimum
number of optimally solved queries is 92.9%. This is a huge improvement compared to 1.6%.
The errors induced by TD-S+D in the dynamic scenario are larger than those of TD-S in the
static scenario. Fortunately, even the 99%-quantile of TD-S+D9 is well below 1% on all test
instances, which is good enough for many applications.

ATMOS 2017
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Table 7 Comparison of earliest arrival query algorithms. “n/r” = not reported. We report the
running times as published in the corresponding papers (ori) and scaled by processor clock speed.

Numbers
from Li

nk
&

M
er
ge
? Relative Error [%] Run T. [ms]

avg. Q99.9 max. ori scaled

TDCALT-K1.00 [10] OGer • 0 0 0 5.36 3.77
TDCALT-K1.15 [10] OGer • 0.051 n/r 13.84 1.87 1.31
eco SHARC [8] OGer • 0 0 0 25.06 19.7
eco L-SHARC [8] OGer • 0 0 0 6.31 5.0
heu SHARC [8] OGer • n/r n/r 0.61 0.69 0.54
heu L-SHARC [8] OGer • n/r n/r 0.61 0.38 0.30

TCH Tab. 3 OGer • 0 0 0 1.12
TDCRP (0.1) [6] OGer • 0.05 n/r 0.25 1.92
TDCRP (1.0) [6] OGer • 0.68 n/r 2.85 1.66

Freeflow Tab. 2&3 OGer ◦ 0.140 4.7 12.4 0.12
Avgflow Tab. 2&3 OGer ◦ 0.050 2.2 6.5 0.14

FLAT-SR2000 [22] OGer ◦ 1.444 n/r n/r3 1.28 1.18
CFLAT-BC3K+R1K,N=6 [23] OGer ◦ 0.031 n/r 19.154 4.10 4.73

TD-S+4 Tab. 2&3 OGer ◦ 0.002 0.4 2.0 0.97
TD-S+9 Tab. 2&3 OGer ◦ 0.001 0.2 2.0 2.09

Table 8 Comparison of profile query algorithms. We report the running times as originally
reported in the corresponding publications. Further, we report running times scaled by processor
clock speed.

Num-
bers
from

Run T. [ms]

ori scaled

eco SHARC [8] 60 147 47 388
heu SHARC [8] 1 075 847
ATCH ε=2.5% [4] 38.57 30
TD-S+P4 Tab. 4 19.5 19.5
TD-S+P9 Tab. 4 22.2 22.2

6.3 Comparison with Related Work
In Tables 7 and 8, we compare TD-S with related work on the OGer instance. Comparing
the reported error values is very difficult. Many papers report maximum relative error over
uniform 105 random queries. Unfortunately, this value heavily depends on the random seed
used to generate the test queries. Comparing maximum error values across papers is therefore
unfortunately not meaningful unless they differ by orders of magnitude. Average values are
significantly less sensitive to this problem. To mitigate this problem, we also report quantiles.

Besides TD-S, Freeflow, Avgflow, only FLAT and CFLAT do not need link and merge op-
erations. As the reported maximum error values are very similar, a detailed error comparison
is not meaningful. A limitation of FLAT and CFLAT are is large memory consumption: For
OGer 51 GB respectively 16.1 GB are reported [22] and [23]. TD-S4 only needs 1.8 GB. We

3 It was clarified in [23] and in personal communication that the reported numbers are average values.
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doubt that FLAT or CFLAT scales in terms of memory consumption to CEur. Compared
with link- and merge-based techniques TD-S is highly competitive. TD-S4’s average error
is smaller than the average error of every non-exact competitor that reports average errors.
TD-S4’s query running time is only beat by Freeflow and heu L-SHARC. A major downside of
L-SHARC is that it is complex. Not only is linking and merging needed. L-SHARC combines
A*/ALT, Arc-Flags, and contraction. None of these components is easy to implement. TCH
has, in addition to being complex, a large memory consumption.

Profile queries have not been described and evaluated for all competitors. Only [8] and
[4] report experiments. We present an overview in Table 8. ATCH is a TCH variant. We
do not expect ATCH to scale to CEur because of memory restrictions. We believe that
SHARC would run on CEur but the query running times could significantly increase. On
OGer, TD-S+P clearly wins in terms of query running time. Eco SHARC and ATCH, but
not heu SHARC, are exact and therefore the comparison with TD-S+P is not completely
fair. However, to compute profiles on CEur, ATCH is not an option because of memory
constraints. Further, eco SHARC likely has query running times above a minute and is
therefore too slow for many applications. There are thus no alternatives to TD-S+P.

7 Conclusion

We introduce TD-S, a simple and efficient solution to the earliest arrival problem with
predicted congestions on road graphs. We extend it to TD-S+P which is the only algorithm
to solve the profile variant in at most 50ms on all test instances. Further, we demonstratd
with TD-S+D that additional realtime congestions can easily be incorporated into TD-S.
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A Dijkstra Rank Plots

In theory, it is possible that the low errors we observe in our experiments are an artifact of
our test query generation method. The employed generation method is the current state-
of-the-art and is used in all competitor papers. However, it has a bias and maybe this bias
is exploited by TD-S. Picking the source and the target nodes uniformly at random nearly
always yields a long-distance query. This means that, on the Europe instance, it is very
unlikely that a test query is generated, such that the resulting path has a running time of for
example 30min, which is short compared to the diameter of the instance. In theory, it is
possible that only short-distance queries have a significant error but we do not generate such
test queries. We demonstrate in this section that this effect does not occur.

That this effect does not occur can be seen from our experiments in the main part.
All queries generated on the Luxembourg instance are local compared to the diameter of
Europe or Germany. If short-distance queries were harder to solve than long-distance queries,
the achieved errors on the Luxembourg instance should be higher than those achieved on
the Europe or Germany instance. Fortunately, this is not the case and we can therefore
conclude that short-distance queries are not inherently harder than long-distance queries. It
is possible though that Luxembourg is in some sense special and short-distance queries are
only easy on the Luxembourg instance. To show that this also does not occur, we investigate
short-distance queries in a more systematic setup in this section.

We compute Dijkstra-rank plots in Figure 6. Dijkstra-rank queries are generated as
follows: We pick a random source node s uniformly at random. In the next step, we order
all other nodes by freeflow distance from s using Dijkstra’s algorithm. The query from s to
the 2i-th node in this order has Dijkstra-rank i. We generated 1 000 random source nodes s
for our experiments. The intuition is that a query with a low Dijkstra-rank is more local
than a query with a high Dijkstra-rank.

We plot the number of queries that were answered optimally by TD-S+4. We further
plot the relative and absolute errors of TD-S+4. It is usual to use a box plot to visualize
Dijkstra-rank results. However, because of the low errors of TD-S the boxes of our plots are
degenerate and squashed onto the x-axis. As most errors are zero, zooming into the plots
does not help. All observable dots are outliers. To emphasize the low achieved errors and
because the squashed boxes do not cover the outliers, we decided to stick with a degenerate
box plot representation.

One can observe that on every instance the number of correct queries shrinks with growing
Dijkstra-rank. Similarly, the absolute error grows with a growing a Dijkstra-rank. This is
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Figure 6 Percentage of correct queries (top), relative error (mid), and absolute error (bottom).
Columns correspond to instances: Leftmost ist Lux, left middle is CEur, right middle ist Ger, and
rightmost ist OGer.
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Figure 7 Proof Illustration. The optimal function must be in the orange area. e is the maximum
error of our estimation.

non-surprising as the path length also grows with Dijkstra-ranks. The relative error seems to
be independent of the Dijkstra-rank.

As the number of optimally solved queries is minimum with a large Dijkstra-rank, we
conclude that TD-S is not exploiting the test query generation and our experimental results
from the main part of this paper are representative.

B Profile Error Guarantee

The proof is sketched in Figure 1. The solid line is the unknown optimal function. The
dashed function is the computed approximative function. As the slopes are bounded, we know
that the unknown optimal function is inside of the orange area. The maximum difference
between the approximative function and the boundary of the orange area therefore bounds
the error induced by the profile algorithm.

Consider the situation depicted in Figure 7. Our objective is to compute the maximum
vertical distance from the dashed line inside of the orange region. As the triangle below
the dashed line is the same as the triangle above it rotated by 180°, we can focus solely on
the upper triangle OAB. As the distance grows from O to A and decreases from A to B
we know that the distance is maximum at x = Ax, i.e., the maximum vertical distance is
the length e of the dotted segment. From the application we know that Bx = r, and that
the slope of the line OA is Λmax, and that the slope of AB is −Λmin. We denote by h the
y-position of B. Our objective is to compute the maximum value of e over all values of h.
We start by computing e and then maximize the resulting expression over h.
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The line OA is described by y = Λmaxx, and the line OB is described by y = h
r x, and

the line AB is described by y = −Λminx + (rΛmin + h). By intersecting OA and AB we
get ΛmaxAx = −ΛminAx + (rΛmin + h) which can be solved for Ax yielding Ax = rΛmin+h

Λmax+Λmin
which leads to

e = ΛmaxAx −
h

r
Ax

= (Λmax −
h

r
)Ax

=
(Λmax − h

r )(rΛmin + h)
Λmax + Λmin

which is an expression for the desired vertical height. As 0 < Λmax and 0 < Λmin the value
of e is maximum if and only if

(Λmax −
h

r
)(rΛmin + h) = −h

2

r
+ (Λmax − Λmin)h+ rΛminΛmax

is maximum. As −h2 < 0 this parabola is maximum when its derivative is zero. We therefore
compute the derivative − 2h

r + (Λmax − Λmin) which is zero for h = r(Λmax−Λmin)
2 which we

can insert into the expression of e to obtain

max
h

e =
(Λmax − r(Λmax−Λmin)

2r )(rΛmin + r(Λmax−Λmin)
2 )

Λmax + Λmin

=
(Λmax+Λmin

2 )( r(Λmax+Λmin)
2 )

Λmax + Λmin

= r(Λmax + Λmin)
4

which was the absolute error bound we needed to compute.
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