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Abstract
We introduce and study the online house numbering problem, where houses are added arbitrarily
along a road and must be assigned labels to maintain their ordering along the road. The online
house numbering problem is related to classic online list labeling problems, except that the
optimization goal here is to minimize the maximum number of times that any house is relabeled.
We provide several algorithms that achieve interesting tradeoffs between upper bounds on the
number of maximum relabels per element and the number of bits used by labels.
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1 Introduction

In this paper we study a new version of the fundamental online monotonic list labeling
problem [14, 6, 23] (OMLL), where the goal is to maintain labels for a dynamic ordered list
of at most n elements that, due to monotonicity requirements of appropriate applications,
must have (integer) labels that strictly increase in the direction of the ordering. When a
new element is inserted into the list, either between two existing elements or at an endpoint
of the list, we must assign a label to the new element that is consistent with the order of
the list. To avoid labels becoming too long, algorithms for list-labeling problems relabel
elements from time to time thereby maintaining the ordering using relatively few bits for
the labels. There are several common variants of OMLL that differ in the number of bits
allowed for each label. For example, the special case of logn+O(1) bits1 is known as the
file-maintenance problem [27, 26, 6, 7], where labels are viewed as corresponding to addresses
in a size O(n) array.
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Solutions for OMLL are used as foundational building blocks in several areas of computer
science, ranging from cache-oblivious data structures [4, 5, 10] to distributed computing [17],
and they play a central role in deamortization [14, 9, 16]. As an illustration of the data
structure’s central role in the field, it is used as a black box in order-maintenance data
structures [14, 23], which themselves are used as black boxes throughout computer science
(for examples see [2, 15, 13, 20, 1, 18, 24]).

The focus of previous work solving the OMLL problem in the RAM model has been on
minimizing the worst-case or amortized number of relabels per update. For example, when
using O(logn) bits per label the worst-case number of relabels per update is known to be
O(logn) [23], which is tight [11]. A particular element, however, can be relabeled as many as
Ω(n) times during a sequence of n insertions using existing algorithms. This paper considers
the goal of minimizing the maximum number of times an element in the list is relabeled,
while using only a small number of bits per label. We refer to this version of OMLL as
the online house numbering problem, since it captures the challenges that take place when
maintaining a strictly increasing numbering for a collection of houses representing their order
along a road. When a new house is built between any two existing houses (or at either end of
the row of houses), this new house needs to be assigned a house number. If no such integer
house number is available, however, then other houses need to be renumbered (or relabeled)
to make room for a number for the new house. Formally stated, the online house numbering
problem is to maintain a labelling of an initially empty ordered list subject to n operations of
the form, insert(x, a): insert x immediately after a in the ordered list. Remarkably, existing
solutions for list labeling problems do not seem to lead to efficient solutions for the online
house numbering problem.

The online house numbering problem raises some interesting combinatorial questions
while also addressing label-update complexity, which is motivated from use of solid-state
memories, like flash memory, that have an upper bound on the number of erasures that can
occur for any memory cell [8, 25, 28]. For example, consider a database with an ordered set
of large records, where each record maintains a label respecting the order. Due to the use
of these modern types of memory, the number of times that the label is changed must be
minimized, since each relabeling entails rewriting that area in memory. A typical assumption
in models for solid-state memories is that the algorithm or data structures also have access
to a sublinear amount of additional scratch space for computational purposes (see Ben-Aroya
and Toledo [3]), which is exempt from the erasure limits. In the context of our online house
numbering, this would mean that each element in the data structure has a fixed record
containing, e.g., the label and any other auxiliary information that is updated whenever a
label changes (for our solution, we also store a counter as part of the record). Any additional
components of the data structure must be restricted to the o(n) scratch space.

There are two competing objectives that we consider in designing solutions for the online
house numbering problem. The first objective is to minimize, over all elements in the list,
the maximum number of times that the label of the element changes throughout the n
insertions. Notice that with large labels, a trivial solution in which no relabels are needed
is obtainable by assigning x the average of a and b, where b is the element succeeding x.
This trivial solution requires Ω(n) bits per label, and so if each word of memory contains
Θ(logn) bits (which is a standard assumption), each label requires Ω(n/ logn) words. A large
number of words directly impacts the efficiency of establishing the order of two elements,
since comparing their labels entails scanning that many words. Thus, the second objective is
to minimize the number of bits used in labels.

Since we are interested in minimizing two competing objectives, we express the complexities
of our data structures using a pair of functions. A data structure supporting n insertions
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with g(n) maximum relabels and using h(n) bits per label is said to have complexity of
〈g(n), h(n)〉. Notice that h(n) ≥ dlogne since n elements must be labeled. If one is interested
in h(n) = O(logn) (constant number of words per label), then the OMLL lower bounds of [11]
imply that g(n) = Ω(logn). Thus, if there existed a solution for online house numbering
with complexity 〈O(logn), O(logn)〉, it would be asymptotically optimal.

1.1 Our Results
In this paper we describe two data structures that are close to the target bound of
〈O(logn), O(logn)〉, but each solution introduces an extra logarithmic factor in one of
the functions. In a third solution, we investigate the dependence on the leading constant of
h(n) and provide a solution with complexity 〈O(nε), logn+O(1/ε)〉. Our solutions, which
can be adapted to work with o(n) scratch space (deferred to the full version of the paper),
establish the following results.

I Theorem 1. There exists a house numbering data structure with complexity 〈O(log2 n),
O(logn)〉.

I Theorem 2. There exists a house numbering data structure with complexity 〈O(logn),
O(log2 n)〉.

I Theorem 3. For any positive constant ε, there exists a house numbering data structure
with complexity 〈O(nε), logn+O(1/ε)〉.

Proofs of Theorems 1 and 3 appear in Section 3. Theorem 2 is deferred to the full
version of the paper. Our solution complexities exhibit an interesting feature: the online
house numbering problem seems to exhibit a different tradeoff from OMLL, depending more
strongly on the label lengths.

Overview of Challenges and Techniques. The main idea of our approach is that once a
particular element has been relabeled many times, structural restrictions assure that this
element will not be relabeled much in the future. To achieve this goal, we employ a tree-like
structure similar to an (a, b)-tree (or B-tree) that stores at most O(γ) elements in nodes of
the tree, where γ ≥ 2 is a parameter controlling the tradeoff between the two objectives. (For
the purpose of this overview it is helpful to assume γ = 2.) Roughly speaking, the inorder
traversal of this tree corresponds to the order of elements in the list. The elements in a node
each have a local label, which is local to that node. The global label assigned to an element
corresponds to the concatenation of the local labels on the path from the root to the element
(with 0s padded at the end if the element is in an inner node). We require the local labels of
elements to respect the order of elements in each node, thereby guaranteing that the global
labels respect the total order of the list. To simplify things when extending to nonconstant
γ, we employ (classic) file-maintenance data structures within each node for maintaining the
local labels. Notice that changing the local label of an element also changes the global labels,
which must be stored explicitly, of all elements in that element’s subtree.

Our main strategy is to employ node splits to “promote” elements that have been relabeled
too many times to higher levels in the tree. Promoting an element e that is currently in node
u entails: splitting the elements of u around e into two new nodes, moving e into u’s parent,
and making the two new nodes children of u’s parent. The intuition behind the promotions
is that elements in higher nodes are less affected by insertions, and hence these elements
need not be relabeled as often. Element promotions happen due to three possible reasons:

ESA 2017
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(1) if the element has been relabeled too many times since its last promotion,
(2) if the node has too many elements, which would cause the performance of the file-

maintenance black box to degrade, or
(3) if the node becomes sufficiently imbalanced, according to a non-obvious weight-balance

rule.

The key component of the analysis is ensuring that the height H of the data structure is
well bounded, i.e., that elements are never promoted too far. The height H not only places
an upper bound on the length of the labels, but in conjunction with the first trigger for
element promotion also directly implies a bound on the number of times each element can
be relabeled. We emphasize that the analysis bounding H leverages a potential argument
in an atypical and non-obvious way, which we view as a surprising component of our data
structure.

1.2 Related Prior Work
There is no prior work for the online house numbering problem, but it is closely related
to the classic file maintenance and online list labeling problems for which several authors
have shown how to achieve optimal polylogarithmic update times, in either worst-case or
amortized senses (e.g., see [6, 14, 22, 23, 11, 7]).

Regarding algorithms in computational models that capture the challenges of solid-state
memory, Ben-Aroya and Toledo [3] provide competitive analyses for several such algorithms,
but they do not study OMLL problems as a specific topic of interest. See also the work of
Irani et al. [21]. Subsequent work on efficiently implementing specific data structures and
algorithms in such models includes methods for database algorithms [12] and hash tables [19].

2 Preliminaries

In our house numbering data structures, we make use of instances of file maintenance data
structures. The following lemma highlights the features that our algorithms leverage. Here,
a file-maintenance data structure corresponds to an array, where placing an element in the
ith slot in the array corresponds to assigning a label of i to the element.

I Lemma 4. For any capacity η, there exists a file maintenance data structure with the
following properties:

The data structure assigns to each element a slot in the range [1, 4η]. Slots are such that
a is before b if and only if in the total order a’s slot is before b’s slot.
If the data structure has at most η elements then it can be split into two data structures
with each element being moved at most once.
Starting from an empty data structure, or a data structure that is the output of a split, as
long as the number of elements in the structure does not exceed η, the amortized number
of elements that are moved to a new slot per insertion is O(log2 η).

Proof. A data structure by Itai et al. satisfies these conditions [22]. More detail is given in
the full version of the paper. J

Using the notation of the statement of Lemma 4, a file maintenance data structure f is
characterized by a capacity (i.e., η), a slot range (i.e., [1, 4η]), and an amortized moving
cost cost(η) (i.e., O(log2 η)), which are all static. The capacity specifies how many elements
can be inserted while still maintaining the cost(η) bound. In addition, we define the usage
of f , denoted usage(f), to be the number of elements currently inside f .
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3 A Generic House Numbering Data Structure

We describe our data structure in terms of several variables, namely κ1, κ2, κ3, π1, and π2.
These will allow us to balance various overheads in the data structure and shall be fixed
in the analysis. Additionally, our house numbering data structure is parameterized by a
value γ ≥ 2, which controls a tradeoff between the label lengths and the number of relabels
performed. Setting γ to a constant attains the 〈O(log2 n), O(logn)〉 data structure. When
considering a data structure for flash memory, the data structure itself, in addition to the
actual list, should reside in scratch space. We ignore this issue in the current section but
address it in the full version of the paper.

The tree. Our house-numbering structure is a perfect rooted (4κ1γ + 1)-ary tree T . Each
internal node u in the tree maintains an instance fu of a κ1γ-capacity file-maintenance data
structure (à la Lemma 4) and the leaves of the tree are associated with space for a single
element. The leaves store the actual elements e in the tree, but leaves may be empty. Each
element e also maintains a relabel counter c(e).

The internal nodes store (conceptual) copies of elements, which we call representatives,
that have been promoted to a higher level in the tree. We refer to all the copies of a particular
element e as the representatives e. Representatives are analogous to duplicate keys in
internal nodes of a B+ tree, with each non-empty node containing exactly one representative
that has been promoted to the parent node.

Each file-maintenance data structure fu assigns slots in the range [1, 4κ1γ] to the repre-
sentatives in node u. Equivalently, the file-maintenance structure specifies how to store the
representatives in a size-κ1γ array, starting from slot 1. We use the 0th slot in the array for a
special dummy representative d−u , which corresponds to the only representative in node
u that has also been promoted to the parent. (As such, d−u is a representative of the leftmost
left element in u’s subtree.) Note that since the slot storing the dummy representative is
not part of the file-maintenance structure fu, the dummy representative never moves from
slot 0. The i-th slot in fu corresponds to the i-th child of u in an inorder tree walk. For
representative r in fu let s(r) denote the slot in fu that is assigned to r.

Without yet worrying about precisely how elements are labelled, we state a property
about how they must appear in T . Naturally, the order property constrains the way we label
elements.

I 1 (Order Property). An inorder traversal of T encounters the elements in their house
numbering order.

We use Tu to denote the subtree rooted at node u. Let v be the parent of u in T . Since
u is represented as a slot s in the slot range of fv, we will abuse notation and sometimes
denote Tu by Ts. A subtree is empty if it contains no elements.

The labels. The label for an element e, denoted `T (e), is based on the root-to-leaf path
down to the leaf node containing e. In particular, labels are base-(4κ1γ + 1) numbers with a
number of digits equal to the height of the tree. Consider the path u1, u2, . . . , uHT+1 down
to the leaf containing e, where u1 is the root, uHT+1 is the leaf containing e, and HT is
the height of T . For 1 ≤ i ≤ HT let si denote the slot of ui+1 in fui . Then e’s label is the
concatenation of digits s1, s2, . . . , sHT . An example of determining the labels of elements is
depicted in Figure 1. The label of each element uses dlog(4κ1γ + 1)e bits per level of T for a
total of HT dlog(4κ1γ + 1)e bits.

Notice that by construction and the Order Property, the labels of elements respect the
order of the elements in the house numbering.

ESA 2017
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d−
0 1 2 3 4 `T ( ) = 0 · 51 + 1 · 50 = 1

`T ( ) = 2 · 51 + 2 · 50 = 12

`T ( ) = 2 · 51 + 0 · 50 = 10`T ( ) = 1 · 51 + 0 · 50 = 5

`T ( ) = 4 · 51 + 1 · 50 = 21`T ( ) = 4 · 51 + 0 · 50 = 20

−∞

−∞

Figure 1 This tree illustrates how elements are labelled based on their representative’s node’s
file maintenance labels and the node labels of their parents. Empty leaf nodes are omitted and we
note that the root node is violating the Capacity Property.

Relabeling and subtrees. To maintain the Order Property, whenever a representative r is
moved from slot s to slot s′ in fu, all of the elements and file-maintenance representatives in
Ts are moved to the same exact location, but in Ts′ . The following property will guarantee
that this movement does not violate the Order Property.

I 2 (Representative Property). The representatives for an element e induce a path from
the parent of the leaf containing e to the highest representative. Each representative of e
except for the highest one is the dummy representative of its corresponding node.

Following the Representative Property, we abuse notation and refer to the highest repre-
sentative of an element e as the canonical representative of e, and denote this representative
by r(e).

3.1 Insertions
We now discuss the implementation of the insert(x, a) operation. Let u be the parent of the
leaf node containing a, and assume for now that usage(fu) < κ1γ. A new representative r
of x is inserted into fu immediately after the representative representing a in fu (possibly
causing elements in fu to change slots). Because this insertion is into a file maintenance data
structure, this insertion may cause some movement of other elements. Element x is placed
into the leaf node corresponding to the slot assigned to r in fu.

The insertion respects the Order Property, so x receives a valid label. The insertion
causes some number of other representatives in fu to be relabelled and also increases the
usage of fu. Eventually fu will reach capacity. The capacity of the file maintenance instances
needs to be respected and so when fu reaches capacity we move around representatives in
T to create room (thereby guaranteeing again that fu is below capacity before the next
insertion). This is captured by the following property.

I 3 (Capacity Property). For any internal node u in T , usage(fu) < κ1γ.

In order to maintain the Capacity Property, the data structure employs promoting
canonical representatives to higher nodes in T . The promotion procedure is detailed in
Section 3.2.

Relabel counters. The relabel counter of an element is incremented whenever the label of
the element is changed. To prevent any one element from being relabelled too many times,
we enforce a bound on the relabel counter. Recall that the cost(η) function is defined in
Section 2.
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Algorithm 1 Insert x into the house numbering data structure immediately after element a.
1: function insert(x, a)
2: u← parent of a’s leaf
3: insert a representative of x into fu
4: move any relabeled elements to their new leaves
5: place x into the corresponding leaf of u
6: repeatedly fix property violations using promote()
7: end function

Promoting the full node’s median element

Figure 2 The blue median representative of the full file maintenance data structure is promoted
dividing the subtree into two parts.

I 4. Counter Property: For any element e, c(e) < κ2 cost(κ1γ).

In order to enforce the Counter Property, whenever the counter of element e reaches its
threshold, r(e) is moved one level higher in the tree by a promotion operation, which we
describe shortly, and sets c(e) = 0.

Notice that moving a representative to a new slot higher up in T will tend to relabel
more elements compared to moving a representative to a new slot in a lower node in T .
This presents a subtle challenge. Consider two representatives in fu where u is relatively
high up in T , such that one representative r has every file maintenance instance in Ts(r)
half full while the other representative r′ has every file maintenance instance in Ts(r′) just
below capacity. This implies that the number of elements contained in the two subtrees
differ exponentially in the height of the subtrees. The consequence of this imbalance is that
insertions of elements into the lighter subtree Ts(r) can cause frequent promotions into fu,
each time causing r′ to move to a new slot in fu. When r′ moves to a new slot, all of the
elements in Ts(r′) must be relabeled. This imbalance creates some difficulties in keeping a
tab on the complexities of the data structure. To overcome these difficulties, we enforce
a requirement on the data structure to have the following property, which helps ensure a
promotion does not relabel too many elements that are too high in the tree by restricting the
weight of any subtree. For a representative r in fu where u has height h in T , let w(r) = γh.

I 5. Balance Property: For any node u,
∑

node v∈Tu
∑

canonical representative r∈fv w(r) <
κ3γ

height(u).
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Promote to the top node

Figure 3 The black representative’s subtree passed the threshold of the Balance Property and the
weighted median representative, shown in green, is promoted. The subtrees of representatives less
and greater than the median are copied and possibly shifted if they need a new root representative.
Empty subtrees are omitted.

Algorithm 2 Promote an element x into a node u
1: function promote(x, u)
2: v ← node containing the canonical representative for x
3: remove x from fv
4: a← predecessor of x in fu
5: insert a new canonical representative of x after a in fu
6: move the entire subtree of any relabeled elements
7: split the subtree below a’s canonical representative into:
8: - T1 a subtree of elements < x and >= a

9: - T2 a subtree of elements >= x

10: place T1 below a’s canonical representative
11: place T2 below x’s canonical representative
12: end function

3.2 Promotions
For element e, the promotion of r = r(e) from fu to fv, where v is a proper ancestor of u,
is performed as follows. Let r̂ be the representative in the slot in fv that contains e in its
subtree:
1. Insert r′, which is a new representative of e, into fv immediately after r̂ in the order fv

is maintaining (this may cause some elements in fu to change their slots).
2. Any element in Ts(r̂) that is after e (inclusive) and its representatives in Ts(r̂) are moved

into identical locations in the subtree of Ts(r′).
3. The previous step partitions some file maintenance instances into two pieces. Each

such instance respaces the representatives it contains according to the split operation of
Lemma 4. Notice that if the dummy representative is part of one piece, the data structure
adds a new dummy representative in the other piece. This new dummy representative is
a representative of e.

Examples of promotions are shown in Figures 2 and 3.
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I Lemma 5. Promotions preserve the Order and Representative Properties.

Proof. Before the promotion, the Order Property held and so an inorder traversal encountered
the elements with label less than `T (e), then e, and then the elements with label greater
than `T (e). After the promotion, the inorder traversal will traverse Ts(r̂) which contains the
elements less than e and then Ts(r′) which contains e followed by the elements greater than
e. The two new subtrees preserved the original inorder traversal of their contained elements.
So the inorder traversal before and after the promotion traverses the elements in T in the
exact same order and the Order Property holds. The last step of a promotion ensures that
the representatives of e still behave properly with respect to the Representative Property.
Since we split along the path of elements less than and greater than e, no other path of
representatives was altered and the Representative Property still holds. J

The only operations we perform on T are insertions of elements at leaves and promotions.
Both of these preserve the Order and Representative Properties. Violations of the Capacity,
Balance, and Counter Properties are fixed by promoting certain representatives. When a
node u with parent v violates the Capacity Property, promote the median representative in
fu (which must be a canonical representative) into fv. When the subtree of s(r) becomes
too heavy and violates the Balance Property, promote the weighted median canonical
representative in the subtree of s(r) into the node that contains r. When c(e) passes the
threshold of the Counter Property, promote the canonical representative of e into the parent
of its current node, and reset c(e) to be zero. Figure 3 shows a promotion due to a violation
of the Balance Property and Figure 2 shows a promotion due to a violation of the Capacity
Property.

Promoting a representative may introduce new property violations. For example, suppose
fu for some internal node u contains κ1γ representatives and its parent v has exactly κ1γ− 1
representatives. Promoting the median representative from fu to fv will cause the fv to
violate the Capacity Property.

The very rough pseudocode in Algorithms 1 and 2 describes the high level steps for
insertions and promotions. We describe exactly how violations are processed next.

Property violations. Since several properties may be violated at the same time, we employ
the following prioritization for fixing these violations. We process the property violations
by alternating between processing all violations of the Capacity and Balance Properties
in a highest first fashion and then processing a single violation of the Counter Property.
Algorithm 3 shows this procedure in pseudocode.

It is not yet clear that this processing terminates. We address this in Section 4. Whenever
the initial insertion or a promotion causes an element to be relabeled, we increment the
corresponding relabel counter.

During the processing of violations, a given relabel counter may be increased well past
the bound in the Counter Property. But our potential argument only allows us to charge for
relabelings that occur when the counter is at or below the threshold. To keep from relabeling
the corresponding element each time an above-threshold counter is pushed even higher during
a single (recursive) house numbering insertion, we perform the invariant violation processing
on a logical copy of the data structure and only relabel elements with the final label. While
a relabel counter may be incremented many times, any element is only relabelled at most
once per insert operation.
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Algorithm 3 Process the violations in the tree
1: function process_violations
2: while there is a violated property do
3: while there is a violation of the capacity or balance properties do
4: process the highest capacity or balance violation
5: (capacity violations have priority)
6: end while
7: if there is a violation of the counter property then
8: process one violation of the counter property
9: end if

10: end while
11: end function

4 Bounding the Height and Complexities

LetH(n) denote an upper bound on the maximum possible height of a canonical representative
in our house-numbering data structure after n elements are inserted. (We shall bound H(n)
as a function of γ in Lemma 9.) Then we can directly bound the length of labels at
H(n) · dlog(4κ1γ + 1)e bits. In particular, if κ1 and γ are constants, we will prove that
H(n) = O(logn) and hence the labels use O(logn) bits. Moreover, since we guarantee the
Counter Property, each element e can be relabeled at most κ2 cost(κ1γ) times before r(e)
is moved up a level. So the maximum number of times that an element is relabeled is
O(κ2H(n)) = O(κ2 logn), assuming κ1γ is a constant and H(n) = O(logn).

The intuition behind our height analysis is as follows. Each insertion causes cost(κ1γ)
representatives to be relabeled. Thus we need roughly κ2 insertions to trigger enough relabels
that a single representative could be promoted by the Counter Property. In other words, at
most a 1/κ2 fraction of representatives are promoted due to insertions of elements and the
Counter Property. This argument extends up the tree; promotions into height-h nodes can
cause at most a 1/κ2 fraction of representatives to be promoted from height h. If this were
the only effect, we would see (1/κ2)h representatives promoted to height h.

This challenge turns out to be even more complex, since each promotion into a height-h
node u also causes the elements in subtrees of any locally relabeled representatives in u

to be completely relabeled. The Balance Property helps us to bound the total weight of
representatives in these subtrees by κ3γ

h. By increasing κ2 enough, we effectively amortize
the high number of relabelings due to moving a subtree against the geometrically decreasing
number of promotions to that height, i.e., about κ3γ

h/κh2 per insertion. Since there are some
“feedback” effects that arise from the interaction of fixing property violations, the analysis
must proceed with care.

Before we turn to bounding the height, we prove a useful lemma.

I Lemma 6. If all of the properties hold before an insertion, the processing of the resulting
violations will never promote a representative into a node that:

violates the Capacity Property or
contains a representative whose subtree violates the Balance Property.

Proof. Call a promotion into such a node an invalid promotion. We claim that in addition to
never performing an invalid promotion, the violation processing maintains the property that
violations of the Capacity and Balance Properties each occur at most once in each level of T .
We call this the Once Per Level Property. When a representative is inserted or promoted
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into u: the usage of u is increased, the weight of every subtree of every representative on the
path to the root is increased, and the relabel counters of any relabeled elements are increased.
So an insertion or promotion will only introduce violations of the Capacity Property at u
and violations of the Balance Property along the path from u to the root (and some other
violations of the Counter Property). For example in Figures 2 and 3, each promotion can
only create Counter Property violations lower in the subtree while it may introduce Capacity
and Balance Property violations at the root. Hence the initial insertion or promotion from
processing a Counter Property violation in a tree with no violations of the Capacity or
Balance Properties is valid and will maintain the Once Per Level Property.

When the Once Per Level Property holds, there is some highest violation of each type.
There is a highest node violating the Capacity Property and a highest node containing a
representative violating the Balance Property. Let u be the higher of these two nodes. If
both nodes have equal height, then let u be the highest node violating the Capacity Property.
We consider the cases when u violates the Capacity Property or when u does not violate the
Capacity Property and violates the Balance Property.

In the first case, fu violates the Capacity Property by containing κ1γ representatives.
Because the parent of u is not violating either of the two properties, promoting the median of
fu is valid. That promotion may introduce violations at the parent of u or higher, but they
will only be in levels of the tree where there were previously no violations. The violations
that were either at u or below will be unaffected by the promotion (except for the one being
processed). Therefore the Once Per Level Property still holds after the violation is processed.

In the second case, fu does not violate the Capacity Property but it does have one
representative violating the Balance Property. Because no other representative in fu violates
the Balance Property due to the Once Per Level Property, processing the violation is valid.
By promoting the weighted median descendant into u, only fu can be newly in violation of
the Capacity Property and only representatives in ancestors of u can be newly in violation
of the Balance Property. Both of these types of new violations are introduced at levels that
did not contain a violation of that type before. The splitting of the subtree below into two
pieces can only eliminate violations in the levels below u. So after validly processing this
violation, the Once Per Level Property holds.

In either case, processing a violation does not make an invalid promotion and maintains
the Once Per Level Property. Thus, the invariant processing never promotes a representative
into a node violating the Capacity Property or containing a representative whose subtree
violates the Balance Property. J

Potential argument. To formalize the intuition outlined in the beginning of this section,
we analyze our data structure using the following three potential functions, each of which
corresponds to one of our properties:

Φfmds = π1
∑

internal nodes u max
(
2γheight(u) · usage(fu)− κ1γ

height(u)+1, 0
)

Φcounters =
∑
e w(r(e))c(e)

Φtree = π2
∑
u max

(
2
∑

node v∈T(u)
∑

canonical representative r∈fv w(r)− κ3γ
height(u), 0

)
The total potential, Φ(T ), is the sum of these three potential functions, that is Φ =

Φfmds+ Φcounters+ Φtree. Each potential function corresponds to one of our three properties
and guarantees that when a property is violated we have sufficient potential to “pay” for the
promotion.

The next few lemmas show how the potential functions work with the properties. The
change in Φ due to a processing a violation can be separated into the two phases of a
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promotion. First, there is the decrease in potential when the promoted element’s relabel
counter is reset and the node containing the canonical representative of the element is split.
Second, there is the increase in potential due to the insertion of the canonical representative of
the element into a higher up node which results in relabeling many other elements, increasing
that node’s usage, and increasing the weight of every subtree containing the higher up node.
Lemma 7 gives an upper bound on the increase in potential due to either an insertion or the
second part of a promotion. Lemma 8 gives a lower bound on the decrease in potential due
to the first part of a promotion. In conjunction these two Lemmas show that as long as the
maximum height H(n) is small, the lower bound on the decrease in potential is greater than
the upper bound on the increase in potential. So a promotion results in a net decrease in
potential and only insertions of new elements at the leaves increase the potential. Finally
Lemma 9 contrasts the amount of potential gained from these insertions with the amount of
potential needed to promote one representative to a height of logγ n. Because the former is
strictly smaller, the height of the tree must be H(n) < logγ n.

I Lemma 7. During a promotion, the insertion of a representative into a file maintenance
data structure at height h increases Φ(T ) by at most (2π1 + κ3 cost(κ1γ) + 2π2 height(T ))γh.
Moreover, the insertion of an element increases Φ(T ) by at most 2π1 + κ3 cost(κ1γ) +
2π2 height(T ).

Proof. Placing a canonical representative into a node u at height h causes the potential
functions to change as follows:

∆(Φfmds) ≤ 2π1γ
h, because fu had its size increased by 1

∆(Φcounters) ≤ κ3γ
h cost(κ1γ), because cost(κ1γ) representatives in fu are relabeled,

each causing subtrees with total weight at most κ3γ
h to be relabeled.

∆(Φtree) ≤ 2π2 height(T )γh, because each representative on the path to the root has the
potential of its subtree increased by at most γh

The bound on ∆(Φcounters) is in an amortized sense and is due to Lemma 6. This is
because by Lemma 6 we never promote a representative into a node that is violating the
Capacity Property, so there are at most cost(κ1γ) relabels, or into a node violating the
Balance Property, so incrementing the relabel counters of each subtree costs at most κ3γ

h

potential.
In total these sum up to (2π1 + κ3 cost(κ1γ) + 2π2 height(T ))γh which upper bounds the

increase in all three potential functions. J

I Lemma 8. If height(T ) ≤ H(n), there exist settings of πi’s and κi’s such that promoting
a representative to fix a violation does not increase the total potential and κ2 = O(γH(n)).

Proof. Depending on which violation caused the promotion, we must analyze the de-
crease in potential differently to account for the potential increase from Lemma 7 of
(2π1 + κ3 cost(κ1γ) + 2π2H(n)) γh where h is again the height of the node the promoted
element is moved into.

If a Capacity Property violation was processed, then Φfmds decreased by at least π1κ1γ
h.

If a Counter Property violation was processed, then Φcounters decreased by at least
γh−1κ2 cost(κ1γ) due to the potential from c(e).
If a Balance Property violation was processed, then Φtree decreased by more than π2κ3γ

h

because of the subtree containing r.
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To ensure the potential available is always at least the potential cost π1κ1, κ2 cost(κ1γ)
γ ,

and π2κ3 must all be greater than 2π1 + κ3 cost(κ1γ) + 2π2H(n). Analyzing the system of
inequalities leads to setting κ1 = 3, κ2 = 72γH(n), κ3 = 12H(n), π1 = 24 cost(3γ)H(n), and
π2 = 6 cost(3γ).

Plugging these values back into the original formula, the potential increases by at most

(2(24 cost(3γ)H(n)) + (12H(n)) cost(3γ) + 2(6 cost(3γ))H(n))γh = 72 cost(3γ)H(n)γh.

On the other hand, the potential decrease is at least
(24 cost(3γ)H(n))(3)γh in the case of a Capacity Property violation,
γh−1(72γH(n)) cost(3γ) in the case of a Counter Property violation, or
(6 cost(3γ))(12H(n))γh in the case of a Balance Property violation.

In all three cases, the lower bound of the decrease in potential is equal to 72 cost(3γ)γhH(n)
and therefore it is at least the increase in potential due to a promotion. J

I Lemma 9. For the same setting of πi’s and κi’s as Lemma 8, and γ ≤ n, after n insertions
there are no promotions to height above logγ n.

Proof. Initially the tree is empty and has height zero. By Lemma 8, setting logγ n = H(n),
until height(T ) exceeds H(n) promoting a representative does not increase the potential.
Thus, while the height bound holds the only mechanism for increasing the potential is by
inserting a new element. By Lemma 7, the increase in potential from inserting an element is
at most 72 cost(3γ) logγ n and so after n insertions, the potential of the entire data structure
is at most 72 cost(3γ)n logn.

To complete the proof, we observe that a representative can only be promoted to height h if
the total potential in the data structure is at least 72 cost(3γ)γh logγ n. Specifically, the proof
of Lemma 8 shows that the potential has to decrease by at least this amount when performing
the promotion, so the potential has to exist before the promotion. In order to reach a height
of at least logγ n+ 1, we would need at least 72 cost(3γ)γlogγ n+1 logγ n > 72 cost(3γ)n logn
potential. Thus, a height logγ n structure cannot have enough potential. J

I Theorem 10. There exists a house numbering data structure with complexity 〈O(γ log2 n),
logγ n · dlog(12γ + 1)e〉.

Proof. By Lemma 9, after n insertions there are no promotions into nodes at height higher
than logγ n, so a tree of this height suffices. Thus, each label uses logγ n “digits”, where
each digit uses dlog(12γ + 1)e bits, for a total of logγ n · dlog(12γ + 1)e bits per label. For
the relabel bound, by the Counter Property, each canonical representative is promoted at
most κ2 cost(3γ) = O(γH(n)) cost(3γ) = O(γ logγ n · log2 γ) times. Summing on all possible
levels and applying Lemma 4, each element is only relabeled O(γ log2 n) times. J

Theorem 1 is a special case of Theorem 10 obtained by setting γ = 2.

4.1 Achieving 〈O(nε), logn+ O(1/ε)〉
Proof of Theorem 3. Setting γ = nε in Theorem 10, the number of bits used is 1/εdlog(12nε+
1)e = logn+O(1/ε). The maximum relabel bound becomes O(nε log2(nε)) = O(nε log2 n).
That is when γ = nε, it is an 〈O(nε log2 n), logn+O(1/ε)〉 house numbering data structure.
This bound is improved to 〈O(nε), logn + O(1/ε)〉 by using the same solution with some
constant ε′ < ε. J

ESA 2017



33:14 The Online House Numbering Problem: Min-Max Online List Labeling

5 Conclusion

The house numbering problem is an interesting variant of the very well studied file maintenance
and online list labelling problems. It poses some unique challenges that previous techniques
do not solve. Our two data structures are able to come near optimal for the problem, but an
〈O(logn), O(logn)〉 house numbering data structure remains as an open problem.
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