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Abstract
Computing a maximum (acyclic) agreement forest (M(A)AF) of a pair of phylogenetic trees is
known to be fixed-parameter tractable; the two main techniques are kernelization and depth-
bounded search. In theory, kernelization-based algorithms for this problem are not competitive,
but they perform remarkably well in practice. We shed light on why this is the case. Our results
show that, probably unsurprisingly, the kernel is often much smaller in practice than the theoret-
ical worst case, but not small enough to fully explain the good performance of these algorithms.
The key to performance is cluster partitioning, a technique used in almost all fast M(A)AF al-
gorithms. In theory, cluster partitioning does not help: some instances are highly clusterable,
others not at all. However, our experiments show that cluster partitioning leads to substantial
performance improvements for kernelization-based M(A)AF algorithms. In contrast, kernelizing
the individual clusters before solving them using exponential search yields only very modest per-
formance improvements or even hurts performance; for the vast majority of inputs, kernelization
leads to no reduction in the maximal cluster size at all. The choice of the algorithm applied
to solve individual clusters also significantly impacts performance, even though our limited ex-
periment to evaluate this produced no clear winner; depth-bounded search, exponential search
interleaved with kernelization, and an ILP-based algorithm all achieved competitive performance.
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1 Introduction

Phylogenetic trees are the classical model of evolution. All extant taxa are assumed to descend
from the same common ancestor and diverge in a tree-like fashion through speciation events.
While this is still the accepted model for the evolution of individual genes, the evolution
particularly of microbial organisms and plants is complicated by reticulation events, such as
lateral gene transfer (LGT) and hybridization, which are known to play an important role, for
example, in the development of antibiotic resistance of bacteria [20]. LGT allows an organism
to acquire genetic material from an unrelated species in the same habitat. Hybridization
allows an organism to inherit genetic material from more than one ancestor. Different genes
shared by a group of taxa then have different tree-like evolutionary histories, which we
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call gene trees. The differences between these trees provide the basis for discovering likely
reticulation events in the evolution of this set of taxa.

A single LGT has the effect that, in the tree representing the transferred gene, the
descendants of the recipient taxon appear genetically most similar to the descendants of the
donor taxon, while all other relationships between taxa are preserved. Thus, the “true tree”
can be transformed into the gene tree for the transferred gene by cutting off a subtree and
grafting it onto the donor edge, a subtree prune-and-regraft (SPR) operation [11]. A series of
LGTs translates into a sequence of SPR operations that transforms one input tree into the
other. A set of hybridizations yields a network that displays each gene tree, that is, each
tree can be obtained from the network by deleting edges and suppressing degree-2 nodes [2].

Reticulation events are assumed to be rare. Thus, it is common to assume that the smallest
set of reticulations consistent with the input trees is the most likely scenario, and we aim to
construct a hybridization network of the input trees with as few hybridizations as possible
(its hybridization number) or a minimum-length sequence of SPR operations transforming one
input tree into the other. The length of this sequence is the SPR distance between the two
trees. Both problems are NP-hard [5, 7] and fixed-parameter tractable [7, 8, 14, 15, 18] when
parameterized by the hybridization number or SPR distance. Despite these FPT results,
solving either problem for more than two trees is challenging in practice. (It is unclear how to
even extend the SPR distance to more than two trees. SPR supertrees [27] offer one possible
approach.) For two input trees, very fast solutions exist [16, 17, 22, 23, 24, 25, 26]. Almost
all of them use kernelization or depth-bounded search and compute the SPR distance or
hybridization number via maximum (acyclic) agreement forests (M(A)AFs). The best known
kernel sizes for MAF and MAAF of binary trees are 28k [7] and 14k [8], where k is the SPR
distance or hybridization number. Combined with an O(3nn)-time M(A)AF algorithm [1], a
MAF or MAAF can thus be found in O(328kn) or O(314kn) time. For multifurcating trees, the
best known kernel sizes are 28k and 89k [18], and the exact M(A)AF algorithm takes O(4nn)
time. Thus, a MAF or MAAF can be found in O(428kn) or O(489kn) time. In contrast,
the best depth-bounded search algorithms for M(A)AF take between O(2kn) and O(5.08kn)
time [16, 17, 23, 24, 25, 26] depending on whether a MAF or MAAF is to be computed and
whether the input trees are binary or multifurcating. This leaves an astronomical gap between
the theoretical running times of kernelization-based and depth-bounded search algorithms
for finding M(A)AFs of all but the simplest inputs. Yet, in practice, kernelization-based
algorithms perform remarkably well [1, 9].

In this paper, we try to answer two questions: (1) Why do kernelization-based algorithms
perform much better in practice than predicted in theory? (2) Which is the “ultimate”
algorithm for computing agreement forests of two trees? Part of the answer to the first question
is that the kernel is often much smaller than predicted, less than 4k. This reduces the difference
between the running times of kernelization-based and depth-bounded search algorithms
significantly but still leaves a gap of more than 8k even after porting the improvements
from the depth-bounded search algorithms back to exponential search. This gap is massive,
since values of k ≥ 50 are not uncommon. The key to fast running times for almost all
existing M(A)AF algorithms is cluster partitioning [3, 19], which allows us to break many
non-trivial instances into smaller pieces that can be solved independently and whose total
SPR distance or hybridization number (roughly) equals the SPR distance or hybridization
number of the original input. This has the potential to lead to an exponential speed-up
and often does in practice. We verified experimentally that cluster partitioning is the real
reason why kernelization-based M(A)AF algorithms are fast: it significantly improves the
performance of kernelization-based M(A)AF algorithms (and also of depth-bounded search
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algorithms [27]), while kernelization leads to only modest performance gains of algorithms
using only cluster partitioning and exponential search and often even hurts performance.
A recent theoretical result [6] shows that agreement-based phylogenetic distances are fixed-
parameter tractable in the level of the optimal hybridization network, which is in fact exactly
the maximum hybridization number of the clusters in a cluster partition. This sheds light on
the effectiveness of cluster partitioning when it is applicable. Our results suggest that many
real-world inputs are highly clusterable, that is, their optimal networks have small level.
To answer question (2), we investigated which algorithm, used to solve the subproblems
in a cluster partition, results in the fastest running time overall. In our somewhat limited
experiments for this question, three winners emerged: depth-bounded search, integer linear
programming, and interleaving of kernelization and exponential search.

Section 2 formally defines SPR distance, hybridization number, agreement forests, and
related concepts. Section 3 gives an overview of the techniques used to compute agreement
forests. Section 4 presents our experimental results. Section 5 offers conclusions.

2 Subtree Prune-and-Regraft, Hybridization, and Agreement Forests

A (rooted phylogenetic) X-tree is a tree T with a root labelled ρ and with |X| leaves labelled
bijectively with the elements in X; ρ has degree 1; all internal nodes have at least two
children. Edges are directed away from the root. If all internal nodes have out-degree exactly
two, T is binary; otherwise it is multifurcating. T is a resolution of another tree S if S can
be obtained from T by contracting edges. Figures 1a,c illustrate these definitions.

A (rooted phylogenetic) X-network is a directed acyclic graph (DAG) with a single source
ρ and |X| sinks labelled bijectively with the elements in X. The nodes with in-degree
at least two are called hybrid nodes. An X-network N displays an X-tree T if T can be
obtained from N by deleting edges and suppressing unlabelled out-degree-1 nodes. Since we
always suppress unlabelled out-degree-1 nodes, we do not state this explicitly from here on.
N is a hybridization network of a pair of X-trees (S, T ) if it displays both S and T . The
hybridization number of N is the number of edges we need to delete to obtain a tree. The
hybridization number hyb(S, T ) of a pair of X-trees (S, T ) is the minimum hybridization
number of all hybridization networks of (S, T ). Figure 1e illustrates these definitions.

A subtree prune-and-regraft (SPR) operation on a binary X-tree T deletes the parent
edge of some node v, splits some edge by introducing a new node u, and makes v a child
of u. The SPR distance dSPR(S, T ) between two binary X-trees S and T is the minimum
number of SPR operations needed to transform S into T ; see Figure 1d.

A (rooted binary) X-forest is a forest F that can be obtained from a (binary) X-tree by
deleting edges. An X-forest F1 refines another X-forest F2 if F1 can be obtained from F2
by deleting edges. An X-forest F is an agreement forest (AF) of a pair of binary X-forests
(FS , FT ) if it refines both FS and FT . A maximum agreement forest (MAF) of (FS , FT ) is an
AF of (FS , FT ) with the minimum number of components; see Figure 1f. For a component
C of a forest F that refines an X-tree T , let LCAT (C) be the lowest common ancestor in
T of all leaves of C. A component C1 of F is an ancestor of another component C2 of F
in T if LCAT (C1) is an ancestor of LCAT (C2). The ancestry graph GT (F ) of F w.r.t. T
has the components of F as its nodes and contains a directed edge (C1, C2) if the ancestors
of C1 are exactly the proper ancestors of C2. For an AF F of a pair of X-trees (S, T ),
let GS,T (F ) = GS(F ) ∪ GT (F ). We call F an acyclic agreement forest (AAF) of (S, T ) if
GS,T (F ) is a DAG. A maximum acyclic agreement forest (MAAF) of (S, T ) is an AAF of
(S, T ) with the minimum number of components. Figures 1f–i illustrate these definitions.

ESA 2017
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Figure 1 (a,b) Two binary X-trees S and T . (c) A multifurcating X-tree that has S as a
resolution. (d) A sequence of SPR operations that turns S into T . (e) A hybridization network of
(S, T ). (f) A MAF of (S, T ) that can be obtained by deleting the thin red (dashed or solid) edges in
S and T . These are exactly the parent edges of the subtrees of S that are moved by SPR operations
in (d). This is not an AAF, since its ancestry graph shown in (g) has a cycle. (h) A MAAF of
(S, T ) that can be obtained by deleting the dotted edges in S and T . Its ancestry graph shown in (i)
is acyclic. We can also obtain this MAAF by deleting the parent edges of all hybrid nodes of the
network in (e), which in turn correspond to the dotted edges in S and T .

Let m(S, T ) be the size (number of components) of a MAF of (S, T ) and let m̃(S, T ) be
the size of a MAAF of (S, T ). As shown in [2, 7], we have m(S, T ) = 1 + dSPR(S, T ) and
m̃(S, T ) = 1 + hyb(S, T ). In fact, it is easy to convert back and forth between any (A)AF and
a corresponding SPR sequence or hybridization network, as illustrated in Figures 1d,e,f,h.

Multifurcating trees usually arise due to lack of confidence in the order of speciation
events derived using statistical inference methods. In order to avoid the inference of spurious
reticulation events necessary only to reconcile differences in the ordering of these events in
different gene trees, low-confidence edges are contracted, resulting in nodes with more than
two children. Given this source of multifurcations, it is common to define the SPR distance or
hybridization number of two multifurcating trees S and T to be the minimum SPR distance
or hybridization number of all pairs of binary resolutions of S and T ; a M(A)AF of (S, T ) is
the smallest M(A)AF over all pairs of binary resolutions of S and T .

3 Techniques for Computing Agreement Forests

Almost every existing algorithm for computing a M(A)AF of two trees uses a combination
of four techniques: kernelization, exponential search, depth-bounded search, and cluster
partitioning. In this section, we review these techniques. We discuss only binary trees here.
The techniques for multifurcating trees are similar albeit more complicated.
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Figure 2 Kernelization rules for binary trees.

3.1 Kernelization

A pendant subtree of a binary X-tree T is a subtree induced by the descendants of a node in T .
An m-chain of T is a sequence of leaves 〈`1, `2, . . . , `m〉 of T whose parents p1, p2, . . . , pm

form a directed path from p1 to pm in T . The kernelization algorithm for M(A)AF of binary
trees uses two reduction rules, with separate chain reductions for MAF and MAAF:
Subtree reduction: Let P be a maximal common pendant subtree of S and T . Remove all

nodes of P except the root from both S and T . This turns the root of P into a common
leaf of S and T . Give both these leaves the same label, distinct from all labels already
in X. See Figure 2a. This preserves m(S, T ) and m̃(S, T ).

Chain reduction (MAF): Replace every maximal common m-chain of S and T with m > 3
with a 3-chain 〈a, b, c〉 in both trees, where a, b, c are three new leaves currently not in X.
See Figure 2b. This preserves m(S, T ).

Chain reduction (MAAF): Replace every maximal common m-chain of S and T with m > 2
with a 2-chain 〈a, b〉. This does not preserve m̃(S, T ), but m̃(S, T ) (along with a corres-
ponding MAAF) can still be computed from the weight w(F ′) of an appropriate AAF F ′

of the kernel (S′, T ′). As a basis for defining w(F ′) below, add {a, b} to a collection W
of subsets of X and define w({a, b}) = m− 1. See Figure 2c.

Bordewich and Semple [7] proved that subtree reduction and MAF chain reduction preserve
m(S, T ) and produce a kernel (S′, T ′) of size at most 28m(S, T ). In the case of MAAF,
a legitimate AAF F ′ of the kernel (S′, T ′) is an AAF where, for every pair {a, b} ∈ W ,
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either a and b are singletons (i.e., are each in their own component) or belong to the same
component. Let Ws ⊆W be the subset of pairs {a, b} ∈W such that a and b are singletons
in F ′ and let w(F ′) = |F ′| +

∑
{a,b}∈Ws

w({a, b}). Bordewich and Semple [8] proved that
subtree reduction and MAAF chain reduction produce a kernel (S′, T ′) of size at most
14m̃(S, T ), every legitimate AAF F ′ of (S′, T ′) corresponds to an AAF of (S, T ) of size
w(F ′), and one of these AAFs of (S, T ) is in fact a MAAF of (S, T ). Thus, it suffices to
find a minimum-weight legitimate AAF of (S′, T ′), which is easily done by augmenting the
exponential search algorithm in Section 3.2 so it ignores non-legitimate AFs.

3.2 Exponential Search

The exponential search algorithm for finding a M(A)AF of (S, T ) [1] uses a recursive procedure
M(A)AF(FS , FT , F ), where FS refines S; FT refines T , F is an AF of (FS , FT ), and every
component of F is a pendant subtree of both FS and FT . MAF(FS , FT , F ) computes a MAF
of (FS , FT ). MAAF(FS , FT , F ) computes the smallest AAF of (S, T ) that refines FT and is
refined by F ; if no such AAF exists, MAAF(FS , FT , F ) reports failure. Thus, the top-level
invocation M(A)AF(S, T, FX), where FX has one singleton component per element in X,
finds a M(A)AF of (S, T ). Since M(A)AF(FS , FT , F ) treats components of F as indivisible
units, we describe the algorithm as if each of these components were replaced by a single leaf
in both FS and FT . M(A)AF(FS , FT , F ) first applies the following two rules:
Cherry reduction (MAF only): Let a and c be two sibling leaves of FS , a cherry. If a and

c are siblings also in T , then merge a and c, that is, contract them into their common
parent in both FS and FT , and replace them with a single node in F . See Figure 3a.
F remains an AF of (FS , FT ).

Singleton reduction: If FT has a singleton leaf that is not a singleton in FS , then cut its
parent edge in FS . F remains an AF of (FS , FT ). See Figure 3b.

Let F ′S , F ′T , and F ′ be the forests obtained once neither rule is applicable. If F ′ = F ′T (and
hence F ′ = F ′S), then F ′ is a MAF of (F ′S , F ′T ) and, after undoing all cherry reductions, of
(FS , FT ), so MAF(FS , FT , F ) returns F ′ in this case. Since MAAF(FS , FT , F ) does not apply
cherry reduction, we have F ′ = F and F ′T = FT in MAAF(FS , FT , F ). Thus, if F ′ = F ′T ,
F is the only forest that refines FT and is refined by F . MAAF(FS , FT , F ) checks whether
F is an AAF of (S, T ) and either returns F or reports failure. If F ′ 6= F ′T , then there
exists a cherry (a, c) in F ′S . If (a, c) is not a cherry of F ′T and w.l.o.g. a’s depth in FT is
no less than c’s, then a has a sibling b in F ′T that is not an ancestor of c and any M(A)AF
of (F ′S , F ′T ) is a M(A)AF of (F ′S , F ′T // {a}), (F ′S , F ′T // {b}) or (F ′S , F ′T // {c}), where F // V

is the forest obtained from F by cutting the parent edges of all nodes in V (see e.g. [1]).
See Figure 3c. Thus, M(A)AF(FS , FT , F ) makes three recursive calls M(A)AF(F ′S , F ′′T , F ′)
where F ′′T ∈ {F ′T // {a}, F ′T // {b}, F ′T // {c}}. If (a, c) is a cherry of F ′T , which is possible only
for MAAF(FS , FT , F ) because MAF(FS , FT , F ) applies cherry reduction, then any AAF F ′′

of (S, T ) that refines F ′T either refines FT // {a} or FT // {c} or (a, c) is a cherry of F ′′. Thus,
MAAF(FS , FT , F ) makes three recursive calls MAAF(F ′S , F ′′T , F ′′), where either F ′′ = F ′

and F ′′T = F ′T // {a} or F ′′T = F ′T // {c}, or F ′′T = F ′T and F ′′ is obtained from F ′ by applying
cherry reduction to (a, c). See Figure 3d. Since each invocation makes three recursive calls
and the recursion depth can be shown to be at most n, the running time is O(3nn).

Similar ideas give an O(4nn)-time algorithm for multifurcating trees (see [13, 25]). Faster
algorithms for both binary and multifurcating M(A)AF are possible, either by using dynamic
programming [12] or by porting some of the ideas from the currently fastest depth-bounded
search algorithms [23, 25, 26] back to exponential search.
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Figure 3 Reduction and branching rules in the exponential search algorithm for binary trees.

3.3 Depth-Bounded Search

The depth-bounded search algorithm for MAF is practically identical to the exponential
search algorithm. The invocation MAF(FS , FT , F, k) now takes an additional parameter
k and decides whether there exists an AF of (FS , FT ) of size at most k. If |FT | > k,
MAF(FS , FT , k) can immediately report failure, which limits the search depth to k because
|FT | increases by at least one from one level of recursion to the next. Thus, the running
time of MAF(S, T, FX , k) is O(3kn) for binary trees and O(4kn) for multifurcating trees. A
MAF can be found in O(3m(S,T )n) or O(4m(S,T )n) time, by running MAF(S, T, FX , k) with
parameter k = 1, 2, . . . until we find the first AF. This approach combined with improved
branching rules and other techniques results in the currently fastest MAF algorithms, with
running time O(2kn) for binary trees [23, 26] and O(2.42kn) for multifurcating trees [25].

The exponential search algorithm for MAAF cannot be translated directly into a depth-
bounded search algorithm because, when (a, c) is a common cherry of F ′S and F ′T , the
algorithm makes three recursive calls and the branch that applies cherry reduction cuts no
edges. To obtain a depth-bounded search algorithm for MAAF, we apply the MAF algorithm
(including cherry reduction!) to find a collection of AFs. It turns out that, given a parameter
k ≥ m̃(S, T ), MAF(S, T,X, k) finds an AF F that can be refined to a MAAF of (S, T ) by
cutting more edges [24]. Thus, to find an AAF of (S, T ) of size at most k, if it exists, we
run MAF(S, T,X, k) and, for each AF F it finds, check whether an AAF of (S, T ) of size
at most k can be obtained by cutting more edges in F . This takes O(n) ·

∑k−|F |
i=0

(|F |−1
i

)
time [24]. The currently fastest hybridization algorithms for two trees use this approach and
take O(3.18kn) time for binary trees [24] and O(5.08kn) time for multifurcating trees [16, 17].

ESA 2017
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Figure 4 (a) A pair of X-trees (S, T ). The highlighted nodes are shared by S and T . (b) A
cluster partition of (S, T ) corresponding to the highlighted subtrees of S and T .

3.4 Cluster Partitioning
Every node of an X-tree defines a cluster consisting of the labels of its descendant leaves.
An X-tree is fully described by the set of clusters of its nodes, so we can view it as a set
of clusters and define C = (S ∩ T ) \ {X ∪ {ρ}} to be the set of non-root nodes shared by S
and T . Each cluster C ∈ C defines two subtrees SC and TC of S and T consisting of the
parents of C in S and T and all nodes that are subsets of C but not proper subsets of any
cluster C ′ ∈ C with C ′ ⊂ C. Let L = {`(C) | C ∈ C} be a label set disjoint from X ∪ {ρ}.
We label the roots of SC and TC with `(C) and each leaf C ′ ∈ C of SC and TC with `(C ′).
The cluster partition of (S, T ) is the collection of instances {(SC , TC) | C ∈ C}; see Figure 4.

Remarkably, a MAAF of (S, T ) can be obtained by computing a MAAF for each pair
(SC , TC) with C ∈ C [3]: A MAAF FC of each pair (SC , TC) can be obtained by cutting a
set of edges of SC . Cutting every edge of S that belongs to the union of these sets produces
a MAAF of (S, T ). A MAF of (S, T ) can similarly be obtained from a collection of AFs of
the clusters, but the details are more complicated [19, 27].

4 Experimental Evaluation

4.1 The Competitors
We implemented the techniques discussed in Section 3 in C++, compiled with gcc -O2, and
evaluated different combinations of these techniques for finding M(A)AFs of binary and
multifurcating trees. Our platform was a 2.4GHz AMD Opteron workstation with 16GB of
DDR-1333 RAM running Debian GNU/Linux 7. The algorithms we evaluated were:
K: Apply kernelization and then solve the kernel using exponential search.
CP: Apply cluster partitioning and then solve each cluster using exponential search.
CP+K: Apply cluster partitioning, apply kernelization to each cluster, and then solve each

cluster kernel using exponential search.
CP+DBS: Apply cluster partitioning and solve each cluster using depth-bounded search.
We also included two competing algorithms in our evaluation. Since we did not have the
(source) code available, we are only able to refer to the experimental results reported by the
authors or were able to run the compiled code provided by the authors:
ILP [28]: This solution expresses the problem of finding a MAAF as an integer linear

program and then uses CPLEX to solve this instance. The experimental results were
obtained on a 3.2GHz Intel Xeon workstation using the Poaceae data set below [28].

INTER [9]: This algorithm uses cluster partitioning and solves each cluster using kerneliza-
tion and exponential search, applying kernelization in each recursive call. The authors
provided a Java implementation as a JAR file.
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Figure 5 Kernel sizes for the Aquificae data set. The x-axis shows the ratio between kernel size
and SPR distance or hybridization number, grouped into buckets where the ith bucket contains all
instances with a ratio in the interval (i − 1, i]. The y-axis shows the percentage of the inputs in each
bucket.

We excluded a number of competitors from our evaluation. One is the dynamic programming
algorithm of [12]. It achieves a running time of O(2npoly(n)) but uses exponential space,
which is prohibitive. Faster depth-bounded search algorithms with running times of O(2kn)
for binary trees [23, 26] and O(2.42kn) for multifurcating trees [25] exist and translate into
corresponding improvements for exponential search. However, both algorithms are difficult
to implement. An implementation of the O(2kn)-time algorithm for binary trees exists [27],
while the O(2.42kn)-time algorithm for multifurcating trees has not been implemented yet. In
order to avoid performance differences due only to differences in the implementation, we chose
to implement all competitors (except ILP and INTER) ourselves and opted for the simpler
algorithms discussed in Section 3. Since any improvement applicable to depth-bounded
search is applicable to exponential search and vice versa, the qualitative conclusions of our
results apply also to faster branching algorithms.

4.2 Data Sets
Aquificae. This data set was provided by Robert Beiko [4] and contained gene trees of the
phylum Aquificae, which is generally believed to have a high rate of reticulation events in its
history. The input trees were unrooted. A rooting was obtained by Chris Whidden [27], who
used a subset of 40,463 of these trees over a set of 1,251 taxa, computing an MRP supertree
and rooting the gene trees to match the MRP supertree. Each tree had between 4 and 74
taxa. Comparisons between pairs of trees were made only on the subtrees induced by their
common taxa. The original trees were binary. Multifurcating versions were obtained by
collapsing bipartitions with support below 0.8. We carried out pairwise comparisons between
all pairs of these 40,463 trees. Our experimental evaluation excluded all pairs with SPR
distance 0, leaving us with roughly 170,000 non-trivial input pairs.

Poaceae. This data set was provided by Heiko Schmidt [21], who constructed rooted binary
trees from the sequence data of six loci (ITS, ndhF, phyB, rbcL, rpoC2, and waxy) provided
by the Grass Phylogeny Working Group [10]. The resulting data set contained 15 tree pairs.
We used this data set in our final experiment that included ILP and INTER because we did
not have the code of ILP available and the authors of [28] reported results on this data set.

4.3 Results
Kernel size. The first question we wanted to answer was: How much smaller than the
theoretical prediction are the kernels produced by the kernelization algorithms in practice?
Figure 5 shows the kernel sizes observed for the Aquificae data set in our experiments.
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Figure 6 Running times of CP, K, and CP+K on the Aquificae data set. Each instance is
represented as a point with the running time of CP or K as the x-coordinate and the running time
of CP+K as the y-coordinate. Points below the diagonal indicate that CP+K performed better.

The average kernel size was less than 4k for both MAF and MAAF and for binary and
multifurcating trees, and the kernel sizes were quite tightly concentrated in the range [3, 5].

Kernelization vs. cluster partitioning. Next we aimed to quantify the relative impact of
cluster partitioning and kernelization on the performance of algorithms that combine these
techniques. Figure 6 compares the running times of K, CP, and CP+K on a subset of the
Aquificae data set. For binary M(A)AF and multifurcating MAF, we removed trivial instances
that all three methods were able to solve in less than 1ms. We also removed all instances
that K was not able to solve in 8 hours, even though some of these instances could be solved
by CP+K in a reasonable time. Multifurcating MAAF is a much harder problem, so even
the easy instances took up to 1s to solve and took roughly the same amount of time to solve
with any of the three methods. Thus, for multifurcating MAAF, we removed all instances
that could be solved in less than 1s or for which K took more than 8 hours. This left 6,800
binary MAF instances, 25,000 binary MAAF instances, 40,000 multifurcating MAF instances,
and 5,300 multifurcating MAAF instances. The right-hand figures in the four panels show
that adding cluster partitioning to K led to significant performance improvements for almost
all instances. For binary M(A)AF and multifurcating MAF, adding kernelization to CP
led to only very modest performance improvements. Moreover, there were about as many
instances where the overhead of kernelization hurt performance as there were instances where
performance improved. The exception is multifurcating MAAF, where adding kernelization
to CP led to more significant performance improvements in many instances.

Another useful comparison can be obtained by summing the running times of each
algorithm across all test instances, as this amplifies performance gains made on the difficult
instances that took a long time to solve. For all but multifurcating MAAF, kernelization
did not help and in fact increased the total running time of CP by a factor of almost 5
in the case of binary MAF. For multifurcating MAAF, a modest speed-up by a factor of
2.2 was achieved. In contrast, the performance improvements achieved by adding cluster
partitioning to K ranged from 8.5 for binary SPR to 160.8 for multifurcating SPR, again
demonstrating the effectiveness of cluster partitioning. The results for binary SPR are to
be treated with caution. Almost all binary SPR instances were solved by CP and CP+K
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Figure 7 Running times of CP+K and CP+DBS on the Aquificae data set. Each instance is
represented as a point with the running time of CP+K as the x-coordinate and the running time of
CP+DBS as the y-coordinate. Points below the diagonal indicate that CP+DBS performed better.

in less than 100ms and in less than 10s even using only K. On such “easy” instances, the
overhead of any added optimization is fairly large compared to the achievable gain, which we
believe explains the detrimental impact of kernelization on the performance of CP and the
only modest improvement of performance when adding cluster partitioning to K.

Impact of kernelization on maximal cluster size. Since the running time of an exponential
search algorithm across multiple clusters is dominated by the running time on the largest
cluster, the lack of impact of kernelization on the performance of CP can be explained by
investigating the decrease of the maximal cluster size for each instance due to kernelization.
In our experiments, no decrease was achieved in over 99.8% of the inputs for binary M(A)AF
and multifurcating MAF, which correlates with our running time comparisons above. For
multifurcating MAAF, no reduction was achieved for 93.8% of the inputs while about 6% of
the inputs achieved a reduction of the maximal cluster size by 10-30%. While we expected
the impact of kernelization on the cluster size to be modest, we were surprised to see that
the vast majority of instances did not see any decrease in the maximal cluster size.

Kernelization vs depth-bounded search. The next question we aimed to answer was which
algorithm to choose to solve individual clusters. Our first experiment with this goal compared
CP+K vs CP+DBS. Figure 7 shows that CP+DBS was significantly faster than CP+K. We
excluded trivial instances that both methods were able to solve in less than 10ms as well
as instances that took CP+K more than 8 hours to solve from the evaluation, even though
CP+DBS was able to solve all instances in a reasonable time. A comparison of the total
running times of these two methods across all inputs shows that overall CP+DBS was between
135 times (for multifurcating MAAF) and 1,000 times (for binary MAF) faster than CP+K.
Since kernelization of the individual clusters was largely ineffective, this is not surprising.

Which is the fastest MAAF algorithm? Since we did not have the source code of ILP
and the results in [28] were reported on the Poaceae data set, we chose this data set for a
horse race between all the competitors listed in Section 4.1. INTER only computes binary
MAAFs, so this was the only type of MAAF we computed in our experiments. As a result,
this evaluation is fairly limited. Table 1 shows the results. We report two running times for
INTER. The first (A) was obtained on inputs where string labels were replaced with integer
labels; the second (B) was obtained using the Poaceae data files bundled with the code of
[9], where every leaf was labelled with the name of the taxon. Apart from that, the inputs
were identical. We do not know why this change would have such a significant impact on
the running time of the implementation. Table 1 shows that ILP, INTER, and CP+DBS
each achieved the fastest running time on at least one input and were significantly faster

ESA 2017



56:12 Computing Maximum Agreement Forests without Cluster Partitioning is Folly

Table 1 Running times of the different algorithms for computing MAAFs of the instances in the
Poaceae data set. For each input consisting of “Tree 1” and “Tree 2”, we list its number of taxa (n)
and hybridization number (k).

Input ILP INTER CP+ CP K CP+K
Tree 1 Tree 2 n k A B DBS

ndhF phyB 40 14 5s 20s 14s 13s 210s >3h 206s
ndhF rbcL 36 13 10s 3s 3s 16s 220s >3h 218s
ndhF rpoC2 34 12 7s 6s 3s 10s 559s >3h 563s
ndhF waxy 19 9 1s <1s 1s <1s 2s 56s 2s
ndhF ITS 46 19 51s 255s 1197s 78s >3h >3h >3h
phyB rbcL 21 4 <1s <1s <1s <1s 1s 6s 1s
phyB rpoC2 21 7 3s <1s <1s <1s 2s 222s 2s
phyB waxy 14 3 1s <1s <1s <1s 1s 1s 1s
phyB ITS 30 8 1s <1s <1s <1s 1s >3h 1s
rbcL rpoC2 26 13 14s 7s 5s 32s 662s >3h 619s
rbcL waxy 12 7 1s <1s <1s <1s 2s 2s 2s
rbcL ITS 29 14 80s 586s 1979s 49s >3h >3h >3h
rpoC2 waxy 10 1 <1s <1s <1s <1s 1s 1s 1s
rpoC2 ITS 31 15 115s 53s 1650s 17s >3h >3h >3h
waxy ITS 15 8 1s <1s <1s <1s 6s 67s 6s

than K, CP, and CP+K. ILP and CP+DBS substantially outperformed INTER on the hardest
inputs (ndhF/ITS and rbcL/ITS), highlighted in bold. These inputs have among the highest
hybridization numbers in this data set, suggesting that INTER cannot keep up with ILP and
CP+DBS as the hybridization number increases.

5 Conclusions

We investigated the impact of cluster partitioning on the performance of kernelization-based
M(A)AF algorithms. Together with results for depth-bounded search reported in [27], our
results support the following conclusions: (i) Cluster partitioning is by far the most important
tool for obtaining fast M(A)AF algorithms. (ii) When used in conjunction with cluster
partitioning, kernelization offers very little benefit and may even hurt performance due to the
cost of computing the kernel. (iii) Depth-bounded search offers superior performance over
kernelization. The exception is an approach that re-kernelizes the input after each branching
step in the exponential search (INTER). Depth-bounded search and INTER have much in
common in that the cherry and singleton reductions can be viewed as partially applying
kernelization until it is safe to apply the next branching step.

Given the importance of cluster partitioning for the performance of M(A)AF algorithms,
an important question is whether cluster partitioning can be improved further. When an
input or large cluster cannot be split into smaller clusters, “long-distance” reticulations
between distant taxa are often to blame. Empirical evidence suggests that most reticulations
happen between fairly closely related taxa, so long-distance reticulations should be rare. If
there exists an efficient algorithm for finding these long-distance reticulations, they could be
eliminated, resulting in a modified input with only local reticulations that can therefore be
split into small clusters for which M(A)AFs can be found efficiently. This would likely allow
us to find M(A)AFs for larger and harder inputs currently well beyond our reach.
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