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—— Abstract

Computing optimal deformations between two curves is a fundamental question with various
applications, and has recently received much attention in both computational topology and in
mathematics in the form of homotopies of disks and annular regions. In this paper, we examine
this problem in a geometric setting, where we consider the boundary of a polygonal domain with
spikes, point obstacles that can be crossed at an additive cost. We aim to continuously morph
from one part of the boundary to another, necessarily passing over all spikes, such that the most
expensive intermediate curve is minimized, where the cost of a curve is its geometric length plus
the cost of any spikes it crosses.

We first investigate the general setting where each spike may have a different cost. For the
number of inflection points in an intermediate curve, we present a lower bound that is linear in
the number of spikes, even if the domain is convex and the two boundaries for which we seek a
morph share an endpoint. We describe a 2-approximation algorithm for the general case, and an
optimal algorithm for the case that the two boundaries for which we seek a morph share both
endpoints, thereby representing the entire boundary of the domain.

We then consider the setting where all spikes have the same unit cost and we describe a
polynomial-time exact algorithm. The algorithm combines structural properties of homotopies
arising from the geometry with methodology for computing Fréchet distances.
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Yo

Figure 1 Polygonal domain Figure 2 Disk D is convex Figure 3 The convex hull
R bounded by polylines fUgU relative to R. -« is backwards- ghg(7y) of a curve v € T.
Yo U~i. K in red squares. but not forwards-convex.

1 Introduction

Computing optimal deformations between two input curves is a fundamental building block
in many application areas, such as robotics, motion planning, geographic information systems,
and graphics. Such deformations or morphs have several salient properties, for example,
the maximum necessary length of intermediate curves. The properties of an optimal morph
between two curves also serve as a natural measure of similarity between these curves.
Examples of such measures include the Fréchet distance and its variants.

In this paper we consider the following scenario: our input is a polygonal domain with
point obstacles, similar to [6]. We aim to continuously morph from one part of the boundary
to another. The intermediate curves (or leashes) are allowed to pass over the point obstacles,
albeit for a fixed cost. We hence refer to the point obstacles as spikes to reinforce the
intuition that encountering them is costly, but that they do not form impassable barriers.
Our goal is to minimize the cost of the most expensive leash during the morph, where the
cost of a leash is defined as its length plus the cost of the spikes it encounters. We consider
both variable-cost spikes and unit-cost spikes, and describe several structural results as well
as algorithms. In the following we first introduce some necessary definitions which allow us
to state our our results more precisely.

Definitions and problem statement. Let f,g,70,71: [0,1] — R? be four interior-disjoint
simple polylines (possibly of length 0) in the plane, with f(0) = v,(0), f(1) = v1(0), g(0) =
v0(1), and g(1) = v1(1), whose union bounds a polygonal domain R of n vertices. Let K C R
be a finite set of k point-obstacles which we call spikes (see Figure 1). The cost of a spike is
given by a function w: K — RZ%. We assume that spikes lie in general position in the sense
that no three spikes lie on the same geodesic in R. Standard perturbation techniques (as
also described below) can lift this assumption.

Let T be the family of simple curves in R from f to g; that is, all curves v: [0,1] = R
with v(0) € Im(f) and v(1) € Im(g). A homotopy on R from 7y to 71 is a continuous
map h: [0,1] x [0,1] — R with h(0,-) = 79, h(1,-) = 71. All homotopies we consider
have h(t,-) € T for all ¢t € [0,1]. With slight abuse of terminology, we refer to these simply as
homotopies. We call a homotopy monotone if it is injective after infinitesimal perturbation.
We refer to each curve v;: p — h(t, p) as the leash of h at time ¢, and define the cost of a leash
as its length plus the total cost of spikes in K (with multiplicity) it encounters. The cost of
a homotopy is the cost of its maximum-cost leash. We are interested in the minimum-cost
homotopy on R from 7, to 1 and refer to the cost of this homotopy as the homotopy height
from g to 11 on (R, K, w).
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For two curves v and ~/ from a monotone homotopy, denote the region between them
by R(v,v); that is, R(v,%’) is the (possibly degenerate) topological disk bounded by -, 7/,
the arc of f between v(0) and +’(0), and the arc of g between (1) and ~/(1). For a simple
curve v € T, define its swept region as R(7g,7y) and symmetrically define its unswept region
as R(v,71). We call a region D C R convez relative to R if for any two points in D, the
shortest path in R connecting those points also lies in D [20]; for this definition we do not
not charge the additional cost of any spikes. A curve v € I is forwards-convez if it lies on
the boundary of a region D convex relative to R, and D is contained in the swept region
of v. Symmetrically, v is backwards-convez if it lies on the boundary of a region D convex
relative to R, and D is contained in the unswept region of vy (see Figure 2). A curve may be
both forwards- and backwards-convex; a shortest path is always both.

Region R is convex relative to itself, and the intersection of any two convex sets relative
to R is also convex relative to R. For v € I" define its convex hull (also known as geodesic
hull) ghg(7) relative to R as the unique minimal region containing v which is convex relative
to R (see Figure 3).

Consider a homotopy h that contains a leash ~; that crosses several spikes. Infinitesimal
perturbation of the leash at the spikes ensures that 7; no longer crosses a spike, but is
then forced into some homotopy class. In particular, this has two implications: (1) as the
perturbation tends to zero, this has no effect on the length of the leash and thus, strictly
speaking, the optimal homotopy is an infimum rather than a minimum if the given leash is
the maximum-cost one in the optimal homotopy; (2) we can decompose a single leash crossing
a number of spikes into a homotopy crossing each spike separately, essentially holding the
leash fixed—hence an optimal homotopy exists that crosses spikes one at the time.

Results and organization. We consider various settings of a spiked plane with polygonal
boundary. In Section 2, we investigate the general setting where each spike may have a
different cost. First, we consider the number of inflection points that the leash may need in
an optimal homotopy and present a lower bound that is linear in the number of spikes, even
if R is convex and only f has positive length. We then present a 2-approximation algorithm
for the general case and an optimal algorithm for computing the homotopy height for the
case that f and g have length 0 (i.e., 71 and 72 together form the boundary of R).

In Section 3, we consider the setting where all spikes have the same unit cost. Here we
present our main result: an algorithm to compute the exact homotopy height in polynomial
time. The algorithm combines structural properties of homotopies arising from the geometry
with methodology for computing Fréchet distances. To the best of our knowledge, these are
the first polynomial-time algorithms to compute the exact homotopy height in any setting.

Related work. Chambers et al. [5] recently proved that there always is a minimum-cost
homotopy between the boundaries of an annular surface that is an isotopy and monotone,
that is, the intermediate leashes never move “backwards”. This proof readily transfers to our
setting and is indeed supporting our results as described in Section 3.

Homotopy height was introduced independently in the computational geometry commu-
nity [7] and in the combinatorics community [4]. On triangulated surfaces, the best known
algorithm gives an O(logn) approximation, where n is the complexity of the surface [18].
More recently, it has also been studied in more general settings, where instead of having
point obstacles, obstacles are modeled by assigning a non-Euclidean metric to R [10, 11, 12].

Fréchet distance is a well studied metric. Also known as the dog-leash distance, the goal
is to minimize the length of the longest leash connecting a man walking along one curve
and a dog along the other, where the man and dog walk monotonically along the curves.
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The classic algorithm computes this metric in O(n?logn) time [1], with many variants and
approximation algorithms having been studied since. The geodesic and homotopic Fréchet
distance are particularly related to our setting. The former is a variant where the leashes
must stay inside a polygonal boundary and remain geodesic, but no obstacles are present
inside the polygon [13]. For the latter, point or polygonal obstacles are given which no leash
may cross: this case can be solved in polynomial time [6].

Optimal morphs have also been studied in a variety of other settings. From the topology
end, minimum-area homotopies can be computed for planar or surface embedded curves
in polynomial time [9, 17, 19]. Minimum-area homologies are a closely related similarity
measure on curves that can be computed very quickly using linear algebra packages [8, 14],
but do not yield intuitive deformations or morphings in the same way as homotopy.

From the geometry and graph theory communities, much work has been done on computing
morphs between inputs; indeed, it is well known that any two drawings of the same planar
graph can be morphed to each other. Optimal morphs between such graphs are still being
studied, including work that bounds the complexity of the morph [2, 3]. However, none
these morphs bound the length of any of the "leashes" tracing the paths of vertices during
the morph. Morphs based on geodesic width [16] force all intermediate curves to not cross
the input curves (which are part of the boundary polygon in our setting); however, none of
these have been considered in the presence of obstacles. Dynamic time warping and related
concepts [15] also consider ways to match and morph curves, but again do not extend to
more general settings.

2 Variable-cost spikes

In this section, we consider the setting where each spike may have a different cost. As we
prove, the variable costs have a profound effect on the leash complexity. Nonetheless, we
obtain a general approximation algorithm as well as an optimal algorithm for a special case.

Leash complexity. We define the complezity of a leash as the number of inflection points
that are not caused by the boundary of R. In particular, the leash complexity needed for
an optimal homotopy is defined by the number of spikes that cause an inflection point.
Unfortunately, in the general case, the complexity may be linear, even when R is convex.
Correspondingly, we do not have a polynomial-time algorithm even when R is convex.

» Lemma 1. In the worst case, the leash complexity for an optimal homotopy for (R, K,w)
is Q(|K]), even if 0, v1 and g have length 0 and f is convez.

Proof. For ease of exposition, we first argue the general case, using the construction illustrated
in Figure 4(a). We have n spikes, K = kq, ..., k;, lined up in the middle, at vertical distance 1
from each other and f and g; k1 is the highest- and k,, the lowest-positioned spike. Moreover,
the odd-numbered spikes have a closest point on the first half of f and the even-numbered
spikes have a closest point on the second half of f; these closest points are at distance 0.75.
This implies that the optimal leash crossing k; has cost n — i + 1.75 + w(k;). By setting
w(k;) = ¢+ 1, all these leashes have the same cost, for suitable constant ¢ > 0, depending on
the longest leash necessary that does not cross a spike. Now, the homotopy height of this
instance is 1.75 + w(ky) = 1.75 + ¢ + n. This requires the leashes to cross the spikes in the
order of their closest points along f, that is, odd-numbered before even-numbered spikes (see
Figure 4(b)). When crossing spike k1, the leash has crossed all other odd-numbered spikes,
but none of the even-numbered spikes. Thus, the leash has a linear number of inflection
points, if we perturb all odd-numbered spikes slightly.
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Figure 4 (a) A leash may need linear complexity when considering variable-cost spikes. (b) Part
of the optimal homotopy, after crossing k, up to crossing k,—2. (¢) This even holds in the convex
case, with one boundary path and the two initial leashes having length 0. The closest point and
corresponding distance circles are indicated for each spike.
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Figure 5 When f and g have length 0, we can apply a simple greedy strategy to shrink both ~o
and 1 onto Ymid-

A similar construction can be made when we require that f is convex and g, 71 and g
have length 0. This is illustrated in Figure 4(c). The same principle applies: we position
spikes such that their closest point is alternatingly on the left half and right half of f. By
setting the weights appropriately, we can again ensure that the optimal homotopy must cross
the spikes in some order along f and force a linear number of inflection points. |

Algorithms. If f and g collapse onto a point, we can compute the homotopy height in
polynomial time with a greedy algorithm. Interestingly, this contrasts the potential complexity
of the problem if 79 and 7; and even g collapse onto a point, as suggested by the lower bound
in Lemma 1.

» Lemma 2. We can compute in polynomial time the homotopy height of (R, K,w), if f
and g have length 0.

Proof. Consider the geodesic leash ymiq between f(0) and ¢(0), ignoring any spikes; see
Figure 5. As described below, we greedily shrink ~g until we reach ~,;q. We first compute
the geodesic leash +; between f(0) and g(0) in the same homotopy class as . By definition,
v¢ cannot be longer than ~y. Then, we cross the minimal-cost spike k € K N 4, resulting
in a cost ||y]| + w(k). We repeat the process from 7y, until we reach ymiq. Analogously,
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we shrink 71 t0 Ymiq. The maximum of ||v]|, ||[71]] and all intermediate ||v;|| + w(k) is the
homotopy height of (R, K, w).

As all intermediate leashes from g to vmiq are backwards-convex, these leashes grow only
shorter. In particular, this implies that we cannot make a leash on some spike k shorter, by
first crossing other spikes that are not on the leash but in the unswept area. In other words,
we cannot improve the cost by crossing a spike k on a geodesic by first crossing spikes that
are not on the geodesic. Hence, the greedy choice is optimal. |

The above proof readily implies that the longest leash in the optimal homotopy is
determined by the initial and final leash, and thus results in the following lemma. Note that
we are interested here only in the geometric length, excluding any spikes. We capture this in
a separate lemma as it supports the unit-cost case, detailed in the next section.

» Lemma 3. Ifl € T is backwards-convex and r € T is forwards-convez, with 1(0) =
r(0), I(1) = (1), such that l and r together bound a region D convex relative to R, then
there is a monotone homotopy from | to r consisting of only backwards- and forwards-convex
leashes, and whose longest leash has length max{||l||, |||}

For the general case, there is also a simple 2-approximation achievable, by using the
algorithm for the geodesic Fréchet distance.

» Lemma 4. We can compute in O(|R|?log? |R|) time a 2-approzimation of the homotopy
height of (R, K, w).

Proof. The algorithm computes the geodesic Fréchet distance [13] in R, that is, ignoring
the spikes. Consider the optimal geodesic Fréchet matching pu. We may extend p into a
homotopy A by infinitesimal perturbation to cross only one spike at once and by shortening
vo and 71 to the geodesics between f(0) and g(0) and between f(1) and g(1) respectively.
We prove that h is a 2-approximation of the minimal-cost homotopy A* including the spikes.

Let ¢ be the longest leash in h and let wyax denote the maximal cost of a spike. The
cost of h is bounded by ¢ + wpax. Either ¢ is defined by -y or 1 (which must be in any
homotopy) or ¢ is defined by a leash in p: in either case, ¢ provides a lower bound on the
maximal leash length in h’. Moreover, h’ must also cross the maximal-cost spike. Hence, the
cost of ' is at least max{c, Wmax}. We now have that ¢ + wpax < 2 - max{c, Wmax}, thus
proving that h is a 2-approximation of h*. <

3  Unit-cost spikes

In this section, we give an algorithm to compute the homotopy height in the case where all
spikes have cost 1. We start by proving properties on the homotopy classes and lengths of
curves in I". These properties allow us to construct for any homotopy, a homotopy of similar
cost with a regular structure. Finally, we show how to decide the existence of such a regular
homotopy cheaper than a given cost in polynomial time.

Shortcutting curves. Consider a curve v € T and let D = gh(~) be its convex hull. Let I
and 7 respectively be the backwards- and forwards-convex arcs of 0D between the endpoints
of 4. Counsider an arc ¢ of v\l or v\ 7. Let ¢ be the corresponding arc of | or r between the
endpoints of ¢. Then we refer to the disk bounded by ¢ U ¢ as a pocket of v, and refer to ¢
as its lid, see Figure 6. Each lid is a shortest path in R, and the pockets of v partition D.

» Lemma 5. Let vy and 4" € T be two non-crossing simple curves. FEach arc ¥ of v' N gh(v)
has both endpoints on the same lid of the containing pocket of ~.



B. Burton et al.

Figure 7 (a) The curves r; and I; on &D; and 9D, respectively. (b) The curves r; and I obtained
after replacing arcs with the geodesic between x and z’. (c) An example curve 4’ in the homotopy
class of r; that is shorter than v (dashed).

Proof. Since the endpoints of 4’ lie on the boundary of R, 1 must have both endpoints on
the boundary of its pocket. Since 1 does not cross =y, and the pocket is bounded by an arc
of v and a lid, the endpoints of 1 lie on the lid. <

Consider a forwards-convex and a backwards-convex curve in I'. If these curves intersect,
they intersect in at most two points or geodesics, and occur in the same order and direction

along the curves. As such, their first and last point of intersection are naturally well defined.

» Lemma 6. Let v; and v; € I' be two non-intersecting simple curves, and assume y; lies in
the swept region of v;. Let D; = gh(~y;) and D; = gh(vy;) be their convexr hulls. Let r; € T
be the forwards-convex arc of 0D; and let l; € I' be the backwards-convex arc of 0D;. If r;
and l; intersect, let x and ' be the first and last points of intersection of r; and l;. Let 1}
and l;- be the curves obtained from r; and l; by replacing their arcs in D; N D; by the geodesic
between x and ='. If r; and l; do not intersect, let v = r; and l; = l;. Assume the region
between 7y; and vy; contains no spikes in its interior and consider a third simple curve v in
this region. There is a curve v with the same endpoints as v and ||| < ||v||, such that '
lies in the homotopy class of v} and l;.

Proof. The setup is illustrated in Figure 7. We consider three cases illustrated in Figure 8,
depending on the number of bends of r; and I; on d(D; N Dj) that are induced by ~;
and ;.

(a) In the first case, assume there are no such bends on r; or [, then the interior of D; N D,
is empty. Since D; and D; are disjoint, so are the pockets of 7; and ~y;. If we replace all
arcs of y that lie in pockets of ~; or 7; by the geodesic between the endpoints on the
corresponding lid, then we obtain a curve 7" between r{ and I’; with ||7'|| < [|v]|. Since
there are no spikes between 7 and [, 7' lies in the same homotopy class as r}.

(b) In the second case, assume either r; or /; has no such bend on 9(D; N D;), but the
other has at least one bend. Without loss of generality, assume that r; has at least one
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(c)

Figure 8 The three cases of Lemma 6. D; N D; shaded.

bend. If /; has one, a symmetric argument applies. We replace v by a curve that passes
through both 2 and z’. If v does not pass through x already, then let @ and ¢ be the
lids of pockets of ; and +;, respectively, that intersect in . It is also possible that ¢ is
an edge of ~;; the proof is then similar. Denote by a the arc ¢\ D;, by o’ the arc ¢N D
and by ¢ the arc ¥ \ D;. For the lids ¢’ and Y’ of r; and l; crossing in z’, denote by b
the arc ¢/ \ D;, by o' the arc ¢’ N D; and by d the arc ¢’ \ D;, see Figure 8 (b).

We claim that « crosses either ¢, or both a and a’. If «y crosses ¢, we are done, so assume
it does not. As a U ¢ connects ; and v;, v must cross a U ¢ (and therefore a) an odd
number of times to connect f and g. Lemma 5 implies that v crosses a U a’ an even
number of times. Hence, a’ is crossed an odd number of times. We can thus find an arc
of v with endpoints on a and a’, and since this arc does not cross c, it lies in the pocket
of @. Replace this arc by the arc of ¢ between those endpoints, which is a shortest path
in R that passes through x. We now have a curve with the same endpoints as v that
passes through c or x, and this curve is not longer than ~. We allow the resulting curve
to cross y; and vy; along ¢, however the resulting curve contains a subcurve of v that
connects a, a’ or ¢ to g. Analogously, we can replace this subcurve by a curve that
crosses either 2’ or d. This yields a curve from f to g that passes through c or z, and
then through &’ or d. Since [; has no bends, ¢ and d lic on the same lid, which passes
through z and z’. Since this lid is a shortest path, we can replace the subpath between ¢
or x and 7’ or d by a shortest path in R that passes through both x and z’.

The portions of the curve before x and after ' can be shortcut using the techniques of
case (a) such that they lie between [; and r; and not in D; N D;. This yields a curve '
in the homotopy class of r} with the same endpoints as v, and ||7|| < |7l

In the final case, both r; and [; have bends on 9(D; N D;). As before, we shortcut
such that it first passes through x and then through z’. Let the arcs a, @/, ¢ be as before,
and let ¢ be the arc ¥ N D;. As aUd’, as well as ¢ U ¢ are crossed an even number of
times, but a U c is crossed an odd number of times, we have that either both a and a’, or
both ¢ and ¢’ are crossed by . Replacing the arc between the crossings by the shortest
path on the corresponding lid yields a path through x with length at most that of ~.
Similarly, we can replace the remainder of the resulting path to also pass through .
From here, we can use the same technique as in case (b) to obtain a curve 4/ in the
homotopy class of r; with the same endpoints as v, and ||7/|| < ||v]|- <

3.1 Regular homotopies

Let G(a,b) denote the geodesic in R between f(a) and g(b). Given a homotopy class o,
Gs(a,b) denotes the geodesic between f(a) and ¢g(b) in o. For v € T denote its homotopy
class by o(v). If v is a geodesic in R, we say that o(v) is a straight homotopy class.
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Figure 10 (a) The region between r; and l;11 obtained from the geodesic hulls of v, and ¢, .
b) The curves r; and I}, and the corresponding geodesics r; and [}, ; in the same homotopy class.
i+ g g i+ y

(c) For all t; <t < t;41, the curve 7, lies in the region between the curves 7, and Vtigr-

For an optimal homotopy, we may without loss of generality start by shortening 7o into
the geodesic Gy (4,)(0,0) in its homotopy class, use an optimal homotopy A from G (+,)(0,0)
to Gy(4,)(1,1), and end by lengthening the geodesic G,(,,)(1,1) into 7. The resulting
homotopy has cost max{||yo||, cost(h), ||v1]|}, and the computational challenge is to efficiently
find an optimal homotopy h.

We call a homotopy from G ,(44)(0,0) to G,(+,)(1,1) a reqgular homotopy of order m if
it can be decomposed into a sequence of homotopies Sy, B, S1, ..., Bi, Si; -+, Bm, Sm,
subject to the following constraints, see also Figure 9.

Sz(l) = Bz+1(0) for 0 < ) <m-— 1 and Bl(l) = Sz(()) for 1 < ) < m, that iS, the last
leash of a homotopy matches the first leash of the next homotopy.

For each homotopy B;, the leashes all have the same endpoints on f and g, but the
leashes can move over spikes. Moreover, the longest leash in B; is either B;(0) or B;(1).
For each homotopy 5;, all leashes are geodesics in the same homotopy class o;, but the
endpoints of leashes can move along f and g.

The respective homotopy classes of leashes in Sy and S,,, are g = o(y9) and oy, = 0(71).

In Lemma 7, we show that there exists a minimum-cost homotopy h between Gy (.,)(0,0)
and Gy (,)(1,1) that is a regular homotopy of order at most k. In Lemma 8, we show that
each o; (except possibly oo and o,,) can be assumed to be a straight homotopy class. For
each homotopy B;, some leash can be assumed be the geodesic in R between its endpoints.

For a homotopy h, denote by a;,(t) € [0,1], the position of the start of leash h(t) in the
parameter space of f (such that f(ap(t)) = h(t,0)). Symmetrically, denote by B (t) € [0,1]
the position of the end of that leash in the parameter space of g (such that g(8,(t)) = h(t,1)).
If h is monotone, then ay and By : [0,1] — [0, 1] are continuous nondecreasing surjections.

» Lemma 7. Let h be a monotone homotopy from G,(,)(0,0) to Gy(4,)(1,1) of cost less
than L, then there exists a regular homotopy of cost at most L.
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Proof. By monotonicity, as ¢ increases, the number of spikes in the swept region of ~; cannot
decrease. Let {t1,...,t;} be the minimum value ¢; for which the swept region of 7;, contains
at least ¢ spikes. For each leash v;, of h, let D; = ghp(v,) be its geodesic hull, and let I;
and 7; € I respectively be the backwards-convex and forwards-convex curves on the boundary
of D; connecting +y;,(0) with ;,(1). For 1 <4 <k, define r; and I}, respectively to be the
curves obtained by replacing the arcs of r; and respectively ;41 inside D; N D;41 by the
geodesic between the crossings of [;11 and r; (if any), dashed in Figure 10(a). Then I} lies in
the swept region of rj, and r; lies in that of I;, ;. Let r{ and lj’ be the geodesics with the
same endpoints and homotopy class as 7} and I}, respectively (see Figure 10(b)).

Lemma 3 gives us a homotopy B; from I to 7/ whose leashes have length at most
max{||I|l, |7 ||}. Including the cost of spikes, the cost of B; is at most max{||l/||, ||/ ||} +1+¢&
(for any € > 0) by perturbing leashes to each encounter at most one spike. Because I is a
geodesic in the same homotopy class as I, we have ||I/]] < ||I}||. Moreover, I; is a copy of I;
with a subpath replaced by a shortest path, we have ||I;|| < ||;||. Finally, because I; lies on
arcs of the convex hull of +;,, we have ||l;|| < ||,]]. Therefore, we have ||I/|| < || ||, and by
symmetry , ||77|| < || ||l- Since ¢, encounters a spike, and the cost of h is less than L, we
have |||l < L — 1. Hence, cost(B;) < max{[[l/||,||"/|I} +14+¢e < ||y, || +14+¢e < L.

Define 7§ = G4(1,)(0,0) and I}, | = Go(+,)(1,1). Moreover, let to = 0 and t41 = 1. It
remains to construct homotopies S; between 7 and [, ; for 0 < ¢ < k. Since there are
no spikes interior to the region between r; and [, they lie in the same homotopy class,
which we denote by ;. To construct a homotopy from 7}’ to I, |, we consider the curves
with ¢; < ¢ < t;41, and replace them by the geodesic v; = G, (an(t), Br(t)) in homotopy
class o; (see Figure 10(c)). These geodesics move continuously with ¢, so it remains to
show that ||v/|| < ||v]l. This is not immediate since ;" may lie in a different homotopy
class than ;. Instead, we use Lemma 6, which tells us that there is a curve with the same
endpoints in the homotopy class of v} with length at most that of ;. Because v, is a geodesic
in the same homotopy class, its length is also at most that of ;. |

The straight homotopy classes in R can be enumerated by taking the geodesic between
any two spikes in R, and extending it to the two points on the boundary of R. It is at
these points where the geodesic hits the boundary of R that the homotopy class of the
geodesic between points on the boundary of R changes: one can slide these points clockwise
or counter-clockwise such the geodesic between them ends up in a different straight homotopy
class. There are O(k?) straight homotopy classes.

» Lemma 8. For1 <i<k—1, we can assume o; to be a straight homotopy class without
increasing its cost.

Proof. Curve r; is forwards-convex and [;11 is backwards-convex, and the endpoints of r;
on f and g are not ahead of those of I;;;. If r; and ;11 are disjoint, then we can find a
geodesic in R separating r; and l;41, and hence 7} and I}’ ;.

If they are not disjoint, then the shortest path between their points of intersection lies on
a geodesic between f and g, separating r; and I ;, and hence r; and [, ;. <

3.2 Computation

A tool that is commonly used to compute the Fréchet distance is the free space diagram [1].
This tool captures between which points of f and g the geodesic is sufficiently short to be
used as a leash in a homotopy of a given cost L. Formally, the free space diagram is defined
as F(L) = {(a,b) € [0,1] x [0,1] | [|G(a,b)|| < L}. More generally, for a given homotopy
class o, we define F,(L) = {(a,b) € [0,1] x [0,1] | ||G»(a,b)|| < L} to capture the geodesics
in o of length at most L.
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Let X be the set of homotopy classes consisting of o(7g), o(71), and all straight homotopy
classes. There are 2 + O(k?) = O(k?) such homotopy classes, assuming k > 1. Let h
be a regular homotopy of cost at most L, and let ¢; and ¢, be the values of ¢ in h at
which the constituent homotopy S; starts and stops, respectively. For all ¢ € [t;,t;], we
have ||h(t)|| < cost(S;) < L, so (an(t),Br(t)) € Fu,(L), where o; is the homotopy class
of the leashes in S;. For t € [t,_,,t;], the leashes h(t) are part of homotopy B;, and we
even have ||h(t)|| + 1 < L, such that accounting for the spikes the leash passes over, we
have cost(B;) < max{||h(t;_,)||+1,||h(t;)] +1} < L by the construction of Lemma 7. Recall
that the endpoints of leashes do not move throughout any homotopy B;, so ap(t) = an(t;)
and fSp(t) = Bp(t;) for all ¢ € [t;_,,t;]. Additionally, as the construction of Lemma 7 preserves
monotonicity, we can assume «y, and 35 to both be continuous nondecreasing surjections. By
Lemma 8, we can also assume that each o; lies in 3. For the sake of presentation, since ay,
and fj, are constant in the intervals [t/_;,t;], we assume from now on that ¢;_; = ¢;, and
prove that any homotopy with the structure imposed by Lemma 9 can be turned into a
regular homotopy of cost L.

» Lemma 9. We can construct a regular homotopy of cost at most L if we can find appropri-
ate ap, Br, t; and t; and values of o; € 3, with the following conditions. Let o and B: [0,1] —
[0,1] be continuous nondecreasing surjections. Let og = o(v), om = o(71), and o; € X
forie{l,...;om—1}. Let 0 =ty < t; < -+ <tpmp1 = 1. Then, if (a(t),B(t)) € Fy,(L)
for each t € [t;,ti1], and additionally (a(t), B(t)) € Fo (L —1) N Fo,,, (L — 1) for each t;
with i € {1,...,m}, this corresponds to a regular homotopy of cost at most L.

Proof. We use geodesics of o; for t € [t;,t;1+1], and they move continuously. By Lemma 3,
we can find a homotopy B; of cost at most L if the geodesics of o; and 0,41 based at «(t)
and S(t) both have length at most L — 1. Furthermore, since («(t), 5(t)) € Fo, (L) for
each t € [t;,t;11], we can find a homotopy S; of cost at most L between o; and o;11. <

Computing free space diagrams. To compute the free space diagram in our setting, we
subdivide the edges of f and g in such a way that for each pair of (subdivided) edges, the
length of the geodesic can be described as a quadratic function in two parameters a and b.
This subdivision is based on the lines through any pair of spikes and vertices of OR, and
finding their projection onto f or g, if any. In total, this yields subdivided curves f’ and ¢’
of O((n + k)?) vertices. Using a standard rotating sweep around every spike and vertex, we
can compute the projections in O((n + k)? log(n + k)) time and sort them along every edge
of f and g in the same time, giving the subdivided curves f’ and g¢'.

Now, given any straight homotopy class, or the homotopy class of 7 or =1, we compute
the quadratic function for each pair of edges (es, ey ) of f' and ¢’. To this end, we take
a straight homotopy class ¢ and determine the induced partition of K into K; and Ks.
Then we compute the convex hulls ghp (K1) and ghyp(K3) of Ky and K relative to the
domain R. Using the common inner tangents of ghy(K7) and ghz(K3) in R we can find all
pairs of edges (ef/, ey ) of f" and ¢’ for which the geodesic in ¢ is straight, and determine
the corresponding quadratic functions (which are ellipses). For other pairs of edges of f’
and ¢/, the geodesic contains vertices of ghy (K1), ghp(K>), and R itself, and their lengths
are determined by a hyperbolic part in a, a hyperbolic part in b, and a constant part (between
the first and last vertices not on f’ and ¢’). We fix an edge ey of ¢’ and traverse all edges of
/! sequentially, updating the three parts of the quadratic function when needed. Updates
of the constant part happen only at the ends of the geodesic, and amortized we can do all
updates in time linear in the number of parts of f’, that is, O((n + k)?).
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Hence, we can compute all quadratic functions for all straight homotopy classes in time
O(k?) (for the straight homotopy classes) times O((n + k)?) (for the number of segments of
g') times O((n + k)?) (for the number of segments of f’). In total, this is O((n + k)*k?) =
O(n*k?+ k) time. The O(n* +k*) cells of the free space diagram each have O(k?) quadratic
functions, at most one for each of the homotopy classes.

Decision algorithm. For a parameter L, we define the reachable free space as the set of
coordinates (o,a,b) € ¥ x [0,1] x [0,1], such that there exist continuous nondecreasing
surjections a: [0,1] — [0,a] and 8: [0,1] — [0,b], a value m, values 0 = tg < t; < --- <
tm+1 = 1, and homotopy classes o; € ¥ with o9 = o(79) and o, = o, such that for each ¢ €
[ti, tiv1], we have (a(t), 8(t)) € Fs, (L) and for each i € {1,...,m}, we have (a(t;), 8(t;)) €
J:Ui(L - 1) n ]:Ui+1
points f(a) and g(b) that have a monotone regular homotopy from G,,(0,0) to G, (f(a), g(b))
of cost at most L. Deciding whether a regular homotopy of at most a certain cost L exists is

(L — 1). The reachable free space corresponds to the classes o and

then equivalent to testing whether (o(71), 1, 1) lies in the reachable free space for parameter L.
We can compute the reachable free space using dynamic programming. In contrast algorithms
for most variants of the Fréchet distance, which need only information about the free space
on the boundary of cells, we also need information about their interiors. In our dynamic
program, we compute the reachable free space on the boundary of each cell.

The restriction of the free space to any cell and homotopy class is convex. Therefore, if a
point (o, a,b) lies in the reachable free space, then for all @’ > a and b’ > b, in the same cell

s (a,b), if (a/,b') € Fy(e)(L), then (o,a’,b") also lies in the reachable free space. Moreover,
for o and o’ € ¥, if (a,b) € Fo(L—1) and (a,b) € F,(L—1), then (o, a, b) lies in the reachable
free space if and only if (o/,a,b) lies in the reachable free space. Our dynamic program
starts as follows: for a homotopy of cost at most L to exist, check whether (0,0) € F,,(L).
If so, (09,0,0) lies in the reachable free space, and otherwise the reachable free space is
empty. Now we propagate the reachable free space on a cell-by-cell basis, maintaining for
each cell [a,a’] x [b,b'] and for each homotopy class o, two pieces of information. First, the
minimum a* € [a,a’] for which (o, a*,b) lies in the reachable free space (if any); and second,
the minimum b* € [b, '] for which (o, a,b*) lies in the reachable free space (if any). The first
piece of information can be propagated to a neighboring cell [a,a’] x [V/,b"], and the second
piece can be propagated to a neighboring cell [a’,a”] x [b,V].

To propagate this information, we use a horizontal sweep line that maintains the reachable
free space intersecting the sweep line for the cell [a,a’] x [b,b'] in each of the O(k?) relevant
homotopy classes, based on the coordinates (o, a, b*) and (o, a*,b) in each of those homotopy
classes. Naively, we can propagate this information in O(k®) time per cell, using the
coordinates of the O(k*) intersections of the boundary of free space cells from different
homotopy classes as events for the sweep line.

After propagating the information through all O(n* + k%) cells of the free space in
O(n*kS + k19) time, we can return whether (o(v1), 1, 1) lies in the reachable free space to
decide whether there exists a homotopy of cost at most L.

Exact computation. The candidate values for the minimum-cost regular homotopy depend
on the values of L where the a- or b-coordinates of different intersections align. There
are O(((n + k)2k*)?) intersections that can align in this way, which yields O(n%k® + k'2)
critical values, which we can enumerate in O(1) time per value. We perform a binary
search over these critical values, using linear-time median finding and running the decision
procedure O(lognk) times to find the minimum cost of a regular homotopy. Doing so, we
compute the homotopy height in O(n*k®logn + n*k® + k12) time.
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4 Conclusion

We have shown that in a spiked plane with polygonal boundary, we can compute the homotopy
height between two curves on the boundary in polynomial time for various cases. In particular,
this holds if all spikes have the same (unit) weight, or if the two curves together form the
entire boundary of the domain. We also provide a 2-approximation algorithm for the general
case. We have also shown that intermediate leashes may require many inflection points for
an optimal homotopy, even if the polygonal domain is convex. This complexity of the leash
has been preventing us from developing a polynomial-time algorithm, and thus it remains
open whether the general case can be solved optimally in polynomial time.

Future work. Various other settings can also be studied. The case where f and g are not
on the boundary of the polygonal domain is a natural first step. However, the monotonicity
[5] that supports our results is not known to hold in this case, which is likely a premise for
efficient optimal algorithms. Our approximation algorithm (Lemma 4) extends to deal with
the case that ~y and 7; are still on the boundary, since the algorithm upon which it is based
[13] does not require f and g to lie on the boundary. If the initial leashes vy and v, are
no longer specified, we readily get a 2-approximation algorithm by using the algorithm by
Chambers et al. [6] to solve the decision variant combined with an appropriate search.
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