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Abstract
In the Tree Augmentation problem we are given a tree T = (V, F ) and a set E ⊆ V × V of
edges with positive integer costs {ce : e ∈ E}. The goal is to augment T by a minimum cost edge
set J ⊆ E such that T ∪ J is 2-edge-connected. We obtain the following results.

Recently, Adjiashvili [SODA 17] introduced a novel LP for the problem and used it to break
the 2-approximation barrier for instances when the maximum cost M of an edge in E is
bounded by a constant; his algorithm computes a 1.96418 + ε approximate solution in time
n(M/ε2)O(1)

. Using a simpler LP, we achieve ratio 12
7 + ε in time 2O(M/ε2). This also gives

ratio better than 2 for logarithmic costs, and not only for constant costs. In addition, we will
show that (for arbitrary costs) the problem admits ratio 3/2 for trees of diameter ≤ 7.
One of the oldest open questions for the problem is whether for unit costs (when M = 1) the
standard LP-relaxation, so called Cut-LP, has integrality gap less than 2. We resolve this
open question by proving that for unit costs the integrality gap of the Cut-LP is at most
28/15 = 2 − 2/15. In addition, we will suggest another natural LP-relaxation that is much
simpler than the ones in previous work, and prove that it has integrality gap at most 7/4.
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1 Introduction

We consider the following problem:

Tree Augmentation
Input: A tree T = (V, F ) and an additional set E ⊆ V × V of edges with positive
integer costs c = {ce : e ∈ E}.
Output: A minimum cost edge set J ⊆ E such that T ∪ J is 2-edge-connected.

The problem was studied extensively, cf. [11, 15, 3, 21, 8, 9, 4, 19, 5, 17, 2, 16]. For a long
time the best known ratio for the problem was 2 for arbitrary costs [11] and 1.5 for unit
costs [8, 17]; see also [9] for a simple 1.8-approximation algorithm. It is also known that the
integrality gap of a standard LP-relaxation for the problem, so called Cut-LP, is at most 2
[11] and at least 1.5 [4]. Several other LP and SDP relaxations were introduced to show that
the algorithm in [8, 9, 17] achieves ratio better than 2 w.r.t. these relaxations, cf. [2, 16]. For
additional algorithms with ratio better than 2 for restricted versions see [5, 19].

Let M denote the maximum cost of an edge in E. Recently, Adjiashvili [1] introduced a
novel LP for the problem – so called the k-Bundle-LP, and used it to break the natural
2-approximation barrier for instances when M is bounded by a constant. To introduce this
result we need some definitions.

The edges of T will be called T -edges to distinguish them from the edges in E. Tree
Augmentation can be formulated as a problem of covering the T -edges by paths. Let Tuv
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Figure 1 (a) complete rooted subtree; (b) full rooted subtree; (c) branch of a full rooted subtree.

denote the unique uv-path in T . We say that an edge uv covers a T -edge f if f ∈ Tuv.
Then T ∪J is 2-edge-connected if and only if J covers T . For a set B ⊆ F of T -edges let ψ(B)
denote the set of edges in E that cover some f ∈ B, and τ(B) the minimum cost of an edge
set in E that covers B. For J ⊆ E let x(J) =

∑
e∈J xe. The standard LP for the problem

which we call the Cut-LP seeks to minimize cTx =
∑
e∈E cexe over the Cut-Polyhedron

ΠCut =
{
x ∈ RE : x(ψ(f)) ≥ 1 ∀f ∈ F, x ≥ 0

}
.

The k-Bundle-LP of Adjiashvili [1] adds over the standard Cut-LP the constraints∑
e∈ψ(B) cexe ≥ τ(B) for any forest B in T that has at most k leaves, where k = Θ(M/ε2).

The algorithm of [1] computes a 1.96418 + ε approximate solution w.r.t. the k-Bundle-LP
in time nkO(1) . For unit costs, a modification of the algorithm achieves ratio 5/3 + ε.

Here we observe that it is sufficient to consider just certain subtrees of T instead of forests.
Root T at some node r. The choice of r defines an ancestor/descendant relation on V . The
leaves of T are the nodes in V \ {r} that have no descendants. For any subtree S of T , the
node s of S closest to r is the root of S, and the pair S, s is called a rooted subtree of
T, r; we will not mention the roots of trees if they are clear from the context. We say that S
is a complete rooted subtree if it contains all descendants of s in T , and a full rooted
subtree if for any non-leaf node v of S the children of v in S and T coincide; see Fig. 1(a,b).
A branch of S, or a branch hanging on s, is a rooted subtree B of S induced by the root
s of S and the descendants in S of some child s′ of s; see Fig. 1 (c). We say that a subtree
B of T is a branch if it is a branch of a full rooted subtree, or if it is a full rooted subtree
with root r. Equivalently, a branch is a union of a full rooted subtree and its parent T -edge.

Let Bk denote the set of all branches in T with less than k leaves. The k-Branch-LP
seeks to minimize cTx =

∑
e∈E cexe over the k-Branch-Polyhedron ΠBr

k ⊆ RE defined
by the constraints:∑

e∈ψ(f)

xe ≥ 1 ∀f ∈ F ,

∑
e∈ψ(B)

cexe ≥ τ(B) ∀B ∈ Bk ,

xe ≥ 0 ∀e ∈ E .

The set of constrains of the k-Branch-LP is a subset of constraints of the k-Bundle-LP of
Adjiashvili [1], hence the k-Branch-LP is both more compact and its optimal value is no
larger than that of the k-Bundle-LP. The first main result in this paper is:

I Theorem 1. For any 1 ≤ λ ≤ k − 1, Tree Augmentation admits a 4k · poly(n) time
algorithm that computes a solution of cost at most ρ+ 8

3
λM

k−λM + 2
λ times the optimal value

of the k-Branch-LP, where ρ = 12
7 for arbitrary costs and ρ = 1.6 for unit costs.
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For a given ε, choosing properly λ = Θ(1/ε) and k = Θ(M/ε2) gives ratio ρ+ ε in time
2O(M/ε2) · poly(n).

We note that in parallel to our work Fiorini, Groß, Könemann, and Sanitá [10] augmented
the k-Bundle LP of [1] by additional constraints – {0, 1

2}-Chvátal-Gomory Cuts, to achieve
ratio 1.5 + ε in n(M/ε2)O(1)

time, thus almost matching the best known ratio for unit costs
[17]. Our result in Theorem 1, done independently, shows that already the k-Bundle LP
has integrality gap closer to 1.5 than to 2. Our version of the algorithm of [1] is also simpler
than the one in [10]. In fact, combining our approach with [10] enables to achieve ratio
1.5 + ε in 2O(M/ε2) · poly(n) time. Note that this allows to achieve this ratio for logarithmic
costs, and not only for constant costs.

Let diam(T ) denote the diameter of T . Tree Augmentation admits a polynomial time
algorithm when diam(T ) ≤ 3. If diam(T ) = 2 then T is a star and we get the Edge-Cover
problem, while the case diam(T ) = 3 is reduced to the case diam(T ) = 2 by “guessing”
some optimal solution edge that covers the central T -edge. The problem is NP-hard when
diam(T ) = 4 even for unit costs [11]. We prove that for arbitrary costs Tree Augmentation
with trees of diameter ≤ 7 admits ratio 3/2.

Our second main result resolves one of the oldest open questions concerning the problem –
whether for unit costs the integrality gap of the Cut-LP is less than 2. This was conjectured
in the 90’s by Cheriyan, Jordán & Ravi [3] for arbitrary costs, but so far there was no real
evidence for this even for unit costs. Our second main result resolves this old open question.

I Theorem 2. For unit costs, the integrality gap of the Cut-LP is at most 28/15 = 2−2/15.

In addition, we will suggest another natural LP-relaxation that is much simpler than the
ones in previous work, and prove that for unit costs it has integrality gap at most 7/4.

2 The algorithm (Theorem 1)

The Theorem 1 algorithm is a modification of the algorithm of Adjiashvili [1]. We emphasize
some differences. We use the k-Branch-LP instead of the k-Bundle-LP of [1]. But, unlike
[1], we do not solve our LP at the beginning. Instead, we combine binary search with the
ellipsoid algorithm as follows. We start with lower and upper bounds p and q on the value of
the k-Branch-LP, e.g., p = 0 and q is the cost of some feasible solution to the problem.
Given a “candidate” x with q ≤ cTx ≤ p, the outer iteration (see Algorithm 1) of the entire
algorithm either returns a solution of cost at most (ρ+ 8

3
λM

k−λM + 2
λ )cTx or a constraint of the

k-Branch-LP violated by x; we show that this can be done in time 4k · poly(n), rather than
in time nkO(1) as in [1]. We set p← p+q

2 in the former case and q ← p+q
2 in the latter case

and continue to the next iteration, terminating when p− q is small enough. This essentially
gives a 4k · poly(n) time separation oracle for the k-Branch-LP (if a violated k-branch
constraint is found). Since the ellipsoid algorithm uses a polynomial number of calls to the
separation oracle, the running time is 4k · poly(n). Note that checking whether x ∈ ΠCut is
trivial, hence for simplicity of exposition we will assume that the “candidate” x is in ΠCut.

For a set S of T -edges we denote by T/S the tree obtained from T by contracting every
T -edge of S. This defines a new Tree Augmentation instance, where contraction of
a T -edge uv leads to shrinking u, v into a single node in the graph (V,E) of edges. In
the algorithm, we repeatedly take a certain complete rooted subtree Ŝ, and either find a
k-branch-constraint violated by some branch in Ŝ, or a “cheap” cover JS of a subset S of the
T -edges of Ŝ; in the latter case, we add JS to our partial solution J , contract Ŝ, and iterate
on the instance T ← T/Ŝ. At the end of the loop, the edges that are still not covered by the
partial solution J are covered by a different procedure, by a total cost 2

λ · c
Tx, as follows.

ESA 2017
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Figure 2 Branches hanging on s after contracting S′; λ-thick T -edges are shown by thick lines.

We call a T -edge f ∈ F λ-thin if x(ψ(f)) ≤ λ, and f is λ-thick otherwise. We need the
following lemma from [1], for which we provide a proof for completeness of exposition.

I Lemma 3 ([1]). There exists a polynomial time algorithm that given x ∈ ΠCut, λ > 1, and
a set F ′ ⊆ F of λ-thick T -edges computes a cover J ′ of F ′ of cost ≤ 2

λ · c
Tx.

Proof. Since all T -edges in F ′ are λ-thick, x/λ is a feasible solution to the Cut-LP for
covering F ′. Thus any polynomial time algorithm that computes a solution J ′ of cost at
most 2 times the optimal value of the Cut-LP for covering F ′ has the desired property.
There are several such algorithms, see [11, 12, 14]. J

We say that a complete rooted subtree S of T is a (k, λ)-subtree if S has at least k leaves
and if either the parent T -edge f of S is λ-thin or s = r. For λ = Θ(1/ε) and k = Θ(M/ε2)
we choose Ŝ to be an inclusionwise minimal (k, λ)-subtree. Let us focus on the problem of
covering such Ŝ. Let S′ be the set of T -edges of the inclusionwise maximal subtree of Ŝ that
contains the root s of Ŝ and has only λ-thick T -edges (possibly S = ∅); see Fig. 2(a). We
postpone covering the T -edges in S′ to the end of the algorithm, so we contract S′ into s and
consider the tree S ← Ŝ/S′; see Fig. 2(b). In S, every branch B hanging on s has less than k
leaves, by the minimality of S, hence it has a corresponding constraint in the k-Branch-LP.
We will show that for a k-branch B an optimal set of edges that covers B can be computed
in time 4k · poly(n). If

∑
e∈ψ(B) cexe < τ(B) for some branch B hanging on s in S, then we

return the corresponding k-branch constraint violated by x; otherwise, we will show how to
compute a “cheap” cover of S. More formally, in the next section we will prove:

I Lemma 4. Suppose that we are given an instance of Tree Augmentation and x ∈ ΠCut

such that any complete rooted proper subtree of the input tree has less than k leaves. Then
there exists a 4k · poly(n) time algorithm that either finds a k-branch constraint violated by x,
or computes a solution of cost ≤ ρ

∑
e∈E\R cexe + 4

3
∑
e∈R cexe, where ρ is as in Theorem 1

and R is the set of edges in E incident to the root.

To find a cheap covers of S, we consider the Tree Augmentation instance obtained from
T/S′ by contacting into s all nodes not in S. Note that every edge that was in ψ(S) ∩ ψ(f)
is now incident to the root. Thus since ρ ≥ 4

3 , Lemma 4 implies:

I Corollary 5. There exists a 4k · poly(n) time algorithm that either finds a k-branch-
constraint violated by x, or a cover JS of S of cost c(JS) ≤ ρ

∑
e∈γ(S)

cexe + 4
3
∑

e∈ψ(f)

cexe,

where ρ is as in Theorem 1 and γ(S) denotes the set of edges with both endnodes in S.

The outer iteration of the algorithm is as follows:
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Algorithm 1: Outer-Iteration(T = (V, F ), E, x, c, k, r, λ)
1 J ← ∅, F ′ ← ∅
2 while do
3 T has at least 2 nodes
4 let Ŝ be an inclusionwise minimal (k, λ)-subtree of T
5 let S′ be the edge-set of the inclusionwise maximal subtree of Ŝ that contains the

root s of Ŝ and has only λ-thick edges
6 apply the algorithm from Corollary 5 on S ← Ŝ/S′

7 if the algorithm returns a cover JS of S do: F ′ ← F ′ ∪ S′, J ← J ∪ JS , T ← T/Ŝ

8 else, return a k-branch constraint violated by x and STOP compute a cover J ′ of F ′
of cost c(J ′) ≤ 2

λ · c
Tx using the algorithm from Lemma 3

9 return J ∪ J ′

Note that at step 7 the T -edges in F ′ are all λ-thick and thus Lemma 3 applies. We will now
analyze the performance of the algorithm assuming than no k-branch-constraint violated by
x was found. Let δ(S) denote the set of edges with exactly one endnode in S and γ(S) the
set of edges with both endnodes in S. Let f be the parent T -edge of S. Since f is λ-thin∑

e∈ψ(f)

cexe ≤
∑

e∈ψ(f)

Mxe ≤M · x(ψ(f)) ≤Mλ .

Since x(δ(v)) ≥ 1 for every leaf v of S, ce ≥ 1 for every e ∈ E, and since S is a (k, λ)-subtree

2
∑

e∈γ(Ŝ)

cexe =
∑
v∈Ŝ

∑
e∈δ(v)

cexe −
∑

e∈ψ(f)

cexe ≥
∑

v∈Ŝ\{s}

x(δ(v))− λM ≥ k − λM .

Consider a single iteration in the while-loop. Let ∆(cTx) denote the decrease in the
LP-solution value as a result of contracting Ŝ. Then

∆(cTx) =
∑

e∈γ(Ŝ)

cexe ≥
k − λM

2 .

On the other hand, by Lemma 4, the partial solution cost increase is bounded by

c(JS) ≤ ρ
∑

e∈γ(S)

cexe + 4
3
∑

e∈ψ(f)

cexe ≤ ρ
∑

e∈γ(Ŝ)

cexe + 4
3λM .

Thus
c(JS)

∆(cTx) ≤ ρ+ 8
3

λM

k − λM
.

The while-loop terminates when the LP-solution value becomes 0, hence by a standard local-
ratio/induction argument we get that at the end of the while-loop c(J) ≤

(
ρ+ 8

3
λM

k−λM

)
cTx.

At step 7 we add an edge set of cost ≤ 2
λc

Tx, and Theorem 1 follows. It only remains to
prove Lemma 4, which we will do in the subsequent sections.

2.1 Proof of Lemma 4
Assume that we are given an instance T = (V, F ), E, c, r of Tree Augmentation and x as
in Lemma 4. It is known that Tree Augmentation instances when T is a path can be
solved in polynomial time. This allows us to assume that the graph (V,E) is a complete
graph and that cuv = τ(Tuv) for all u, v ∈ V . Note that we use this assumption only in the
proof of Lemma 4, where the running time does not depend on the maximum cost M of an
edge in E. Let us say that an edge uv ∈ E is:

ESA 2017
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a cross-edge if r is an internal node of Tuv;
an in-edge if r does not belong to Tuv;
an r-edge if r = u or r = v;
an up-edge if one of u, v is an ancestor of the other.

For a subset E′ ⊆ E of edges the E′-up vector of x is obtained from x as follows: for
every non-up edge e = uv ∈ E′ increase xua and xva by xe and then reset xe to 0, where a
is the least common ancestor of u and v. The fractional cost of a set J of edges w.r.t. c
and x is defined by

∑
e∈J cexe. Let C in

x , Ccr
x , and Crx denote the fractional cost of in-edges,

cross-edges, and r-edges, respectively, w.r.t. c and x. We fix some x∗ ∈ ΠCut and denote
by C in, Ccr, and Cr the fractional cost of in-edges, cross-edges, and r-edges, respectively,
w.r.t. c and x∗. We give two rounding procedures, given in Lemmas 6 and 7. The rounding
procedure in Lemma 6 is similar to that of Adjiashvili [1], for which we present an improved
running time analysis.

I Lemma 6. There exists a 4k ·poly(n) time algorithm that either finds a k-branch inequality
violated by x∗, or returns an integral solution of cost at most C in + 2Ccr + Cr.

Proof. Let B be the set of branches hanging on r. For every B ∈ B compute an optimal
solution JB. If for some B ∈ B we have τ(B) >

∑
e∈ψ(B) cex

∗
e then a k-branch inequality

violated by x∗ is found. Else, the algorithm returns the union J =
⋃
B∈B JB of the computed

edge sets. As every cross-edge has its endnodes in two distinct branches, while every in-edge
or r-edge has its both endnodes in the same branch, we get

c(J) ≤
∑
B∈B

τ(B) ≤
∑
B∈B

∑
e∈ψ(B)

cex
∗
e =

∑
B∈B

 ∑
e∈δ(B)

cex
∗
e +

∑
e∈γ(B)

cex
∗
e

 = 2Ccr + C in + Cr .

It remains to show that an optimal solution in each branch of r can be computed in time
4k · poly(n). More generally, we will show that Tree Augmentation instances with k leaves
can be solved optimally within this time bound. Recall that we may assume that the graph
(V,E) is a complete graph and that cuv = τ(Tuv) for all u, v ∈ V . We claim that then we
can assume that T has no node v with degT (v) = 2. This is a well known reduction, cf. [20].
In more details, we show that any solution J can be converted into a solution of no greater
cost that has no edge incident to v, and thus v can be “shortcut”. If J has edges uv, vw then
it is easy to see that (J \ {uv, vw}) ∪ {uw} is also a feasible solution, of cost at most c(J),
since cuw ≤ cuv + cvw. Applying this operation repeatedly we may assume that degJ (v) ≤ 1.
If degJ (v) = 0, we are done. Suppose that J has a unique edge e = vw incident to v. Let vu
and vu′ be the two T -edges incident to v, where assume that vu′ is not covered by e. Then
there is an edge e′ ∈ J that covers vu′. Since e′ is not incident to v, it must be that e′ covers
vu. Replacing e by the edge wu gives a feasible solution without increasing the cost.

Consequently, we reduce our instance to an equivalent instance with at most 2k − 1
tree edges. Now recall that Tree Augmentation is a particular case of the Min-Cost
Set-Cover problem, where the set F of T -edges are the elements and {Te : e ∈ E} are the
sets. The Min-Cost Set-Cover problem can be solved in 2n · poly(n) time via dynamic
programming, where n is the number of elements; such an algorithm is described in [7, Sect.
6.1] for unit costs, but the proof extends to arbitrary costs [6]. Thus our reduced Tree
Augmentation instance can be solved in 22k−1 · poly(n) ≤ 4k · poly(n) time. J

For the second rounding procedure Adjiashvili [1] proved that for any λ > 1 one can
compute in polynomial time an integral solution of cost at most 2λC in + 4

3
λ
λ−1C

cr . We prove:
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I Lemma 7. There exists a polynomial time algorithm that computes a solution of cost
4
3 (2C in + Ccr + Cr), and a solution of size 2C in + 4

3C
cr + Cr in the case of unit costs.

Consider the case of arbitrary bounded costs. If C in ≥ 2
5C

cr we use the rounding procedure
from Lemma 6 and the rounding procedure from Lemma 7 otherwise. In both cases we get
c(J) ≤ 12

7 (C in + Ccr) + 4
3C

r. In the case of unit costs, if C in ≥ 2
3C

cr we use the rounding
procedure from Lemma 6, and the procedure from Lemma 7 otherwise. In both cases we get
c(J) ≤ 1.6(C in + Ccr) + Cr.

Lemma 7 is proved in the next section. The proof relies on properties of extreme points
of the Cut-Polyhedron ΠCut that are of independent interest.

2.2 Properties of extreme points of the Cut-Polyhedron (Lemma 7)
W.l.o.g., we augment the Cut-LP by the constraints xe ≤ 1 for all e ∈ E, while using the
same notation as before. Then (the modified) Cut-LP always has an optimal solution x
that is an extreme point or a basic feasible solution of ΠCut. Geometrically, this means
that x is not a convex combination of other points in ΠCut; algebraically this means that
there exists a set of |E| inequalities in the system defining ΠCut such that x is the unique
solution for the corresponding linear equations system. These definitions are known to be
equivalent and we will use both of them, cf. [18].

A set family L is laminar if any two sets in the family are either disjoint or one contains
the other. Note that Tree Augmentation is equivalent to the problem of covering the
laminar family of the node sets of the complete rooted proper subtrees of T , where an edge
covers a node set S if it has exactly one endnode in S. In particular, note that the constraint∑
e∈ψ(f) xe ≥ 1 is equivalent to the constraint x(δ(S)) ≥ 1 where S is the node set of the

complete rooted subtree with parent T -edge f .

I Lemma 8. Let (V,E) be a graph, L a laminar family on V , and b ∈ NL. Suppose that for
every A ∈ L there is no edge between two distinct children of S and that the equation system
{x(δ(S)) = bS : S ∈ L} has a unique solution 0 < x∗ < 1. Then x∗e = 1/2 for all e ∈ E.
Furthermore, each endnode of every e ∈ E belongs to some S ∈ L.

Proof. For every uv ∈ E put one token at u and one token at v. The total number of tokens
is 2|E|. For S ∈ L let t(S) be the number of tokens placed at nodes in S that belong to
no child of S. Since L is laminar, every token is placed in at most one set in L, and thus∑
S∈L t(S) ≤ 2|E|. Let S ∈ L and let C(S) be the set of children of S in L. Let ES be the

set of edges in δ(S) that cover no child of S, and EC(S) the set of edges not in δ(S) that cover
some child of S. Note that no e ∈ EC(S) connects two distinct children of S. Observe that

x∗(ES)− x∗(EC(S)) = x∗(δ(S))−
∑

C∈C(S)

x∗(δ(C)) = bS −
∑

C∈C(A)

bC ≡ b′S .

Thus x∗(ES) − x∗(EC(S)) is an integer. We cannot have |ES | = |EC(S)| = 0 by linear
independence, and we cannot have |ES |+ |EC(S)| = 1 by the assumption 0 < x < 1. Thus
|ES | + |EC(S)| ≥ 2. Since no e ∈ E goes between children of S, t(S) ≥ |ES | + |EC(S)|.
Consequently, since

∑
S∈L t(S) ≤ 2|E|, we get: t(S) = |ES | + |EC(S)| = 2 ∀S ∈ L.

Moreover, if an endnode of some e ∈ E belongs to no S ∈ L, then we get the contra-
diction

∑
S∈L t(S) ≥ 2|E|+ 1. Now we replace our equation system by an equivalent one{

x(ES)− x(EC(S)) = b′S : S ∈ L
}
obtained by elementary operations on the rows of the coef-

ficients matrix. Note that x∗ is also a unique solution to this new equation system. Moreover,
this equation system has exactly two variables in each equation and all its coefficients are
integral. By [13], the solution of such systems is always half-integral. J

ESA 2017
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Let us say that Tree Augmentation instance is spider-shaped if every in-edge in
E is an up-edge. By a standard “iterative rounding” argument (cf. [18]), and using the
correspondence between rooted trees and laminar families, we get from Lemma 8:

I Corollary 9. Suppose that we are given a spider-shaped Tree Augmentation instance and
b ∈ NF . Let x be an extreme point of the polytope {x ∈ RE : x(ψ(f)) ≥ bf ∀f ∈ F, 0 ≤ x ≤ 1}.
Then x is half-integral (namely, xe ∈ {0, 1

2 , 1} for all e ∈ E) and xe ∈ {0, 1} for every e ∈ δ(r).

The algorithm that computes an integral solution of cost 4
3 (2C in +Ccr +Cr) is as follows.

We obtain a spider-shaped instance by removing all non-up in-edges and compute an optimal
extreme point solution x to the Cut-LP. By Corollary 9, x is half-integral and xe ∈ {0, 1}
for every e ∈ δ(r). We take into our solution every edge e with xe = 1 and round the
remaining 1/2 entries using the algorithm of Cheriyan, Jordán & Ravi [3], that showed how
to round a half-integral solution to the Cut-LP to integral solution within a factor of 4/3.
Thus we can compute a solution J of cost at most c(J) ≤ 4

3c
Tx ≤ 4

3c
Tx∗. We claim that

cTx ≤ 2C in + Ccr + Cr. To see this let E in be the set of in-edges and let x′ be the E in-up
vector of x∗. Then x′ is a feasible solution to the Cut-LP of value 2C in + Ccr + Cr, in the
obtained Tree Augmentation instance with all non-up in-edges removed. But since x is
an optimal solution to the same LP, we have cTx ≤ cTx′ = 2C in + Ccr + Cr. This concludes
the proof of Lemma 7 for the case of arbitrary costs.

Note that Corollary 9 implies a 4/3-approximation algorithm for spider-shaped Tree
Augmentation instances. Parallel to our work, a stronger result was proved in [10].

I Lemma 10 (Fiorini, Groß, Könemann & Sanitá [10]). Spider-shaped Tree Augmentation
instances can be solved optimally in polynomial time.

The following theorem illustrates an application of Lemma 10.

I Corollary 11. Tree Augmentation admits ratio 3/2 for trees of diameter ≤ 7.

Proof. The case diam(T ) = 7 is reduced to the case diam(T ) ≤ 6 by “guessing” some optimal
solution edge that covers the central T -edge. So assume that diam(T ) ≤ 6. Let r be a center
of T . Fix some optimal solution and let C in and Ccr denote the fractional cost of in-edges
and cross-edges in this solution. As before, apply the following two procedures.
1. Each branch B hanging on r is a tree of diameter ≤ 3, hence an optimal cover JB of B

can be computed in polynomial time. The union of the edge sets JB gives a solution of
cost at most C in + 2Ccr.

2. Compute an optimal solution of the spider-shaped instance obtained by removing all
non-up in-edges using Lemma 10; the cost of this solution is 2C in + Ccr.

Choosing the better among the two computed solutions gives a solution of cost at most
min{C in + 2Ccr, 2C in + Ccr}, while the optimal solution cost is C in + Ccr. It is easy to see
that the approximation ratio is bounded by 3/2; if C in ≤ Ccr then C in + 2Ccr ≤ 3

2 (C in +Ccr),
while if C in > Ccr then 2C in + Ccr < 3

2 (C in + Ccr). J

Corollary 11 can be used further to obtain ratio 9/5 for trees of diameter ≤ 15. In a
similar way, one can further obtain ratio better than 2 for trees of diameter ≤ 31, and so on,
but the ratio approaches 2 when the diameter becomes higher.

In the rest of this section we consider the case of unit costs. For this case we prove:

I Lemma 12. Let x be an extreme point of the polytope Π = {x ∈ ΠCut : C in
x = a,Ccr

x = b}
where a, b ≥ 0, such that xe > 0 for every cross-edge e. Then the graph (V,Ecr) of cross-edges
has no even cycle and each one of its connected components has at most one cycle.
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The proof of Lemma 12 will be given in the full version. From Lemma 12 we also get:

I Corollary 13. In the case of unit costs there exists a polynomial time algorithm that
computes x ∈ Π such that the graph (V,Ecr) of cross edges of positive x-value is a forest and
such that and C in

x = C in, Crx = Cr, and Ccr
x ≤ 4

3C
cr.

Proof. Let Π be as in Lemma 12 where a = C in and b = Cr and let x be an optimal extreme
point solution to the LP min{

∑
e∈E xe : x ∈ Π}. Let Q be a cycle of cross-edges and e the

minimum x-value edge in Q. We update x by adding xe to each of xe′ , xe′′ and setting xe = 0.
The increase in the value of x is at most 1

3
∑
e∈Q xe, and it is easy to see that x remains a

feasible solution. In this way we can eliminate all cycles, ending with x ∈ Π as required. J

Let x be as in Corollary 13 and let x′ be an E in-up vector of x. Note that x′ ∈ ΠCut, since
x ∈ ΠCut. We will show how to compute a solution J of size c(J) ≤ x′(E) ≤ 2C in + 4

3C
cr +Cr.

While there exists a pair of edges e = uv and e′ = u′v′ such that x′e, x′e′ > 0 and Tu′v′ ⊂ Tuv
we do x′e ← x′e + x′e′ and x′e′ ← 0. Then x′ remains a feasible solution to the Cut-LP
without changing the value (since we are in the case of unit costs). Hence we may assume
that there is no such pair of edges. Let E′ be the support of x′. If every leaf of T has some
cross-edge in E′ incident to it, then by the assumption above there are no up-edges. In this
case, since E′ is a forest, xe ≥ 1 for every e ∈ E′ and E′ is a solution as required.

Otherwise, there is a leaf v of T such that no cross-edge in E′ is incident to v. Then there
is a unique up-edge e incident to v, and x′e ≥ 1. We take such e into our partial solution,
updating x′ and E′ accordingly. Note that some cross-edges may become r-edges, but no
up-edge can become a cross-edge, and the set of cross-edges remains a forest. Applying this
as long as such leaf v exists, we arrive at the previous case, where adding E′ to the partial
solution gives a solution as required. This concludes the proof of Lemma 7.

3 An upper bound on the integrality gap of the Cut-LP (Theorem 2)

Let us write the Cut-LP as well as its dual LP explicitly:

min
∑
e∈E

xe max
∑
f∈F

yf

s.t.
∑

e∈ψ(f)

xe ≥ 1 ∀f ∈ F s.t.
∑

ψ(f)3e

yf ≤ 1 ∀e ∈ E

xe ≥ 0 ∀e ∈ E yf ≥ 0 ∀f ∈ F

To prove that the integrality gap of the Cut-LP is at most 28/15 = 2−2/15 we will show
that a simplified version from [16] of the algorithm of [9] has the desired performance. For
the analysis, we will use the dual fitting method. We will show how to construct a (possibly
infeasible) dual solution y ∈ RF+, that has the following two properties:
Property 1. y fully pays for the constructed solution J , namely, |J | ≤

∑
f∈F yf .

Property 2. y may violate the dual constraints by a factor of at most ρ = 28/15.
From the second property we get that y/ρ is a feasible dual solution, hence by weak duality
the value of y is at most ρ times the optimal value of the Cut-LP. Combining with the first
property we get that |J | is at most ρ times the optimal value of the Cut-LP.

The algorithm of [9, 16] iteratively finds a pair T ′, J ′ where T ′ is a subtree of the
current tree and J ′ covers T ′, contracts T ′, and adds J ′ to J . We refer to nodes created by
contractions as compound nodes and denote by C the set of non-leaf compound nodes of
the current tree. Non-compound nodes are referred to as original nodes. For technical
reasons, the root r is considered as a compound node, hence initially C = {r}.
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a b’b a

(ii)

b’

(i)

b

w

Figure 3 Dangerous trees. T -edges are shown by bold lines, edges in M by dashed lines, other
existing edges by thin solid lines, and edges that cannot exist by dotted lines. Original nodes are
shown by black circles, while nodes that may be compound are shown by gray circles. Some of the
edges may be paths, possibly of length 0. A dangerous tree of type (i) has two nodes with 2 children
each, and contracting the path between these two nodes results in a dangerous tree of type (ii).

To identify a pair T ′, J ′ as above, the algorithm maintains a matching M on the original
leaves. We denote by U the leaves of the current tree unmatched by M . A subtree T ′ of T is
M-compatible if for any bb′ ∈M either both b, b′ belong to T ′ or none of b, b′ belongs to
T ′; in this case we will also say that a contraction of T ′ is M -compatible. Assuming that
all compound nodes were created by M -compatible contractions, then the following type of
contractions is also M -compatible.

I Definition 14 (greedy contraction). Adding to the partial solution J an edge e with both
endnodes in U and contracting Te is called a greedy contraction.

Given a complete rooted M -compatible subtree T ′ of T let us use the following notation:
M ′ = M(T ′) is the set of edges in M with both endnodes in T ′.
U ′ = U(T ′) is the set of unmatched leaves of T ′.
C ′ = C(T ′) is the set of non-leaf compound nodes of T ′.

I Definition 15 (semi-closed tree). Let T ′ be a complete rooted subtree of T . For a subset
A of nodes of T ′ we say that T ′ is A-closed if there is no edge from A to a node outside
T ′, and T ′ is A-open otherwise. Given a matching M on the leaves of T , we say that T ′ is
semi-closed if it is M -compatible and U ′-closed.

The following definition characterizes semi-closed subtrees that we want to avoid. We
will say that T ′ with 3 leaves is of type (i) if it has two nodes with exactly two children each
(see the node w and its father in Fig. 3(i)) and T ′ is of type (ii) otherwise (see Fig. 3(ii)).

I Definition 16 (dangerous semi-closed tree). A semi-closed subtree T ′ of T is dangerous
if it is as in Fig. 3. Namely, |M ′| = 1, |U ′| = 1, |C ′| = 0, and if a is the leaf of T ′ unmatched
by M then: T ′ is a-closed and there exists an ordering b, b′ of the matched leaves of T ′ such
that ab′ ∈ E, the contraction of ab′ does not create a new leaf, and T ′ is b-open.

In [9, 17] the following is proved:

I Lemma 17 ([9, 17]). Suppose that the current tree T was obtained from the initial tree by
sequentially applying a greedy contraction or a semi-closed tree contraction, and that T has no
greedy contraction. Then there exists a polynomial time algorithm that finds a non-dangerous
semi-closed subtree T ′ of T and a cover J ′ of T ′ of size |J ′| = |M ′|+ |U ′|.

I Definition 18 (twin-edge, stem). An edge on L is a twin-edge if its contraction results in
a new leaf. The least common ancestor of the endnodes of a twin-edge is a stem.

Let L(M) denote the set of leaves matched by M . The algorithm is as follows:
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M M

(b)

4/5
load=28/15

(a)

load=28/15

4/5

1

14/15
load=28/15

2/15

2/15
1 1 1

4/5 4/514/15

Figure 4 (a) Initial duals at step 1 of Algorithm 3 and the initial loads. Here there is one stem
and |M | = 1. (b) After contracting the twin-edge, the new compound node has credit 1.

Algorithm 2: Iterative-Contraction(T = (V, F ), E)
1 initialize: M ← inclusionwise maximal matching on L among non-twin edges

J ← inclusionwise maximal matching on L \ L(M)
2 while do
3 T has at least 2 nodes
4 exhaust greedy contractions
5 if T has at least 2 nodes then for T, J ′ as in Lemma 17 do: J ← J ∪ J ′, T ← T/T ′

return J

We now describe how to construct y satisfying Properties 1 and 2. For simplicity of exposition,
we use the notation yv and yT ′ to denote the dual variable of the parent edge of v and of T ′,
respectively. With this notation, Algorithm 3 incorporates into Algorithm 2 the steps of the
construction of the dual (possibly infeasible) solution y.

Algorithm 3: Dual-Construction(T = (V, F ), E)
1 Initialize: M ← inclusionwise maximal matching on L among non-twin edges

J ← inclusionwise maximal matching on L \ L(M) (see Fig. 4)
• yv ← 1 if v ∈ L \ L(M ∪ J)
• yv ← 4/5 if v ∈ L(M)
• yv ← 14/15 if v ∈ L(J)
• yv ← 2/15 if v is a stem of an edge in J

2 while do
3 T has at least 2 nodes
4 exhaust greedy contractions
5 if T has at least 2 nodes then for T, J ′ as in Lemma 17 do: J ← J ∪ J ′, T ← T/T ′

Case 1: |C ′| = 0 and either: |M ′| = 0 or |M ′| = 1, |U ′| ≥ 2
• yT ′ ← 2/5
• yv ← yv + 2/5 if v ∈ U ′ and yv ← yv − 2/5 if v ∈ L′ \ U ′

Case 2: |C ′| = 0 and |M ′| = |U ′| = 1
• update y as shown in Fig. 5 return J

We now define certain quantities that will help us to prove that at the end of the algorithm
|J | ≤

∑
f∈F yf and that y violates the dual constraints by a factor of at most 28/15.

I Definition 19 (load of an edge). Given y ∈ RF+ and an edge e = uv, the load σ(e) of e is
the sum of the dual variables in the constraint of e in the dual LP, namely σe =

∑
ψ(f)3e yf .

I Definition 20 (credit of a node). Consider a constructed dual solution y and a node c
of T/J during the algorithm, where c is obtained by contracting the subtree T ′ of T . The

ESA 2017
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Figure 5 Non-dangerous trees with |M ′| = |U ′| = 1 and duals updates in Case 2 of Algorithm 3.
Here “+” means increasing the dual variable by 2/5 and “−” means decreasing the dual variable by
2/5. All trees are a-closed. The trees in (a,b) are non-dangerous trees of type (i), and the trees in
(c,d,e) are non-dangerous trees of type (ii). In (a) the edge ab′ is missing and in (b) ab′ is present
and T ′ is b-closed. In (c) both ab and ab′ are present, hence to be non-dangerous the tree must be
both b′-closed and b-closed. In (d) ab′ is present hence the tree must be b-closed; the case when ab
present and the tree is b′-closed is identical. In (e) both ab and ab′ are missing.

credit π(c) is defined as follows. Let π′(c) be the sum of the dual variables y of the edges of
T ′ and the parent edge of v minus the number of edges used by the algorithm to contract T ′
into c. Then π(c) = π′(c) + 1 if r ∈ T ′ and π(c) = π′(c) otherwise.

We need to prove that at the end of the algorithm, σ(e) ≤ 28/15 for all e ∈ E and that
the unique node of T has credit ≥ 1. For an edge e = uv the level `(e) of e is the number of
endnodes of e in the leaves and compound nodes of T . Clearly, `(e) ∈ {0, 1, 2} and if both
endnodes of e lie in the same compound node then `(e) = 2. In the full version we prove:

I Lemma 21. At the end of step 1 of the algorithm, and then at the end of every iteration
in the “while” loop, the following holds.

For any edge e: σ(e) ≤ 28
15 if `(e) = 2, σ(e) ≤ 16

15 if `(e) = 1, and σ(e) = 0 if `(e) = 0.
π(c) ≥ 1 if c is an unmatched leaf or a compound node of T .

The following LP-relaxation was suggested by the author several years ago. We call an
odd size set B of T -edges a bunch if no two edges of B lie on the same path in T . Let B
denote the set of bunches in T . For any B ∈ B at least wB = (|B|+ 1)/2 edges are needed
to cover B. The corresponding Bunch-LP and its dual LP are:

min
∑
e∈E

xe max
∑
B∈B

wByB

s.t.
∑

e∈ψ(B)

xe ≥ wB ∀B ∈ B s.t.
∑

ψ(B)3e

yB ≤ 1 ∀e ∈ E

xe ≥ 0 ∀e ∈ E yB ≥ 0 ∀B ∈ B

A k-bunch is a bunch of size k. Let k-Bunch-LP be the restriction of the Bunch-LP to
bunches of size ≤ k. Note that Theorem 1 says that the integrality gap of the 1-Bunch-LP
is at most 28/15. We can easily prove a much netter bound for the 3-Bunch-LP.

I Theorem 22. For unit costs, the integrality gap of the 3-Bunch-LP is at most 7/4.

Proof. We use the same algorithm but define the dual variables slightly differently. In the
initialization step we set yv ← 1 if v ∈ L \ L(M ∪ J), yv ← 3/4 if v ∈ L(M), yv ← 1/2 if
v ∈ L(J), and yB ← 1/2 if B is the set of the 3 T -edges incident to a stem of an edge in J .

In Case 1 we update yT ′ ← 1/2, yv ← yv + 1/2 if v ∈ U ′ and yv ← yv − 1/2 if v ∈ L′ \U ′.
In Case 2 we update y as shown in Fig. 5, where here “−” means decreasing the dual

variable by 1/2 and:
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In (a), yB ← yB + 1/2 where B is the 3-bunch formed by the parent edges of a, b, w.
In (b,c,d,e) “+” means increasing the dual variable by 1/2.

The rest of the proof of Theorem 22 is similar to that of Theorem 2, and will be presented in
the full version of the paper. J
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