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Abstract
Rips complexes are important structures for analyzing topological features of metric spaces. Un-
fortunately, generating these complexes constitutes an expensive task because of a combinatorial
explosion in the complex size. For n points in Rd, we present a scheme to construct a 3

√
2-

approximation of the multi-scale filtration of the L∞-Rips complex, which extends to a O(d0.25)-
approximation of the Rips filtration for the Euclidean case. The k-skeleton of the resulting
approximation has a total size of n2O(d log k). The scheme is based on the integer lattice and on
the barycentric subdivision of the d-cube.
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1 Introduction

Persistent homology [4, 10, 11] is a technique to analyze of data sets using topological
invariants. The idea is to build a multi-scale representation of the data set and to track its
homological changes across the scales.

A standard construction for the important case of point clouds in Euclidean space is the
Vietoris-Rips complex (or just Rips complex): for a scale parameter α ≥ 0, it is the collection
of all subsets of points with diameter at most α. When α increases from 0 to ∞, the Rips
complexes form a filtration, an increasing sequence of nested simplicial complexes whose
homological changes can be computed and represented in terms of a barcode.

The computational drawback of Rips complexes is their sheer size: the k-skeleton of a
Rips complex (that is, only subsets of size ≤ k + 1 are considered) for n points consists of
Θ(nk+1) simplices because every (k+ 1)-subset joins the complex for a sufficiently large scale
parameter. This size bound turns barcode computations for large point clouds infeasible
even for low-dimensional homological features1. This poses the question of what we can say
about the barcode of the Rips filtration without explicitly constructing all of its simplices.

∗ A longer version of the paper is available on arXiv [7].
† MK is supported by the Austrian Science Fund (FWF) grant number P 29984-N35.
‡ SR acknowledges support of NSF CRII grant CCF-1464276.
1 An exception are point clouds in R2 and R3, for which alpha complexes [10] are an efficient alternative.
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28:2 Improved Approximate Rips Filtrations with Shifted Integer Lattices

We address this question using approximation techniques. Barcodes form a metric space:
two barcodes are close if the same homological features occur on roughly the same range
of scales (see Section 2 for the precise definition). The first approximation scheme by
Sheehy [16] constructs a (1 + ε)-approximation of the k-skeleton of the Rips filtration using
only n( 1

ε )O(λk) simplices for arbitrary finite metric spaces, where λ is the doubling dimension
of the metric. Further approximation techniques for Rips complexes [9] and the closely
related Čech complexes [1, 5, 13] have been derived subsequently, all with comparable size
bounds. More recently, we constructed an approximation scheme for Rips complexes in
Euclidean space that yields a worse approximation factor of O(d), but uses only n2O(d log k)

simplices [8], where d is the ambient dimension of the point set.

Contributions. We present a 3
√

2-approximation for the Rips filtration of n points in
Rd in the L∞-norm , whose k-skeleton has size n2O(d log k). This translates to a O(d0.25)-
approximation of the Rips filtration in the Euclidean metric and hence improves the asymp-
totic approximation quality of our previous approach [8] with the same size bound.

On a high level, our approach follows a straightforward approximation scheme: given a
scaled and appropriately shifted integer grid on Rd, we identify those grid points that are
close to the input points and build an approximation complex using these grid points. The
challenge lies in how to connect these grid points to a simplicial complex such that close-by
grid points are connected, while avoiding too many connections to keep the size small. Our
approach first selects a set of active faces in the cubical complex defined over the grid, and
defines the approximation complex using the barycentric subdivision of this cubical complex.

We also describe an output-sensitive algorithm to compute our approximation. By
randomizing the aforementioned shifts of the grids, we obtain a worst-case running time of
n2O(d) log ∆ + 2O(d)M , where ∆ is spread of the point set (that is, the ratio of the diameter
to the closest distance of two points) and M is the size of the approximation.

Additionally, this paper makes the following technical contributions:
We follow the standard approach of defining a sequence of approximation complexes
and establishing an interleaving between the Rips filtration and the approximation. We
realize our interleaving using chain maps connecting a Rips complex at scale α to an
approximation complex at scale cα, and vice versa, with c ≥ 1 being the approximation
factor. Previous approaches [8, 9, 16] used simplicial maps for the interleaving, which
induce an elementary form of chain maps and are therefore more restrictive.
The explicit construction of such maps can be a non-trivial task. The novelty of our
approach is that we avoid this construction by the usage of acyclic carriers [15]. In
short, carriers are maps that assign subcomplexes to subcomplexes under some mild extra
conditions. While they are more flexible, they still certify the existence of suitable chain
maps, as we exemplify in Section 4. We believe that this technique is of general interest
for the construction of approximations of cell complexes.
We exploit a simple trick that we call scale balancing to improve the quality of approx-
imation schemes. In short, if the aforementioned interleaving maps from and to the
Rips filtration do not increase the scale parameter by the same amount, one can simply
multiply the scale parameter of the approximation by a constant. Concretely, given maps

φα : Rα → Xα ψα : Xα → Rcα

interleaving the Rips complex Rα and the approximation complex Xα, we can define
X ′α := Xα/√c and obtain maps

φ′α : Rα → X ′√cα ψα : X ′α → R√cα
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which improves the interleaving from c to
√
c. While it has been observed that the same

trick can be used for improving the worst-case distance between Rips and Čech filtrations2,
our work seems to be the first to make use of it in the context of approximations.

Our technique can be combined with dimension reduction techniques in the same way as
in [8] (see Theorems 19, 21, and 22 therein), with improved logarithmic factors. We omit the
technical details in this paper. Also, we point out that the complexity bounds for size and
computation time are for the entire approximation scheme and not for a single scale as in [8].
However, similar techniques as the ones exposed in Section 5 can be used to improve the
results of [8] to hold for the entire approximation as well3.

Outline. We start the presentation by discussing the relevant topological concepts in
Section 2. Then, we present few results about grid lattices in Section 3. Building on these
ideas, the approximation scheme is presented in Section 4. Computational aspects of the
approximation scheme are discussed in Section 5. We conclude in Section 6. Many of the
proofs are detailed in the arXiv version of our paper [7].

2 Background

We review the essential topological concepts needed; see [2, 6, 10, 15] for more details.

Simplicial complexes. A simplicial complex K on a finite set of elements S is a collection
of subsets {σ ⊆ S} called simplices such that each subset τ ⊂ σ is also in K. The dimension
of a simplex σ ∈ K is k := |σ| − 1, in which case σ is called a k-simplex. A simplex τ is a
subsimplex of σ if τ ⊆ σ. We remark that, commonly a subsimplex is called a ’face’ of a
simplex, but we reserve the word ’face’ for a different structure. For the same reason, we do
not introduce the common notation of of ’vertices’ and ’edges’ of simplicial complexes, but
rather refer to 0- and 1-simplices throughout. The k-skeleton of K consists of all simplices of
K whose dimension is at most k. For instance, the 1-skeleton of K is a graph defined by its
0-simplices and 1-simplices.

Given a point set P ⊂ Rd and a real number α ≥ 0, the (Vietoris-)Rips complex on
P at scale α consists of all simplices σ = (p0, . . . , pk) ⊆ P such that diam(σ) ≤ α, where
diam denotes the diameter. In this work, we write Rα for the Rips complex at scale α
with the Euclidean metric, and R∞α when using the metric of the L∞-norm. In either
way, a Rips complex is an example of a flag complex, which means that whenever a set
{p0, . . . , pk} ⊆ P has the property that every 1-simplex {pi, pj} is in the complex, then the
k-simplex {p0, . . . , pk} is also in the complex.

A simplicial complexK ′ is a subcomplex ofK ifK ′ ⊆ K. For instance, Rα is a subcomplex
of Rα′ for 0 ≤ α ≤ α′. Let L be a simplicial complex. Let ϕ̂ be a map which assigns to each
vertex of K, a vertex of L. A map ϕ : K → L is called a simplicial map induced by ϕ̂, if
for every simplex {p0, . . . , pk} in K, the set {ϕ̂(p0), . . . , ϕ̂(pk)} is a simplex of L. For K ′ a
subcomplex of K, the inclusion map inc : K ′ → K is an example of a simplicial map. A
simplicial map K → L is completely determined by its action on the 0-simplices of K.

2 Ulrich Bauer, private communication
3 An extended version of [8] containing these improvements is currently under submission.
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Chain complexes. A chain complex C∗ = (Cp, ∂p) with p ∈ N is a collection of abelian
groups Cp and homomorphisms ∂p : Cp → Cp−1 such that ∂p−1 ◦ ∂p = 0. A simplicial complex
K gives rise to a chain complex C∗(K) by fixing a base field F , defining Cp as the set of
formal linear combinations of p-simplices in K over F , and ∂p as the linear operator that
assigns to each simplex the (oriented) sum of its sub-simplices of codimension one4.

A chain map φ : C∗ → D∗ between chain complexes C∗ = (Cp, ∂p) and D∗ = (Dp, ∂
′
p)

is a collection of group homomorphisms φp : Cp → Dp such that φp−1 ◦ ∂p = ∂′p ◦ φp. For
example, a simplicial map ϕ between simplicial complexes induces a chain map ϕ̄ between
the corresponding chain complexes. This construction is functorial, meaning that for ϕ the
identity function on a simplicial complex K, ϕ̄ is the identity function on C∗(K), and for
composable simplicial maps ϕ,ϕ′, we have that ϕ ◦ ϕ′ = ϕ̄ ◦ ϕ̄′.

Homology and carriers. The p-th homology group Hp(C∗) of a chain complex is defined
as ker ∂p/im ∂p+1. The p-th homology group of a simplicial complex K, Hp(K), is the p-th
homology group of its induced chain complex. In either case Hp(C∗) is a F-vector space
because we have chosen our base ring F as a field. Intuitively, when the chain complex is
generated from a simplicial complex, the dimension of the p-th homology group counts the
number of p-dimensional holes in the complex (except for p = 0, where it counts the number
of connected components). We write H(C∗) for the direct sum of all Hp(C∗) for p ≥ 0.

A chain map φ : C∗ → D∗ induces a linear map φ∗ : H(C∗) → H(D∗) between the
homology groups. Again, this construction is functorial, meaning that it maps identity maps
to identity maps, and it is compatible with compositions.

We call a simplicial complex K acyclic, if K is connected and all homology groups Hp(K)
with p ≥ 1 are trivial. For simplicial complexes K and L, an acyclic carrier Φ is a map that
assigns to each simplex σ in K, a non-empty subcomplex Φ(σ) ⊆ L such that Φ(σ) is acyclic,
and whenever τ is a subsimplex of σ, then Φ(τ) ⊆ Φ(σ). We say that a chain c ∈ Cp(K) is
carried by a subcomplex K ′, if c takes value 0 except for p-simplices in K ′. A chain map
φ : C∗(K)→ C∗(L) is carried by Φ, if for each simplex σ ∈ K, φ(σ) is carried by Φ(σ). We
state the acyclic carrier theorem [15]:

I Theorem 1. Let Φ : K → L be an acyclic carrier.
There exists a chain map φ : C∗(K)→ C∗(L) such that φ is carried by Φ.
If two chain maps φ1, φ2 : C∗(K)→ C∗(L) are both carried by Φ, then φ∗1 = φ∗2.

Filtrations and towers. Let I ⊆ R be a set of real values which we refer to as scales. A
filtration is a collection of simplicial complexes (Kα)α∈I such thatKα ⊆ K ′α for all α ≤ α′ ∈ I.
For instance, (Rα)α≥0 is a filtration which we call the Rips filtration. A (simplicial) tower
is a sequence (Kα)α∈J of simplicial complexes with J being a discrete set (for instance
J = {2k | k ∈ Z}), together with simplicial maps ϕα : Kα → Kα′ between complexes at
consecutive scales. For instance, the Rips filtration can be turned into a tower by restricting to
a discrete range of scales, and using the inclusion maps as ϕ. The approximation constructed
in this paper will be another example of a tower.

We say that a simplex σ is included in the tower at scale α′, if σ is not the image of
ϕα : Kα → Kα′ , where α is the scale preceding α′ in the tower. The size of a tower is the
number of simplices included over all scales. If a tower arises from a filtration, its size is
simply the size of the largest complex in the filtration (or infinite, if no such complex exists).

4 To avoid thinking about orientations, it is often assumed that F = Z2 is the field with two elements.
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However, this is not true for in general for simplicial towers, since simplices can collapse
in the tower and the size of the complex at a given scale may not take into account the
collapsed simplices which were included at earlier scales in the tower.

Barcodes and Interleavings. A collection of vector spaces (Vα)α∈I connected with linear
maps λα1,α2 : Vα1 → Vα2 is called a persistence module, if λα,α is the identity on Vα and
λα2,α3 ◦ λα1,α2 = λα1,α3 for all α1 ≤ α2 ≤ α3 ∈ I for the index set I.

We generate persistence modules using the previous concepts. Given a simplicial tower
(Kα)α∈I , we generate a sequence of chain complexes (C∗(Kα))α∈I . By functoriality, the
simplicial maps ϕ of the tower give rise to chain maps ϕ between these chain complexes.
Using functoriality of homology, we obtain a sequence (H(Kα))α∈I of vector spaces with
linear maps ϕ∗, forming a persistence module. The same construction can be applied to
filtrations.

Persistence modules admit a decomposition into a collection of intervals of the form [α, β]
(with α, β ∈ I), called the barcode, subject to certain tameness conditions. The barcode of a
persistence module characterizes the module uniquely up to isomorphism. If the persistence
module is generated by a simplicial complex, an interval [α, β] in the barcode corresponds to
a homological feature (a “hole”) that comes into existence at complex Kα and persists until
it disappears at Kβ .

Two persistence modules (Vα)α∈I and (Wα)α∈I with linear maps λ·,· and µ·,· are said to
be weakly (multiplicatively) c-interleaved with c ≥ 1, if there exist linear maps γα : Vα →Wcα

and δα : Wα → Vcα, called interleaving maps, such that the diagram

· · · // Vαc
γ

""

λ // Vαc3 // · · ·

· · · // Wα
µ //

δ

==

Wαc2 //

δ

;;

· · ·

(1)

commutes for all α ∈ I, that is, µ = γ ◦ δ and λ = δ ◦γ (we have skipped the subscripts of the
maps for readability). In such a case, the barcodes of the two modules are 3c-approximations
of each other in the sense of [6]. We say that two towers are c-approximations of each other,
if their persistence modules that are c-approximations. Under the more stringent conditions
of strong interleaving, the approximation ratio can be improved. See [7] for more details.

3 Grids and cubes

Let I := {λ2s | s ∈ Z} with λ > 0 be a discrete set of scales. For a scale αs := λ2s, we
inductively define a grid Gs on scale αs which is a scaled and translated (shifted) version of
the integer lattice: for s = 0, Gs is simply λZd, the scaled integer grid. For s ≥ 0, we choose
an arbitrary O ∈ Gs and define

Gs+1 = 2(Gs −O) +O + αs
2 (±1, . . . ,±1) (2)

where the signs of the components of the last vector are chosen uniformly at random (and
the choice is independent for each s). For s ≤ 0, we define

Gs−1 = 1
2(Gs −O) +O + αs−1

2 (±1, . . . ,±1). (3)

It is then easy to check that 2 and 3 are consistent at s = 0. A simple instance of the
above construction is the sequence of lattices with Gs := αsZd for even s, and Gs :=
αsZd + αs−1

2 (1, . . . , 1) for odd s.

ESA 2017
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We motivate the shifting next. For a finite point set Q ⊂ Rd and x ∈ Q, the Voronoi
region V orQ(x) ⊂ Rd is the (closed) set of points in Rd that have x as one of its closest
points in Q. If Q = Gs, it is easy to see that the Voronoi region of any grid point x is a cube
of side length αs centered at x. The shifting of the grids ensures that each x ∈ Gs lies in
the Voronoi region of a unique y ∈ Gs+1. By an elementary calculation, we show a stronger
statement; for shorter notation, we write V ors(x) instead of V orGs(x).

I Lemma 2. Let x ∈ Gs, y ∈ Gs+1 such that x ∈ V ors+1(y). Then, V ors(x) ⊂ V ors+1(y).

Cubical complexes. The integer grid Zd naturally defines a cubical complex, where each
element is an axis-aligned, k-cube with 0 ≤ k ≤ d. Let � denote the set of all integer
translates of faces of the unit cube [0, 1]d, considered as a convex polytope in Rd. We call
the elements of � faces. Each face has a dimension k; the 0-faces, or vertices are exactly the
points in Zd. The facets of a k-face f are the (k − 1)-faces contained in f . We call a pair of
facets of f opposite if they are disjoint. Obviously, these concepts carry over to scaled and
translated versions of Zd, so we define �s as the cubical complex defined by Gs.

We define a map gs : �s → �s+1 as follows: for vertices, we assign to x ∈ Gs the (unique)
vertex y ∈ Gs+1 such that x ∈ V ors+1(y) (cf. Lemma 2). For a k-face f of �s with vertices
(p1, . . . , p2k ) in Gs, we set gs(f) to be the convex hull of {gs(p1), . . . , gs(p2k )}; the next
lemma shows that this is indeed a well-defined map (see [7]).

I Lemma 3. {gs(p1), . . . , gs(p2k )} are the vertices of a face e of Gs+1. Moreover, if e1, e2
are any two opposite facets of e, then there exists a pair of opposite facets f1, f2 of f such
that gs(f1) = e1 and gs(f2) = e2.

Barycentric subdivision. A flag in �s is a set of faces {f0, . . . , fk} of �S such that f0 ⊆
. . . ⊆ fk. The barycentric subdivision sds of �s is the (infinite) simplicial complex whose
simplices are the flags of �s; in particular, the 0-simplices of sds are the faces of �s. An
equivalent geometric description of sds can be obtained by defining the 0-simplices as the
barycenters of the faces in sds, and introducing a k-simplex between (k + 1) barycenters if
the corresponding faces form a flag. It is easy to see that sds is a flag complex. Given a face
f in �s, we write sd(f) for the subcomplex of sds consisting of all flags that are formed only
by faces contained in f .

4 Approximation scheme

We define our approximation complex at scale αs as a finite subcomplex of sds. To simplify
the subsequent analysis, we define the approximation in a slightly generalized form.

Barycentric spans. For a fixed s, let V denote a non-empty subset of Gs. We say that a
face f ∈ �s is spanned by V if f ∩ V 6= ∅ and is not contained in any facet of f . Trivially,
the vertices of �s spanned by V are precisely the points in V . We point out that the set of
spanned faces is not closed under taking sub-faces; for instance, if V consists of two antipodal
points of a d-cube, the only faces spanned by V are the d-cube and the two vertices.

The barycentric span of V is the subcomplex of sds defined by all flags {f0, . . . , fk} such
that all fi are spanned by V . This is indeed a subcomplex of sds because it is closed under
taking subsets. Moreover, for a face f ∈ �k, we define the f-local barycentric span of V as
the set of all flags {f0, . . . , fk} in the barycentric span such that fi ⊆ f for all i. This is a
subcomplex both of sd(f) and of the barycentric span of V and is a flag complex.
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Figure 1 The left figure shows a two-dimensional grid, along with its cubical complex. The green
points (small dots) denote the points in P and the red vertices (encircled) are the active vertices.
The figure on the right shows the generated simplicial complex. The blue vertices (small dots) are
the barycenters of the active faces.

I Lemma 4. For each face f , the f -local barycentric span of V is either empty or acyclic.

Furthermore, if W ⊆ V , it is easy to see that faces spanned by W are also spanned by V .
Consequently, the barycentric span of W is a subcomplex of the barycentric span of V .

Approximation complex. We denote by P ⊂ Rd a finite set of points. For each point p ∈ P ,
we let as(p) denote the grid point in Gs that is closest to p (we assume for simplicity that
this closest point is unique). We define the active vertices of Gs, Vs, as as(P ), that is, the set
of grid points that are closest to some point in P . The next statement is a direct application
of the triangle inequality; let diam∞ denote the diameter in the L∞-norm.

I Lemma 5. Let Q ⊆ P be such that diam∞(Q) ≤ αs. Then, the set as(Q) is contained
in a face of �s. Equivalently, for a simplex σ = (p0, . . . , pk) ∈ R∞αs

on P , the set of active
vertices {as(p0), . . . , as(pk)} is contained in a face of �s.

Vice versa, we define a map bs : Vs → P by mapping an active vertex to its closest point
in P (again, assuming for simplicity that the assignment is unique). The map bs is a section
of as, that is, as ◦ bs is the identity on Vs.

Recall that the map gs : �s → �s+1 from Section 3 maps grid points of Gs to grid points
of Gs+1. With Lemma 2, it follows at once:

I Lemma 6. For all x ∈ Vs, gs(x) = (as+1 ◦ bs)(x).

We now define our approximation tower: for scale αs, we define Xαs as the barycentric
span of the active vertices Vs ⊂ Gs. See Figure 1 for an illustration. To simplify notations,
we call the faces of �s spanned by Vs active faces, and simplices of Xαs active flags.

To complete the construction, we need to define simplicial maps Xαs
→ Xαs+1 . First, we

show:

I Lemma 7. Let f be an active face of �s. Then, gs(f) is an active face of �s+1.

Proof. From Lemma 3, e := gs(f) is a face of Gs+1. If e is a vertex, it is active, because
f contains at least one active vertex v, and gs(v) = e in this case. If e is not a vertex, we
assume for a contradiction that it is not active. Then, it contains a facet e1 that contains
all active vertices in e. Let e2 denote the opposite facet. By Lemma 3, f contains opposite
facets f1, f2 such that gs(f1) = e1 and gs(f2) = e2. Since f is active, both f1 and f2 contain
active vertices, in particular, f2 contains an active vertex v. But then, the active vertex gs(v)
must lie in e2, contracting the fact that e1 contains all active vertices of e. J

ESA 2017
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Recall that a simplex σ ∈ Xαs is a flag f0 ⊆ . . . ⊆ fk of active faces in �s. We set g̃(σ) as
the flag g(f0) ⊆ . . . ⊆ g(fk), which consists of active faces in �s+1 by Lemma 7, and hence
is a simplex in Xαs+1 . It follows that g̃ : Xαs

→ Xαs+1 is a simplicial map. This finishes our
construction of the simplicial tower (Xλ2s)s∈Z, with simplicial maps g̃ : Xλ2s → Xλ2s+1 .

4.1 Interleaving
To relate our tower with the L∞-Rips filtration, we start by defining two acyclic carriers.
We write α := αs = λ2s to simplify notations.

C1 : R∞α → Xα: let σ = (p0, . . . , pk) be any simplex of R∞α . We set C1(σ) as the
barycentric span of U := {as(p0), . . . , as(pk)}, which is a subcomplex of Xα. U lies in a
face f of �s by Lemma 5 hence C1(σ) is also the f -local barycentric span of U . Using
Lemma 4, C1(σ) is acyclic.
C2 : Xα → R∞2α: let σ be any flag e0 ⊆ . . . ⊆ ek of Xα. Let {q0, . . . , qm} be the set
of active vertices of ek. We set C2(σ) := {bs(q0), . . . , bs(qm)}. With a simple triangle
inequality, we see that C2(σ) is a simplex in R∞2α, hence it is acyclic.

Using the Acyclic Carrier Theorem (Theorem 1), there exist chain maps c1 : C∗(R∞α ) →
C∗(Xα) and c2 : C∗(Xα)→ C∗(R∞2α), which are carried by C1 and C2, respectively. Aggregating
the chain maps, we have the following diagram:

· · · // C∗(R∞2α)

c1

��

inc // C∗(R∞4α) // · · ·

· · · // C∗(Xα) g̃ //

c2

99

C∗(X2α) //

c2

99

· · ·

(4)

where inc corresponds to the inclusion chain map and g̃ denotes the chain map for the
corresponding simplicial maps (we removed indices for readability). The chain complexes
give rise to a diagram of the corresponding homology groups, connected by the induced linear
maps c∗1, c∗2, inc∗, g̃∗.

I Lemma 8. inc∗ = c∗2 ◦ c∗1 and g̃∗ = c∗1 ◦ c∗2. In particular, the persistence modules
(H(X2s))s∈Z and (H(R∞α ))α≥0 are weakly 2-interleaved.

Proof. To prove the claim, we consider both triangles separately. We show that the chain
maps g̃ and c1 ◦c2 are carried by a common acyclic carrier. Then we show the same statement
for inc and c2 ◦ c1. The claim then follows from the Acyclic Carrier Theorem.

Lower triangle: The map C1 ◦ C2 : Xα → X2α is an acyclic carrier, because C2(σ) is a
simplex for any simplex σ ∈ Xα. Clearly, C1 ◦ C2 carries the map c1 ◦ c2. We show that
it also carries g̃.
Let σ be a flag f0 ⊆ . . . ⊆ fk in Xα and let V (fi) denote the active vertices of fi. Then,
C1◦C2(σ) is the barycentric span of U := {as+1◦bs(q) | q ∈ V (fk)} = {gs(q) | q ∈ V (fk)}
(Lemma 6). On the other hand, V (fi) ⊆ V (fk) and hence g(V (fi)) ⊆ U . Then, g(fi) is
spanned by U : indeed, since fi is active, g(fi) is active and hence spanned by all active
vertices, and it remains spanned if we remove all active vertices not in U , since they are
not contained in fi. It follows that the flag g(f0) ⊆ . . . ⊆ g(fk), which is equal to g̃(σ), is
in the barycentric span of U .
Upper triangle: We define an acyclic carrier D : R∞2α → R∞4α which carries both inc

and c2 ◦ c1. Let σ = (p0, . . . , pk) ∈ R∞2α be a simplex. The active vertices U :=
{a(p0), . . . , a(pk)} ⊂ Gs+1 lie in a face f of G2α, using Lemma 5. We can assume that
f is active, as otherwise, we pass to a facet of f that contains U . We set D(σ) as the
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simplex on the subset of points in P whose closest grid point in Gs+1 lies in U . Using a
simple application of triangle inequalities, D(σ) ∈ R∞4α, so D is an acyclic carrier. The
0-simplices of σ are a subset of D(σ), so D carries the map inc. We next show that D
carries c2 ◦ c1.
Let δ be a simplex in X2α for which the chain c1(σ) takes a non-zero value. Since c1(σ) is
carried by C1(σ), δ ∈ C1(σ) which is the barycentric span of V (f). Furthermore, for any
τ ∈ C1(σ), C2(τ) is of the form {b(q0), . . . , b(qm)} with {q0, . . . , qm} ∈ V (f). It follows
that C2(τ) ⊆ D(σ). In particular, since c2 is carried by C2, c2(c1(σ)) ⊆ D(σ) as well. J

4.2 Scale balancing
We improve the approximation factor with a simple modification. Let (Aλγk )k∈Z and
(Bλγk )k∈Z be two simplicial towers with simplicial maps f3 and f4 respectively, with λ, γ > 0.
Assume that there exist interleaving linear maps f∗1 , f∗2 such that the diagram

· · · // H(Bαγ)

f∗2
��

f∗4 // H(Bαγ2) // · · ·

· · · // H(Aα)
f∗3 //

f∗1

99

H(Aαγ) //

f∗1
99

· · ·

(5)

commutes for all scales α = λγk, which implies that the persistence modules are weakly
γ-interleaved. Defining another tower (A′λ√γγk )k∈Z with A′α := Aα/√γ , we obtain a diagram

· · · // H(Bαγ)
f∗2

&&

f∗4 // H(Bαγ2) // · · ·

· · · // H(A′α√γ)
f∗3 //

f∗1

99

H(A′αγ√γ) //

f∗1

88

· · ·

(6)

which implies that the persistence modules are weakly √γ-interleaved. Therefore, scale
balancing improves the interleaving ratio by only scaling the persistence module.

In our context, we improve the weak 2-interleaving of (H(X2kα))k∈Z and (H(R∞α ))α≥0
to a weak

√
2-interleaving. Using the proximity results for persistence modules [6],

I Theorem 9. The persistence module
(
H(X2k/

√
2)
)
k∈Z is a 3

√
2- approximation of the

L∞-Rips persistence module
(
H(R∞α )

)
α≥0.

For any pair of points p, p′ ∈ Rd, it holds that ‖p − p′‖2 ≤ ‖p − p′‖∞ ≤
√
d ‖p − p′‖2

which implies that the L2- and the L∞-Rips complexes are strongly
√
d-interleaved. The

scale balancing technique also works for strongly interleaved persistence modules and yields

I Lemma 10. (H(Rα/d0.25))α≥0 is strongly d0.25-interleaved with (H(R∞α ))α≥0.

Using Theorem 9, Lemma 10 and the fact that interleavings satisfy the triangle inequality [3,
Theorem 3.3], we see that (H(X2k/

√
2))k∈Z is weakly

√
2d0.25-interleaved with the scaled

Rips module (H(Rα/d0.25))α≥0. We can remove the scaling in the Rips filtration simply by
multiplying both sides with d0.25 and obtain our final approximation result.

I Theorem 11. The persistence module
(
H(X 2k 4√

d√
2

)
)
k∈Z is a 3

√
2d0.25-approximation of the

Euclidean Rips persistence module
(
H∗(Rα)

)
α≥0.
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5 Size and computation

Set n := |P | and let CP (P ) denote the closest pair distance of P . At scale α0 := CP (P )
3d

and lower, no d-cube of the cubical complex contains more than one active vertex, so the
approximation complex consists of n isolated 0-simplices. At scale αm := diam(P ) and
higher, points of P map to active vertices of a common face by Lemma 5, so the generated
complex is acyclic using Lemma 4. We inspect the range of scales [α0, αm] to construct the
tower, since the barcode is explicitly known for scales outside this range. The total number
of scales is dlog2 αm/α0e = dlog2 ∆ + log2 3de = O(log ∆ + log d).

5.1 Size of the tower
Recall that the size of a tower is the number of simplices that do not have a preimage. We
start by considering the case of 0-simplices.

I Lemma 12. The number of 0-simplices included in the tower is at most n2O(d).

The proof can be summarized as follows: 0-simplices in the tower correspond to active
faces. Active vertices are only added at the lowest scale, hence they account for n inclusions.
Active faces of higher dimensions have at least one active vertex on their boundary. We
charge the inclusion of such a face to one point in P that is “close” to the face. In this way,
we show that every point in P is charged at most 2O(d) times. See [7] for further details.

The next lemma follows from a simple combinatorial counting argument for the number
of flags in a d-dimensional cube (see [7]).

I Lemma 13. Each 0-simplex of Xα has at most 2O(d log k) incident k-simplices.

I Theorem 14. The k-skeleton of the tower has size at most n2O(d log k).

Proof. Let σ = f0 ⊆ . . . ⊆ fk be a flag included at some scale α. The crucial insight is that
this can only happen if at least one face fi in the flag is included in the tower at the same
scale. Indeed, if each fi has a preimage ei on the previous scale, then e0 ⊆ . . . ⊆ ek is a flag
on the previous scale which maps to σ under g̃.

We charge the inclusion of the flag to the inclusion of fi. By Lemma 13, the 0-simplex
fi of X is charged at most

∑k
i=1 2O(d log i) = 2O(d log k) times in this way, and by Lemma 12,

there are at most n2O(d) 0-simplices that can be charged. J

5.2 Computing the tower
Recall from the construction of the grids that Gs+1 is built from Gs using an arbitrary
translation vector (±1, . . . ,±1) ∈ Zd. In our algorithm, we pick the components of this
translation vector uniformly at random, and independently for each scale.

Recall the cubical map gs : �s → �s+1 from Section 3. For a fixed s, we denote by
g(j) : �s → �s+j the j-fold composition of g, that is g(j) = gs+j−1 ◦ gs+j−2 ◦ . . . ◦ gs.

I Lemma 15. For a k-face f of �s, let Y be the minimal integer j such that g(j)(f) is a
vertex. Then E[Y ] ≤ 3 log k.

The proof idea is as follows. A k-face has a non-zero length in k coordinate direction. In
order to map to a point, g(j)(f) has to “collapse” all these dimensions. For a fixed direction
xi, such a collapse happens for g(f) if the random translation moves a grid point in the
xi-range of the face, which happens for exactly half of the translations (depending on the sign
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at the i-position of the translation vector). The number of steps for which the xi-direction is
not collapsed is thus equivalent to the number of flips of a fair coin until heads shows for
the first time, which is 2 in expectation. The entire k-face is collapsed to a point if k coins
flipped simultaneously all have shown heads at least once. This takes at most 3 log k steps in
expectation. See [7] for details.

As a consequence of the lemma, the expected “lifetime” of k-simplices in our tower with
k > 0 is rather short: given a flag e0 ⊆ . . . ⊆ e`, the face e` will be mapped to a vertex after
O(log d) steps, and so will be all its sub-faces, turning the flag into a vertex. It follows that
the total number of k-simplices in the tower is upper bounded by n2O(d log k) as well.

Algorithm description. We first specify what it means to “compute” the tower. We make
use of the fact that a simplicial map between simplicial complexes can be written as a
composition of simplex inclusions and contractions of 0-simplices [9, 12]. That is, when
passing from a scale αs to αs+1, it suffices to specify which pairs of 0-simplices in Xαs are
mapped to the same image under g̃ and which simplices in Xαs+1 are included.

The input is a set of n points P ⊂ Rd. The output is a list of events, where each event
is of one of the three following types: a scale event defines a real value α and signals that
all upcoming events happen at scale α (until the next scale event). An inclusion event
introduces a new simplex, specified by the list of 0-simplices on its boundary (we assume
that every 0-simplex is identified by an integer). A contraction event is a pair of 0-simplices
(i, j) and signifies that i and j are identified as the same from that scale.

In a first step, we calculate the range of scales that we are interested in. We compute
a 2-approximation of diam(P ) by taking any point p ∈ P and calculating maxq∈P ‖p− q‖.
Then we compute CP (P ) using a randomized algorithm in n2O(d) expected time [14].

Next, we proceed scale-by-scale and construct the list of events accordingly. On the lowest
scale, we simply compute the active vertices by point location for P in a cubical grid, and
enlist n inclusion events (this is the only step where the input points are considered in the
algorithm). We use an auxiliary container S and maintain the invariant that whenever a
new scale is considered, S consists of all simplices of the previous scale, sorted by dimension.
In S, for each 0-simplex, we store an id and a coordinate representation of the active face to
which it corresponds. Every `-simplex with ` > 0 is stored just as a list of integers, denoting
its boundary 0-simplices. We initialize S with the n 0-simplices at the lowest scale.

Let α < α′ be any two consecutive scales with �,�′ the respective cubical complexes and
X ,X ′ the approximation complexes, with g̃ : X → X ′ being the simplicial map connecting
them. Suppose we have already constructed all events at scale α. We enlist the scale event
for α′. Then, we enlist the contraction events. For that, we iterate through the 0-simplices
of X and compute their value under g, using point location in a cubical grid. We store the
results in a list S′ (which contains the simplices of X ′). If for a 0-simplex j, g(j) is found to
be equal to g(i) for a previously considered 0-simplex, we choose the minimal such i and
enlist a contraction event for i and j.

We turn to the inclusion events and start with the case of 0-simplices. Every 0-simplex
is an active face at scale α′ and must contain an active vertex, which is also a 0-simplex
of X ′. We iterate through the elements in S′. For each active vertex v encountered, we go
over all faces of the cubical complex �′ that contain v as vertex and check whether they are
active. For every active face encountered that is not in S′ yet, we add it to S′ and enlist an
inclusion event of a new 0-simplex. At termination, all 0-simplices of X ′ have been detected.

Next, we iterate over the simplices of S of dimension ≥ 1 and compute their image
under g̃, and store the result in S′. To find the simplices of dimension ≥ 1 included at X ′,
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we exploit our previous insight that they contain at least one 0-simplex that is included
at the same scale (see the proof of Theorem 14). Hence, we iterate over the 0-simplices
included in X ′ and proceed inductively in dimension. Let v be the current 0-simplex under
consideration; assume that we have found all (p− 1)-simplices in X ′ that contain v. Each
such (p− 1)-simplex σ is a flag in �′. We iterate over all faces e that extend σ to a flag of
length p+ 1. If e is active, we found a p-simplex in X ′. If this simplex is not in S′ yet, we
add it and enlist an inclusion event for it. We also enqueue the simplex in our inductive
procedure, to look for (p+ 1)-simplices in the next iteration. At the end of the procedure,
we have detected all simplices in X ′ without preimage, and S′ contains all simplices of X ′.
We set S ← S′ and proceed to the next scale. This ends the description of the algorithm.

I Theorem 16. To compute the k-skeleton, the algorithm takes time
(
n2O(d) log ∆+2O(d)M

)
time in expectation and M space, where M is the size of the tower. In particular, the expected
time is bounded by

(
n2O(d) log ∆ + n2O(d log k)) and the space is bounded by n2O(d log k).

The first summand of the time bound comes from the fact that on each scale, the number
of 0-simplices of X is bounded by n3d, and we employ local searches in the cubical complex
to find 0-simplices included in X ′. This local search only causes an overhead of O(2d) per
active vertex. The second summand arises because we find the higher-dimensional simplices
of X ′ inductively and can therefore charge the cost for this search to the number of simplices
encountered. Finally, computing the image of g̃ for all simplices in X can be bounded in
expectation by O(2O(d)M), because the total size of all X in the algorithm is bounded by
O(log dM) (see the remark after Lemma 15). More details are in [7].

6 Conclusion

We gave an approximation scheme for the Rips filtration, with improved approximation ratio,
size and computational complexity than previous approaches for the case of high-dimensional
point clouds. Moreover, we introduced the technique of using acyclic carriers to prove
interleaving results. We point out that, while the proof of the interleaving in Section 4.1 is
still technically challenging, it greatly simplifies by the usage of acyclic carriers; defining the
interleaving chain maps explicitly significantly blows up the analysis. There is also no benefit
in knowing the interleaving maps because they are only required for the analysis, not for the
computation.

Our tower is connected by simplicial maps; there are (implemented) algorithms to compute
the barcode of such towers [9, 12]. It is also quite easy to adapt our tower construction to a
streaming setting [12], where the output list of events is passed to an output stream instead
of being stored in memory.

An interesting question is whether persistence can be computed efficiently for more
general chain maps, which would allow more freedom in building approximation schemes.
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