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—— Abstract
We extend the classical model of multi-pushdown systems by considering systems that operate
on a finite set of variables ranging over natural numbers. The conditions on variables are defined
via gap-order constraints that allow to compare variables for equality, or to check that the gap
between the values of two variables exceeds a given natural number. Furthermore, each message
inside a stack is equipped with a data item representing its value. When a message is pushed
to the stack, its value may be defined by a variable. When a message is popped, its value
may be copied to a variable. Thus, we obtain a system that is infinite in multiple dimensions,
namely we have a number of stacks that may contain an unbounded number of messages each
of which is equipped with a natural number. It is well-known that the verification of any non-
trivial property of multi-pushdown systems is undecidable, even for two stacks and for a finite
data-domain. In this paper, we show the decidability of the reachability problem for the classes
of data multi-pushdown system that admit a bounded split-width (or equivalently a bounded
tree-width). As an immediate consequence, we obtain decidability for several subclasses of data
multi-pushdown systems. These include systems with single stacks, restricted ordering policies
on stack operations, bounded scope, bounded phase, and bounded context switches.
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1 Introduction

In the last few years, a lot of efforts have been devoted to the verification of discrete program
models that have infinite state spaces such as Petri nets, lossy channel machines and multi-
pushdown systems. In particular, multi-pushdown systems have been extensively studied as
a natural model for concurrent Boolean recursive programs. Unfortunately, multi-pushdown
systems are in general Turing powerful, and hence all basic decision problems are undecidable
for them [31]. To overcome the undecidability barrier, several subclasses of multi-pushdown
systems have been proposed (e.g., [16, 30, 10, 2, 25, 29, 26, 34, 11, 13, 12, 24, 6, 5, 33, 28]).

Bounded context-switch has been proposed in [30] as an adequate criterion for the
verification of multi-pushdown systems. The idea is to restrict the analysis to executions that
can be split into a given number of contexts where, in each context, pop and push operations
are exclusive to one stack. The context-bounded reachability problem is NP-complete, though
the state space that can be explored is still unbounded.
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In [25], La Torre et al. generalize the notion of context into phase. A phase is a sequence
of operations in which at most one stack can be popped, while there is no restriction on
the push operations. The bounded-phase restriction considers only executions of the system
that can be split into a given number of phases. In this case, the phase-bounded reachability
problem is decidable in double exponential time.

Another generalization of bounded context-switch is bounded scope [26] which restricts
the analysis of the multi-pushdown system to those executions in which the number of
context-switches between any push operation and its corresponding pop operation is bounded
by a given number. This definition extends the notion of contexts in term of coverage while
being orthogonal to the notion of phase. In [26], the scope-bounded reachability problem is
shown to be PSPACE-complete.

Another way to obtain decidability is to impose a linear order on stacks [16]. Stack
operations are constrained in such a way that any pop operation is only allowed on the first
non-empty stack. In [10], the reachability problem is shown to be 2ETIME-complete when
assuming this ordering policy on stack operations. Furthermore, imposing such a restriction
strictly extends the notion of phases while being orthogonal to scope-boundedness.

In [29, 21, 27], a unified technique to reason about multi-pushdown systems under such
restrictions is presented. The idea is to see an execution as a graph with extra edges relating
push operations and their corresponding pop operations. Then, the authors prove that the
graphs generated under these restrictions have bounded split-width (or equivalently bounded
tree-width). As an immediate consequence of Courcelle’s theorem [20], the decidability of
the reachability problem for multi-pushdown systems under these restrictions is obtained.

However, all these models assume a finite-state control, which means that the variables of
the modelled programs are assumed to range over finite domains. Several extensions of (multi-
)pushdown systems with data have been studied in the literature (see e.g., [14, 8, 1, 17, 22]).
Most of these extensions concern the case of multi-pushdown systems with one stack except
the work presented in [14] where an extension of multi-pushdown systems with data has been
proposed. In order to obtain decidability of the reachability problem, the model requires the
strong assumption of data freshness, and the restriction of the stack accesses to the bounded
phase policy. Furthermore, the variable operations are restricted to checking (dis)equality.

In this paper, we consider an extension of multi-pushdown systems, which we call Data
Multi-Push-Down Autormata (DMPDA), that strengthens the classical model in two ways. First
in addition to stacks, a DMPDA uses a finite set of variables ranging over the natural numbers.
Moreover, each message inside the stack is equipped with a natural number which represents
its value. Thus, we obtain a model that is possibly unbounded in multiple dimensions,
namely we have a number of stacks such that each stack may contain an unbounded number
of messages each of which is equipped with a natural number. The operations allowed on
variables are defined by the gap-order constraint system [18, 32]. More precisely, DMPDA
allow to compare the values of variables for equality, or to check that the gap between the
values of two variables exceeds a given natural number. Also, a variable may be assigned
a new arbitrary value, the value of another variable, or a value that is larger than at least
a given natural number than the current value of another variable. Furthermore, a push
operation may copy the value of a variable to the pushed message, and a pop operation may
copy the value attached to the popped message to a variable. In this manner, the model
of DMPDA subsumes two basic models, namely multi-pushdown systems (that we get by
removing the variables and neglecting the values associated to the pushed messages) and the
model of integral relational automata [18] (that we get by removing all the stacks).

Our main result is the decidability of the reachability problem for the classes of DMPDA
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that admit a bounded split-width. To that aim, we solve a more general problem, namely we
characterize the reachability relation on variables between each pair of control states. More
precisely, we present an algorithm for computing a finite set of gap-order formulas whose
denotations describe values of variables that allow to reach one state from another with
empty stacks. The main ingredient of the algorithm is a symbolic representation, called
traces, that encode certain transition sequences in the automaton. A trace represents a set of
partial runs. A partial run does not record the contents of the stacks, but marks positions
inside the run that correspond to matching push/pop operations. Furthermore, a partial
run is not contiguous in the sense that it may contain a number of “holes”. Our algorithm
will characterize the relation between the variables at the points where the holes occur. In
particular, a partial run with no holes corresponds to a concrete run that starts and ends
with empty stacks. The definition of partial runs allows to extend naturally the notion of
split width [21] that has been considered for the analysis of multi-pushdown systems (without
data). Intuitively, a run has a bounded split width if it can be built from atomic runs by using
a shuffle and a contraction operator without producing any intermediate runs with more
holes than the given bound. An atomic run is one that consists either of a single transition,
or a pair of matching push/pop transitions. We show that our algorithm is guaranteed to
terminate for all classes of systems that generate runs with a bounded split width. As an
immediate consequence, we obtain the decidability for several subclasses of multi-pushdown
systems with data including the ones that restrict the ordering policy on stack operations, or
bound the scope, the number of phases, or the number of context switches.

Related work. Several subclasses of multi-pushdown systems have been proposed in the
literature including bounded-context [30], bounded-phase [25], bounded scope [26] and ordered
multi-pushdown systems [16]. The reachability problem for these classes has been shown to
be decidable under the assumption of finiteness of the set of control states. These classes are
subclasses of our model DMPDA and our decidability result subsumes the decidability of the
reachability problem for these models. In contrast, we do not provide any complexity results.

Split-width and tree-width! have been used for showing, in a unified way, the MSO
decidability of several classes of multi-pushdown systems [29, 21, 27]. The method has been
extended for message passing systems[6] and parameterized message passing systems[23].
However the considered models are restricted to the manipulation of variables over finite
data domains while in our model, variables range over natural numbers. In fact the results
presented in [29, 21, 27] are orthogonal to our result since we do not consider the model-
checking problem against monadic second order logic.

Decidability of the reachability problem for pushdown systems (i.e., multi-pushdown
systems with one stack) with data has been extensively studied in the literature (see e.g.,
[1, 17, 22, 3, 15, 19]). The closest work is pushdown systems with gap-order constraints [1],
which is subsumed by our model. Furthermore, the techniques used to show the decidability
of the reachability problem for pushdown systems with gap-order constrains are different
from the ones used in this paper.

Extensions of multi-pushdown systems with data have been studied in [14]. This work
uses the strong assumption of freshness of data, and bounded phase restriction on stack
accesses. In contrast, we do not assume the freshness of data and our results can be applied
to several subclass of multi-pushdown systems.

1 Split-width and tree-width are not identical, but one is bounded if and only if the other is. Further the
bounds are related linearly [21].
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In [8] the split-width technique is lifted to analyze timed multi-pushdown systems. Timed
systems give rise to an infinite data domain. However, reachability in this case can be reduced
to MSO model checking of untimed systems with finite propositional labelling indicating
timing constraints, since realizability of a word with timing constraints can be expressed in
MSO [7]. The crux of the decidability proof in all these cases is the use of tree-automata. In
contrast, the reachability problem of DMPDA under bounded split-width does not reduce to
the Boolean case. Furthermore, our algorithm uses a fix-point computation which terminates,
thanks to well quasi-ordering of gap-order formulas.

2 Preliminaries

Let N denote the set of natural numbers. For sets A and B, we use f: A - B to denote
that f is a function from A to B. We use f[a < a’] to denote the function f’ such that
f'(a)=d',and f'(z) = f(z) if x # a. For A’ € A, we use f ® A’ to denote the restriction of
f to A’. For sets Ay and Ay with A7 n Ay = @, and functions f; : A; - B and fy: Ay — B,
we use f1U fa: A1 U Ay — B to denote the function g such that g(a) = fi(a) if a € A; and
g(a) = fa(a) if a € As. For a finite set A, we use |A| to denote the size of A.

For a set A, we use A* to denote the set of finite words over A. We use € to denote the
empty word. For wy,ws € A*, we use wy - ws to denote the concatenation of w; and ws.

Consider a set A and a total ordering < on A. We use a; < as to denote that a; < as and
ay # as. We use « to denote the induced immediate successor relation, i.e., a1 < as iff a1 < as
and there is no a3 such that a; < a3 < as.

3 Model

In this section, we introduce Data Multi-Pushdown Automata (DMPDA). A DMPDA operates
on multiple unbounded stacks each of which allows pushing (appending) and popping
(removing) messages in a last-in-first-out manner. In addition to the stacks, a DMPDA uses a
finite set of variables ranging over the natural numbers.

The allowed operations on variables are defined by the gap-order constraint system [18, 32].
More precisely, the model allows non-deterministic value assignment, copying the value of one
variable to another, and assignment of a value v to some variable such that v is larger than at
least a given natural number than the current value of another variable. The transitions may
be conditioned by tests that compare the values of two variables for equality, or that give the
smallest allowed gap between two variables. In addition to carrying a name (taken from a
finite alphabet), each message inside a stack is equipped by a natural number that represents
its “value”. A push operation may copy the value of a variable to the pushed message, and a
pop operation may copy the value of the popped message to a variable. Notice that DMPDA
extend the classical model of Push-Down Automata in three ways, namely they allow

(i) multiple stacks,
(ii) numerical variables, and
(iii) an infinite (numerical) stack alphabet.

Syntax

In the rest of the paper, we assume a finite set of variables X, a finite set of stacks 3, and a
finite stack alphabet I'. A DMPDA A is a tuple (Q, A) where @ is a finite set of states, and
A is a finite set of transitions. A transition ¢ € A is a triple {(q1, op, g2) where ¢1,¢2 € Q are
states, and op is an operation of one of the following forms:
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op = nop nop . (x - *)7 celN Non-Det-Asgn
(g, 8) —> (¢, 0, B) (¢, 8) = (¢',alz < c], B)
op=(z<y) Var-tsgn @=(oeCe))d>aldre
(a,0,8) = (¢’ alz < a (y)],8) (g0, 8) > (¢’ alz < 1, 8)
op=(z= y),tcv (2) = a(y) SR op = (z <cy), fj(y) >a(z)+e S
(g, 8) > (', B) (a0, 8) > (', B)

op = (push (o) (a) (z))

(g,0,8) = (¢, Bl < (a,a(x)) - B(0)])

Push

op = (pop () (o) (a)), B = B'lo < (a,c)- B’ (0)]

(¢,0,8) == (¢’ alz < c], B')

Pop

Figure 1 Inference rules defining the relation —t>, where t = (g, op, q’).

(i) nop is the empty operation that does not change the values of the variables or the
contents of the stacks.
(ii) = < * assigns non-deterministically an arbitrary value in N to the variable .
(iii) x < y copies the value of variable y to x.
(iv) = « (>, y) assigns non-deterministically to = a value that exceeds the current value of y
by ¢ (so the new value of = is > y + ¢).
(v) z =y checks whether the value of x is equal to the value of y.
(vi) x <.y checks whether the gap between the values of y and «x is larger than c.
(vii) push (¢) (a) () pushes the symbol a € I" to the stack o € ¥ and assigns to it the value
of the variable .
(viii) pop (z) (¢) (a) pops the symbol a € T' (if a is the top-most symbol at the stack o € X)
and assigns its value to the variable z.
We define the source src (t) := ¢1 and the target tgt (t) = ga.
We define A to be the set of internal transitions, i.e., those that do not perform
push or pop operations. We define Ag‘fbh to be the set of transitions whose operations are of
the form push (o) (a) (z) for some z € X. We define AR**" := U,.p AR, We define AR and

AP’® analogously.

Semantics

A DMPDA induces a transition system as follows. A configuration c is a triple (g, «, ) where
q €@ is a state, a: X - N defines the values of the variables, and 3: % — (I' x N)* defines,
for each stack o € X, its content 5 (o). The content of a stack is a word whose elements are
of the form (a, ¢) where a is a symbol and c is its value. In particular, we define S, such that
Be (o) =€ for all o € ¥. We say that c is plain if 8 = ..

CONCUR 2017
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We define the transition relation — := Ugea . on the set of configurations, where —t>
describes the effect of the transition ¢t. The semantics of the transition relation is presented
through the inference rules of Fig. 1, explained below one by one.

nop. The values of the variables and the stack contents are not changed.

x < *. The value of the variable = is changed non-deterministically to some natural
number. The values of the other variables and the stack contents are not changed.

x < y. The value of the variable y is copied to the variable x. The values of the other
variables and the stack contents are not changed.

2z < (>.y). The variable z is assigned non-deterministically a value that exceeds the
value of y by c. The values of the other variables and the stack contents are not changed.
x =y (resp. = <. y). The transition is only enabled if the value of y is equal to the value
of z (resp. larger than the value of x by more than ¢). The values of the variables and
the stack contents are not changed.

push (o) (a) (z). The symbol a is pushed onto the stack o with a value equal to that of .
pop (x) () (a). The symbol a is popped from the stack o (if it is the top-most symbol of
o), and its value is copied to the variable .

We use — to denote the reflexive transitive closure of —. A run 7 is an alternating
sequence cot1Cy-+-Cn_1tnC, Of configurations and transitions such that c; 1 N c; for all
1:1<1<n. We say that 7 is plain if ¢y and c, are plain. For configurations ¢ and c’, we
write ¢ — ¢’ to denote that there is a run 7 of the above form such that co=candc,=c.
Notice that ¢ — ¢’ iff ¢ — ¢’ for some run 7.

Reachability

In the Reachability Problem, we are given two plain configurations c¢; and co, and are asked
whether ¢; —> ¢». In order to solve the reachability problem we will study reachability rela-
tions. For states q,q’ € Q, we define R(q,q’) := {(a,a') [{q, @, Be) N (q',o/,ﬁe)}. Intuitively,
we summarize the values of the variables that allow us to move from ¢ to ¢’, starting and
ending with empty stacks. More precisely, R (¢,q’) contains all pairs (@, a’) such that we
can start from a configuration where the state is g, the values of the variables are given by «,
and the stacks are empty to another configurations where the state is ¢/, the values of the
variables are given by o', and the stacks are empty again.

4 Gap-Order Formulas

Fix a set X of variables ranging over N. An atomic gap-order formula over X is either of the
form z =y or of the form x <. y where x,y € X and c € N. A gap-order formula ¢ over X is a
conjunction of atomic constraints over X. Sometimes, we represent ¢ as a set (containing
all its conjuncts). For a function Val : X - N, we write (as expected) Val £ ¢ to denote
that Val satisfies ¢. We will also consider existentially quantified formulas of the form 3Y. ¢
where ¢ is a gap-order formula over X, and Y € X. For Val: X-Y — N, we write Val = 3Y. ¢
to denote that there is a mapping Val’: Y — N such that Val uVal’ E ¢. For a (quantified)
gap-order formula ¢, we define its denotation [¢] := {Val|Val k ¢}.

A gap-order formula ¢ over X is in normal form if it satisfies the following conditions:
1. If (z <., y) € d and (y <., z) € ¢ then (x <., z) € ¢ for some c3 with ¢; + g < c3.
2. If (z<cy)epand (y=2) € (or (z=y) € @) then (z <. 2) € ¢.
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3. f (z<cy)epand (x=2)€¢ (or (z=2a)€ ) then (2 <. y) € ¢.
4. If(z=y)edpand (y=2)ec ¢ then (x=2)ecpor (z=2x) €.
5. For each x,y € X, there is at most one conjunct in ¢ containing both x and y.

» Lemma 1 ([4, 1]). For each gap-order formula ¢, we can effectively compute a gap-order
formula @' such that ¢ is in normal form and [¢'] = [¢].

We obtain ¢’ from ¢ by repeatedly adding conjuncts to maintain properties 1-4 and removing
conjuncts which violate property 5 (for instance, if we have both (z <., y) € ¢ and (z <., y) € &,
with ¢1 < ¢g, then we can remove the former conjunct.) Normalization can be used to check
consistency: the formula is consistent iff no inequalities of the form z <. x are generated.

Furthermore, we can use normalization to perform quantifier elimination as follows. For
sets of variables Y ¢ X and a gap-order formula ¢, let  © Y to be the gap-order formula we
get from ¢ by eliminating all conjuncts in which a variable x € Y occurs.

» Lemma 2 ([4, 1]). Suppose that ¢ is consistent and in normal form. Assume that Val = ¢oY.
Then there is a Val': Y — N such that Val uVal' E ¢

From Lemma 2 we get the following corollary.
» Corollary 3. Suppose that ¢ is consistent and in normal form. Then [3Y. ¢] = [¢ © Y].

We write ¢1 E ¢2 to denote that [¢2] € [¢1]. We can check ¢; E ¢o as follows. By
Lemma 1 we can assume that ¢ and ¢o are in normal form. Then the following conditions
should be satisfied: (1) If (z <., y) € ¢1 then (x <., y) € ¢2 for some co > ¢, and (2) if

(r=y)€¢y then (x=y) € ps or (y=1x) € pa.

5 Traces

We introduce a data structure, called traces, that encode partial runs. Roughly speaking,
a partial run is a run with a number of “holes” inserted. Thus, a partial run consists of a
sequence of segments each of which is a sequence of consecutive transitions. The source of
one transition in a segment is identical to the target of the preceding transition. Furthermore,
each push operation in the partial run is matched by a pop operation, and vice versa, such
that the push/pop operations respect the stack semantics (i.e., we do not allow push/pop
transitions that are “pending” in a partial run). First, we define the set of atomic traces,
and describe two operations that allow to build new traces from existing ones. Then, we
define an entailment relation on traces. Finally, we use traces to define the notion of split
width. In the rest of the section, we fix a DMPDA A = (Q, A).

5.1 Definition

A trace 7 is a tuple ([, <, src, tgt, E, ¢) defined as follows.

I is a finite (index) set. Each index will be used to represent the summary of a segment.

The summary is given by the starting and the end states of each segment, i.e., the
source of the first transition and the target of the last transition in the segment, and
by a relation on the values of the variables before and after performing the different
segments. For each variable x € X and index i € I, we will introduce two new variables
x’; and a:f: representing the source and target values of x, i.e., the value of x at the
start and at the end of the segment represented by the index i. We define the set
Xti={al|(zeX)A(iel)} u{zl|(zeX)A(iel)}, and define X" := U X"

38:7
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< is a total ordering on I that gives the order in which the segments represented by
the indices are performed. We let < be the induced immediate successor relation (cf.
Section 2).
src : [ - @ maps each index to a state representing the source of the corresponding
segment, i.e., the state from which the segment starts (the source of the first transition in
the segment). Analogously, tgt : I — @ defines the target of the segment, i.e., the state
at the end of the segment (the target of the last transition in the segment).
E :1xI - 2% is a function representing an “edge relation” between the indices. For indices
iy,1o the value of E (i1,12) gives the set of stacks such that there is a push operation
in the segment represented by i; whose corresponding pop operation is performed in
the segment represented by 1. We impose two conditions on E. First, we require that
E (i1,12) # @ only if 11 < i3 since a pop operation can only occur after the corresponding
push operation (and furthermore, we do not record push operations whose pop operations
lie in the same segment). Second, we require that, for all stacks o € ¥, there are no
indices 13 < 15 < i3 < i4 such that o € E (i1,13) N E (i2,14). This condition ensures that
we are consistent with the stack semantics since there is no overlap between two pairs of
push/pop operations on the same stack.
¢ is a gap-order formula over the set X!, that defines the relation on values of the variables
at the start and the end of the different segments.

We will equate traces that are equivalent modulo the renaming of the indices. For a trace

7 =(I, %, src,tgt, E, ¢), we define its degree #7 = |I], i.e., it is the size of the index set.

5.2 Atomic Traces

Atomic traces are built using the set of transitions. We will define two types of atomic traces,
namely those induced by single internal transitions, and those that are induced by pairs of
matching push/pop transitions.

Internal Transitions

Let t = (g1, op, g2) € A™**™ be an internal transition. We will build a trace with a single index
corresponding to a single segment which contains only one transition, namely ¢. Formally,
we define MkTrace (t) := (I, 5, src, tgt, F, ¢) where

I={i}, i.e., the set of indices is a singleton.

< is trivial since the index set contains only one node.

src (i) = ¢1 and tgt (1) = ¢q, i.e., we label the single index with the source and target
states of t.

FE = & reflecting the fact that the operation performed by t does not affect the stacks.

¢ consists of all conjuncts of the following forms:
if op = nop or op = (x=1y) or op=(x<.y) then 2% = 21 for all z € X, i.e., the values of
the variables are not changed during ¢.
if op = (z = y) then xf = yi, and if op = (x <. y) then 3 > L + ¢. The values of the
variables should satisfy the condition of the transition.
If op=(z <+ *)or op=(x<y)orop=(z« (>y)) then zi = 2 for all z e X~ {2},
i.e., the values of the variables different from x are not changed during ¢.
If op = (z < y) then af =yl
If op = (z < (>, y)) then 2% >y +c.
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Stack Transitions

Consider two transitions t; = (g1, 0p;,q2) € ARS", to = (g3, 0py, qu) € AR where op, =
push (o) (a) (z) and op, = pop (y) (o) (a). Notice that the two transitions push/pop the
same symbol a to/from the same stack . We will build a trace with two indices corresponding
to two segments containing ¢, and tg, respectively. Formally, we define MkTrace (¢1,%2) :=
(I,<,src,tgt, E, ¢), where:
I = {iy,1i2} i.e., the index set contains two elements. We use the indices i; and iz to
represent two segments each containing a single transition, namely t; and t5 respectively.
1y <15. We require that 1 is ordered before i5. This reflects the fact that a pop transition
occurs after the matching push transition.
E (i1,12) = {c}, i.e., we add an edge between 1; to is labeled with ¢ corresponding to
the matching push/pop operations on o performed by ¢; resp. ts.
src(i1) = q1, tgt (i1) = g2, src(i2) = ¢3, and tgt (i2) = ¢4. In other words, we label the
new indices with the source and target states of ¢; resp. 5.
¢ consists of all conjuncts of the following forms:
(i) 2= zil for all z € X, i.e., the values of the variables are not changed during ;.
(i) 22 = zi"’ for all z € X—{y}, i.e., the values of the variables, except y, are not changed
during ts.
(i) iz =z,
This condition corresponds to the fact that the value of a when pushed to the stack
during t; is equal to the value of variable x. This value is identical to the value stored in
y after the pop operation of transition ts.

5.3 Operations

We define two operations for building new traces, namely shuffling and contraction.

Shuffling

Consider two traces 71 = (I, <1,srcy,tgty, E1, ¢1), and 7o = (Is, <9, sTCo, tgty, Eo, 2), where
I nl; = @. We will build a new trace by shuffling the index sets of 71 and 75. We define 7 ® 75
to be the set of traces of the form (I, <, src, tgt, E, ¢) satisfying the following conditions:
I=T; uly, i.e., the new trace contains exactly all the segments that are in 7 and 7.
< is a total ordering on I such that <;S< and <5c<. We do not change the original
orderings of the indices, but we do not constrain the places of the two sets of indices
relative to each other.
src (i) = srcy(i), and tgt (1) = tgt, (i) for all i € I;. Furthermore, src (i) = srca(i),
and tgt (1) = tgt, (1) for all 1 € Io. (We keep the state labelings of the old indices.)
E (i1,12) = E1(i1,12) if 11,19 € Iy, and E (i1,12) = Ea(iy,12) if 11,19 € Iy, i.e., all the edges
in 71 and 75 are maintained in 71 ® T9. Also, F (i1,12) =@, if i; €[; and 15 € Iy or if 1y € Iy
and 15 € I, i.e., we do not add any edges between the two sets of indices. Furthermore,
we require that there are no i,12 € 1 and 13,14 € I3 such that
(i) o€ E(i1,12),
(i) o€ E (i3, 14), and
(iii) either i < i3 <ig <4 or i3 <1y < ig <1s.
This is to ensure that 71 ® 75 respects the stack semantics.
¢ = ¢1 A p2. Notice that the values of the variables indexed by elements from I; are not
related to the values of the variables indexed by elements from I5.
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Contraction

We define a contraction operation | on indices that represents merging the corresponding
segments. Consider 11,15 € I such that i1 <19, i.e., 15 is the immediate successor of 1. Let
src(i1) = q1, tgt(i1) = g2, src(iz) = g2, and tgt (11) = g3, i.e., the target state of 1; is
identical to the source state of i5. We will merge 1; and is to a new (single) index j. We
define 7 | (i1,12) :== (I', </, src’, tgt’, E', ¢') as follows:

I'=T-{i;,12} U {j} where j ¢, i.e., we replace the two merged indices by a new one.

k< jiff k<iy, and j <"k iff is < k for all k e T-{iy,15}, i.e., in the new ordering, the
new index j will take the places of the two (consecutive) indices 11 and is. Furthermore,
ky <" ko iff ky < ko for all ky,ky € - {i;,12}, i.e., the relative orderings of the original
indices are not changed.

src’ () = q1, tgt’ (§) = g3, src’ (k) = src (k) and tgt’ (k) = tgt (k) for all k e I-{i;,12}.
In other words, we keep the state labelings of the old indices, while we take the source
and target states of j to be the source state of 1; and the target state of 15 respectively.

E'(j,k) = E(i1,k) U E (i2,k) and E’ (k,j) = E (k,i1) U E(k,12) for all k e T— {iy,15},
i.e., we merge the edges originating from/to the two merged indices. Also, E’ (ky,ky) =
E (ky,ks) for all ky,ky € T-{i1,12}, i.e., the edges to/from the other indices are main-
tained. Notice that any edges between 1; and iy are deleted.

¢’ =3 (X" uX'2). ¢", where ¢” is defined as ¢ A (Agex (23! = 282)) A (Agex (2l = 28)) A
(/\xeX (mff = 1‘1)) We require that ¢’ is consistent. Since we merge the two segments
corresponding to i; and is, we require the values of the variables at the end of the first
segment to be consistent with the values of the variables at the start of the second segment.
If these conditions are not satisfied, then the resulting formula ¢’ will not be consistent.
Furthermore, the values of variables at the start of the new segment are defined to be
the values of the variables at the start of the segment corresponding to i;. Analogously,
the values of variables at the end of the new segment are defined to be the values of the
variables at the end of the segment corresponding to 1. By Lemma 1, we know that ¢”
can be transformed to an equivalent formula in normal form, and hence by Corollary 3,
we can compute ¢’ as a gap-order formula.

We define 7 | to be the set of traces 7' such that: (1) there are indices 11,15 € I with i3 < 1g,
(2) tgt (11) = src(i2), and (3) 7/ =7 (i1,12).

5.4 Entailment

We define an entailment relation £ on traces. Intuitively, a trace 71 is weaker than a trace 75,
denoted 71 £ 79, if their graphs are isomorphic (equivalent up to the renaming of indices),
but the gap-order formula of 71 is weaker than the one of 7. Later in the paper, when we
compute reachability relations, we let 71 “subsume” 75 in the sense that if we encounter
both 71 and 7o then we only include 71 (and discard 72), without suffering any loss of
any precision in the analysis. Formally, consider traces 71 = (I, <1, srcy,tgty, E1,¢1) and
Ty = (Iz, <2, 8rca, tgty, Fa, ¢a). Let h: I — I3 be a bijection. We write 74 £, 72 to denote that
the following conditions are satisfied: (1) 17 <1 15 iff h(i1) <2 A(i2), (2) srci (i) = srca(h(l))
and tgt, (i) = tgty(h(1)), (3) Ei(i1,i2) = Fa(h(i1),h(i2)), and (4) ¢ c ¢o. We obtain ¢?
from ¢, by replacing each 2& by axg(ﬂ) and replacing each 2! by xil ® We use T] E 79 to
denote that m £, 79 for some h.
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5.5 Split Width

We say that a trace has split width 0 if it can be derived by starting from the atomic traces
and repeatedly applying the shuffling and contraction operations without letting any of the
intermediately generated traces have a degree larger than 6.

A proof tree T of split width 6 is a binary tree whose nodes are labeled with traces such
that the following conditions are satisfied:

The leaves are labeled with atomic traces.

If an internal node, labeled with 7, has two children then the children are labeled with

traces 7, and 75 such that 7€ 7 ® 7.

If an internal node, labeled with 7, has a single child then that child is labeled with a

trace T such that 7 €7’ |.

For each label 7 of a node in 7, we have #71 < 6.

A trace 7 is of split width 6 if 6 is the smallest number such that 7 is the root of a proof tree
of split width . We use SW(7) to denote the split width of 7.

We extend the notion of split width to plain runs as follows. Consider a plain run
T = Cot1€1°*Cp-1tnCy, Where ¢; = (q;, oy, 5;). We define T to be the set of traces of degree one,
of the form ({i},<,src,tgt, E,¢) where <= {(i,1)}, src(i) = qo, tgt (1) = qn, F = @, and
Val E ¢ with Val(z!) = ag(z) and Val(zl) = a, () for all z € X. We define SW(7) to be the
smallest k € N such that there is a trace 7 € T with SW(7) = k. For states ¢,¢' € Q and 0 € N,
we define R<’ (q,¢') := {{a,a’)| 3m.(8W (7) < 0) A (g, @, Bc) = (.0, ) }.

For a DMPDA A, we define the split width SW(A) to be the largest k such that there
is a plain run 7 in A with SW(x) = k. For a class C of DMPDA, we define SW(C) to be the
largest k such that there is an A € C with SW(A) = k. We say that C has bounded split width
if SW(C) = k for some k € N.

6 Decidability

In this section, we present the main result of the paper:

» Theorem 4. The reachability problem is decidable for any class of DMPDA with bounded
split width.

To prove Theorem 4 we first describe an algorithm computing reachability relations, and
then prove its correctness in Lemma 5 (termination), Lemma 6 (soundness), and Lemma 7
(completeness).

6.1 Algorithm

The algorithm inputs a DMPDA A = (@, A) together with an upper limit 6 on the degrees of
the traces to be considered during the analysis. The algorithm maintains a set W of traces
that have been detected but not analyzed, and a set V of traces that have been both detected
and analyzed. Initially, the sets W and V are empty (Line 1-2). We add all the atomic traces
induced by internal transitions (Line 3), and by matching push/pop transitions (Line 5) to
the set W. After the initialization phase, the algorithm performs a number of iterations using
the repeat-loop of Line 8. In each iteration, we first select and remove an element 7 from W
(Lines 9-10). We check that 7 satisfies two conditions (Line 11), namely: that (i) the degree
of 7 is within the allowed limit, and that (ii) 7 is not subsumed by any trace already in the
set V. If the two conditions are satisfied, we use 7 to generate new traces to analyze. These
new traces are added to the set W. First, we take the shuffle of 7 with each member of the set
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Algorithm 1: Computing the Reachability Relation.
Input: A={(Q,A): DMPDA,

f: maximal index size

Output: characterization of the reachability relation
1 V<« g
2 W<« @
3 for each t € A™*™ do
4 L W< Wu {MkTrace (t)}
for each t; € A};‘fﬁ; and ty € AY?,, do

if 01 = 09 and a; = as then
7 | W< Wu{MkTrace (t1,t)}

91

8 repeat

select some 7 € W;

10 WeWw-—{7};

11 if (#r<O)A(A7T'eV.7"c7) then

12 for each 7" €V do

13 LW<—WU(’T®T’)

14 WeWurT;

15 Ve {r' eVt u{r}
16 until W = &;

17 for each q,q' € Q do

18 L R(q,q) <@

19 for each 7€V do

20 Let 7 = (I, %, src, tgt, B, ¢);

21 if #7 =1 then

22 L let T={i}, src(i)=¢q, tgt (1) =¢";
23 R(q.q') < R(q,q")u{¢}

24 return R

V (Line 12). Then, we add all possible contractions of 7 (Line 14). Finally, at Line 15, we
add 7 to V, and at the same time remove all elements of V that are subsumed by 7. Notice
that this means that all the traces in the set V will be pairwise incomparable wrt. . The
iteration of the main loop is repeated until the set W becomes empty.

After the termination of the loop, we build the reachability relations successively by going
through all traces that have been added to V (Lines 17-23). For each pair of states ¢ and
¢', we maintain a set R (¢,q") of gap-order formulas. Each time a trace 7 of degree one is
encountered in V, we add the gap-order formula of 7 to the set R (¢,q’) corresponding the
source state ¢ and target state ¢’ of the (only) index of 7. At the end of the algorithm,
the reachability relation between any pair of states is characterized by the union of the
denotations of all the gap-order formulas in the corresponding set.

6.2 Correctness

We show correctness of the algorithm in several steps. We start by showing that the algorithm
always terminates. For a set A, a pre-order < on A is said to be a Well Quasi-Ordering
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(WQO) if, for each infinite sequence agajas--- of elements from A, there are ¢ < j such that
a; < a;. For a set T' of traces, we define its degree #7' := max,.p(#7). Notice that #7" need
not exist in general. Gap-order formulas over X is WQO under the c relation [1, 4]. Hence,
for any k£ € N and any set of traces T with #7T < k, the entailment relation £ is a WQO on T
This gives the following lemma.

» Lemma 5. The algorithm is guaranteed to terminate.

Next, we show soundness and completeness of the algorithm. To that end, we will
consider the set R (q,q") of gap-order formulas for each pair of states ¢ and ¢, returned by
the algorithm. We define a denotation function for these formulas, and relate them to the
reachability relation R (g,q’). We show that each member in the denotation corresponds to
a run (Lemma 6) implying the soundness of the algorithm. Conversely, we show that each
run with split width 6 belongs to the denotation (Lemma 7) implying the completeness of
the algorithm.

A formula ¢ is said be transitional over X if ¢ is a gap-order formula over X! where [I| = 1.
Notice that, if I = {i}, then each variable in ¢ is either of the form z% or of the form 2! where
x € X. We define |¢| to be the set of pairs (o, a’) such that a: X » N, o’ : X - N, and there
is a Val: X! » N with Val k£ ¢, a(z) = Val(z!) and o/(z) = Val(zl) for all z € X. For a set
of ® of transitional gap-order formulas, we define |®| := Ugea |#|. Notice that all members
of R (q,q") are transitional gap-order formulas. The following two lemmas then show the
soundness and completeness of the algorithm.

> Lemma 6. Vq,¢' € Q. [R(q,¢")| SR (g,q)

»Lemma 7. Vq,¢' € Q. |R(q.¢")| 2R*? (¢,¢")

7 Applications

7.1 Pushdown automata

A data push-down automata is a DMPDA with a single stack. All plain runs of a data-
push-down automaton have split-width bounded by 3 [21]. Thus, it follows from Theorem 4
that

» Corollary 8. The reachability problem is decidable for data push-down automata.

7.2  Multi-push-down systems

As already mentioned in the introduction, the control state reachability is undecidable even
in a finite data setting for multi-pushdown systems. Several under-approximation classes
(cf. Introduction) have been proposed in the literature for regaining decidability in the finite
data case. We recall their definitions below.
Bounded context-switch [30] A context is a sequence of operations in which at most
one stack is touched. A run is k-context bounded if it is the concatenation of at most k
contexts.
Bounded phase [25] A phase is a sequence of operations in which at most one stack
can be popped, though there are no restrictions on pushes. An run is k-phase bounded if
it is the concatenation of at most k£ phases. This subsumes the k- context bounded runs.
Ordered stacks [10, 9]. In an ordered multi-pushdown system, the stacks are ordered
linearly by priority. Further a stack may be popped only if all the stacks with higher
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priority are empty. An ordered-stack run respects the priority ordering in its stack
operations.

Bounded scope [26] A run of a multi-pushdown system is k-scope bounded if the
number of context switches between a push and the corresponding pop is always bounded
by k. This definition is slightly general than the original round-based definition of [26].
This subsumes the k- context bounded runs,but is orthogonal to k-phase bounded runs.

Runs falling into any of the above class have bounded split-width.

» Fact 1 ([21]). Split-width of k-context bounded runs is at most k + 2.
Split-width of k-phase bounded runs is at most 2¥.
Split-width of k-scope bounded runs is at most k + 2.
Split-width of ordered-stack runs is at most 2!,

Let U be an under-approximation class above. A U-run of a DMPDA A4 is a run that is in
U. For the under-approximation U, let Cy be the class of DMPDA such that all runs of any
DMPDA A e Cy are U-runs. By Fact 1, Cy has bounded split-width. Hence by Theorem 4,
we get

» Corollary 9. The reachability problem is decidable for {bounded context-switching, bounded
phase, ordered stacks, bounded scope} - DMPDA.

Let U be an under-approximation class above. The U-reachability problem asks, given a
DMPDA A and two plain configurations ¢; and co, whether it is possible to reach ¢y from ¢
by a U-run.

If the input DMPDA A belongs to Cy, then U-reachability problem is the same as the
reachability problem, which is decidable by Corollary 9. However, an arbitrary A may
have runs outside of U in general, but still having bounded split-width. Thus running our
algorithm naively on any input A could say “yes” to a pair of configurations ¢; and co even
when they are not U-reachable.

In order to decide the U-reachability problem, given the class U and DMPDA A, we
will construct a new DMPDA A’ € C;. The DMPDA A’ in effect will enforce the semantic
restriction of U-runs syntactically into the automaton A. Thus runs of A’ are precisely
U-runs of A. We will thus reduce the U-reachability problem in A to the reachability problem
in A’ € Ciy which is decidable by Corollary 9.

More formally, we reduce the U-reachability problem to reachability problem in Cy;. The
reduction depends on the under-approximation U. On input DMPDA A, plain configurations
¢ and ¢z, we will construct a DMPDA A’ belonging to Cy. Then we will compute a finite set
of pairs of plain configurations ¢} and cj from c¢; and co. We check whether ¢ is reachable
from ¢ in A’ for at least one pair of computed plain configurations ¢} and c}. If this is the
case, we conclude that ¢y is U-reachable from c; in A. Otherwise, cy is not U-reachable
from c; in A.

Due to lack of space, we will now describe the reduction in detail for only the case of
bounded-phase.

Reduction for k-phase bounded.

Given a DMPDA A = (Q,A) and a bound k on the number phases, we construct a new one
A" =(Q',A’) where Q' = Q x {1...k} x 2 uQ x {0}. The state remembers, in addition to
the state of A, how many phases have been used so far, and the stack that is being popped
from in the current phase. Thus a state of the form (g,¢,0) means that currently .4 would
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have been in state ¢, and in the ith phase, which is allowed to pop only from stack o. The
state (¢,0) is used to start off a computation, where no stack has been popped yet. The
transitions A’ lifts A to smoothly extend to Q" while maintaining the intended semantics.
For instance, if (g1, op, g2) € A, then ((q1,%,0), op, (g2,i,0)) € A" and {(¢1,0), op, (g2,0)) € A’
if op is an operation of the forms (i) to (vii) (cf. Section 3). If {(q1, 0p,q2) € A and if op
is of the form (viii), i.e, pop(z) (o) (@), then we have i) ((q1,i,0), op,(q2,%,0)) € A’, ii)
((q1,%,0"),0p,(q2,i+1,0)) e A" if ¢’ + o and i < k, and, iii) ((q1,0), op, (g2, 1,0)) € A"

The DMmpPDA A’ exhibits all and only executions of A in which the number of phases is
bounded by k. Given the pair of plain configurations ¢ = (g1, a1, 8¢) and ¢g = (g2, a2, B) of
A, we obtain the set of pairs of the form ({¢], a1, B¢), (¢}, as, B¢)) where ¢f = (¢1,0) and ¢}
is either (gg,0) or of the form g5 = (g2,%,0) for some 7 and o.

If cf = (¢}, a2, B¢) is reachable from ¢} = (g1, a1, B:) in A’ for one such computed pair,
then indeed, co is k-phase reachable from c¢; in A. Conversely, if cq is k-phase reachable from
c; in A, then there exists ¢ and ¢} of the form described above such that ¢/ is reachable
from ¢ in A’. This concludes our reduction.

» Corollary 10. The k-phase reachability problem is decidable for any DMPDA.

In a similar manner, we can have reductions for each of the under-approximations
described above. Thus, we get

» Corollary 11. {Bounded context-switching, bounded phase, ordered stacks, bounded scope}-
reachability problem is decidable for any DMPDA.

8 Conclusions

We have studied the reachability problem for multi-pushdown systems with gap-order
constraints. We provide an algorithm for solving the reachability problem. The algorithm is
sound and complete for the classes of automata that have a bounded split-width.

For future work, we plan to consider lifting the framework to a more general setting of
auxiliary storages which include queues and multi-sets. Furthermore, it would be interesting
to consider the case of distributed processes.
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