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—— Abstract

Probabilistic automata (PA) combine probability and nondeterminism. They can be given dif-
ferent semantics, like strong bisimilarity, convex bisimilarity, or (more recently) distribution
bisimilarity. The latter is based on the view of PA as transformers of probability distributions,
also called belief states, and promotes distributions to first-class citizens.

We give a coalgebraic account of the latter semantics, and explain the genesis of the belief-
state transformer from a PA. To do so, we make explicit the convex algebraic structure present
in PA and identify belief-state transformers as transition systems with state space that carries a
convex algebra. As a consequence of our abstract approach, we can give a sound proof technique
which we call bisimulation up-to convex hull.
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1 Introduction

Probabilistic automata (PA), closely related to Markov decision processes (MDPs), have
been used along the years in various areas of verification [40, 37, 38, 2], machine learning [24,
41], and semantics [66, 52]. Recent interest in research around semantics of probabilistic
programming languages has led to new insights in connections between category theory,
probability theory, and automata [59, 12, 27, 58, 44].

PA have been given various semantics, starting from strong bisimilarity [39], probabilistic
(convex) bisimilarity [50, 49], to bisimilarity on distributions [18, 14, 10, 21, 11, 25, 22, 26].
In this last view, probabilistic automata are understood as transformers of belief states,
labeled transition systems (LTSs) having as states probability distributions, see e.g. [14,
15, 35, 1, 13, 22, 19]. Checking such equivalence raises a lot of challenges since belief-
states are uncountable. Nevertheless, it is decidable [26, 20] with help of convexity. Despite
these developments, what remains open is the understanding of the genesis of belief-state
transformers and canonicity of distribution bisimilarity, as well as the role of convex algebras.
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The theory of coalgebras [30, 46, 31] provides a toolbox for modelling and analysing
different types of state machines. In a nutshell, a coalgebra is an arrow c: S — F'S for
some functor F': C — C on a category C. Intuitively, S represents the space of states of
the machine, c¢ its transition structure and the functor F' its type. Most importantly, every
functor gives rise to a canonical notion of behavioural equivalence (=¢), a coinductive proof
technique and, for finite states machines, a procedure to check =.

By tuning the parameters C and F, one can retrieve many existing types of machines
and their associated equivalences. For instance, by taking C = Sets, the category of sets
and functions, and F'S = (PDS)L the set of functions from L to subsets (P) of probability
distributions (D) over S, coalgebras c: S — F'S are in one-to-one correspondence with PA
with labels in L. Moreover, the associated notion of behavioural equivalence turns out to
be the classical strong probabilistic bisimilarity of [39] (see [4, 54] for more details). Recent
work [43] shows that, by taking a slightly different functor, forcing the subsets to be convex,
one obtains probabilistic (convex) bisimilarity as in [50, 49].

In this paper, we take a coalgebraic outlook at the semantics of probabilistic automata
as belief-state transformers: we wish to translate a PA ¢: S — (PDS)” into a belief state
transformer c*: DS — (PDS)L. Note that the latter is a coalgebra for the functor FX =
(PX)F, ie., a labeled transition system, since the state space is the set of probability
distributions DSS. This is reminiscent of the standard determinisation for non-deterministic
automata (NDA) seen as coalgebras c: S — 2 x (PS)%. The result of the determinisation is
a deterministic automaton c#: PS — 2 x (PS)L (with state space P.S), which is a coalgebra
for the functor FX = 2 x X, In the case of PA, one lifts the states space to DS, in the one
of NDA to PS. From an abstract perspective, both D and P are monads, hereafter denoted
by M, and both PA and NDA can be regarded as coalgebras of type ¢: S — FMS.

In [53], a generalised determinisation transforming coalgebras ¢: S — FMS into coal-
gebras ct: MS — FMS was presented. This construction requires the existence of a lifting
F of F to the category of algebras for the monad M. In the case of NDA, the functor
FX =2 x X% can be easily lifted to the category of join-semilattices (algebras for P) and,
the coalgebra cf: PS — 2 x (PS)’ resulting from this construction turns out to be exactly
the standard determinised automaton. Unfortunately, this is not the case with probabilistic
automata: because of the lack of a suitable distributive law of D over P [64], it is impossible
to suitably lift FX = (PX)” to the category of convex algebras (algebras for the monad D).

The way out of the impasse consists in defining a powerset-like functor on the category of
convex algebras. This is not a lifting but it enjoys enough properties that allow to lift every
PA into a labeled transition system on convex algebras. In turn, these can be transformed —
without changing the underlying behavioural equivalence — into standard LTSs on Sets by
simply forgetting the algebraic structure. We show that the result of the whole procedure
is exactly the expected belief-state transformer and that the induced notion of behavioural
equivalence coincides with a canonical one present in the literature [14, 25, 22, 26].

The analogy with NDA pays back in terms of proof techniques. In [6], Bonchi and Pous
introduced an efficient algorithm to check language equivalence of NDA based on coinduction
up-to [45]: in a determinised automaton ¢#: PS — 2 x (PS)L, language equivalence can be
proved by means of bisimulations up-to the structure of join semilattice carried by the state
space PS. Algorithmically, this results in an impressive pruning of the search space.

Similarly, in a belief-state transformer c*: DS — (PDS)%, one can coinductively reason
up-to the convex algebraic structure carried by DS. The resulting proof technique, which
we call in this paper bisimulation up-to convex hull, allows finite relations to witness the
equivalence of infinitely many states. More precisely, by exploiting a recent result in convex
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Figure 1 On the left: a PA with set of actions L = {a} and set of states S =
{zo, 21, T2, T3, Yo, Y1, Y2, y3}. We depict each transition s 2% ¢ in two stages: a straight action-
labeled arrow from s to - and then several dotted arrows from - to states in S specifing the distri-
bution . On the right: part of the corresponding belief-state transformer. The dots between two
arrows ¢ > &1 and ¢ v & denote that ¢ can perform infinitely many transitions to states obtained
as convex combinations of & and &2. For instance yo N %yl + in + %yg.

algebra by Sokolova and Woracek [55], we are able to show that the equivalence of any two
belief states can always be proven by means of a finite bisimulation up-to.

The paper starts with background on PA (Section 2), convex algebras (Section 3), and
coalgebra (Section 4). We provide the PA functor on convex algebras in Section 5. We give
the transformation from PA to belief-state transformers in Section 6 and prove the coin-
cidence of the abstract and concrete transformers and semantics. We present bisimulation
up-to convex hull in Section 7. Proofs of all results are in the full version.

2 Probabilistic Automata

Probabilistic automata are models of systems that involve both probability and nondetermin-
ism. We start with their definition by Segala and Lynch [50].

» Definition 1. A probabilistic automaton (PA) is a triple M = (S, L, —) where S is a set
of states, L is a set of actions or action labels, and — C S x L x D(S) is the transition
relation. As usual, s % ¢ stands for (s, a,() € —. o

An example is shown on the left of Figure 1. Probabilistic automata can be given different se-
mantics, e.g., (strong probabilistic) bisimilarity [39], convex (probabilistic) bisimilarity [50],
and as transformers of belief states [10, 22, 13, 15, 14, 26] whose definitions we present next.
For the rest of the section, we fix a PA M = (S, L, —).

» Definition 2 (Strong Probabilistic Bisimilarity). A relation R C S x S is a (strong probab-
ilistic) bisimulation if (s,t) € R implies, for all actions a € L and all £ € D(.5), that

s HE=>3eD8).t B¢ NE=RE, and t 5 =>HeD(S). s BENE=RE.

Here, = C D(S) x D(S) is the lifting of R to distributions, defined by & =g ¢ if and
only if there exists a distribution v € D(S x ) such that
Lo Y egv(s,t)=£(s) forany s € S, 2. ) qv(s,t)=¢(t) forany t € T,
3. v(s,t) # 0 implies (s,t) € R.
Two states s and t are (strongly probabilistically) bisimilar, notation s ~ t, if there exists a
(strong probabilistic) bisimulation R with (s,t) € R. o

and
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» Definition 3 (Convex Bisimilarity). A relation R C S x S is a convezr (probabilistic)
bisimulation if (s,t) € R implies, for all actions a € L and all £ € D(S), that

s B E=>WeDS). t S ENE=RE, and t B¢ = eD(S). s B ENE=RE.

Here —. denotes the convex transition relation, defined as follows: s —. ¢ if and only
if ¢ =" | pi& for some & € D(S) and p; € [0,1] satisfying 1" p; = 1 and s = & for
i =1,...,n. Two states s and t are convex bisimilar, notation s ~. t, if there exists a convex
bisimulation R with (s,t) € R. o

Convex bisimilarity is (strong probabilistic) bisimilarity on the "convex closure" of the
given PA. More precisely, consider the PA M, = (S, L, —,) in which s %, ¢ whenever s € S
and ¢ is in the convex hull (see Section 3 for a definition) of the set {¢ € D(S) | s % (}.
Then convex bisimilarity of M is bisimilarity of M.. Hence, if bisimilarity is the behavioural
equivalence of interest, we see that convex semantics arises from a different perspective on
the representation of a PA: instead of seeing the given transitions as independent, we look
at them as generators of infinitely many transitions in the convex closure.

There is yet another way to understand PA, as belief-state transformers, present but
sometimes implicit in [10, 25, 22, 13, 15, 14, 26, 11] to name a few, with behavioural equi-
valences on distributions. We were particularly inspired by the original work of Deng et
al. [13, 15, 14] as well as [26]. Given a PA M = (S,L,—), consider the labeled trans-
ition system M, = (DS, L, —) with states distributions over the original states of M, and
transitions — C DS x L x DS defined by

E5C fF €= pisi, si Se b (=Y pikis

We call Mys the belief-state transformer of M. Figure 1, right, displays a part of the
belief-state transformer induced by the PA of Figure 1, left. According to this definition, a
distribution makes an action step only if all its support states can make the step.

This, and hence the corresponding notion of bisimulation, can vary. For example, in [26]
a distribution makes a transition = if some of its support states can perform an ~ step.
There are several proposed notions of equivalences on distributions [25, 18, 19, 22, 13, 10, 26]
that mainly differ in the treatment of termination. See [26] for a detailed comparison.

» Definition 4 (Distribution Bisimilarity). An equivalence R C DS x DS is a distribution
bisimulation of M if and only if it is a bisimulation of the belief-state transformer M.
Two distributions & and ( are distribution bisimilar, notation & ~g (, if there exists a
bisimulation R with (£, () € R. Two states s and t are distribution bisimilar, notation s ~ t,
if 65 ~q d¢, where ¢,, denotes the Dirac distribution with J,(z) = 1. o

While the foundations of strong probabilistic bisimilarity are well-studied [54, 4, 65]
and convex probabilistic bisimilarity was also recently captured coalgebraically [43], the
foundations of the semantics of PA as transformers of belief states is not yet explained.
One of the goals of the present paper is to show that also that semantics (naturally on
distributions [26]) is an instance of generic behavioural equivalence. Note that a (somewhat
concrete) proof is given for the bisimilarity of [26] — the authors have proven that their
bisimilarity is coalgebraic bisimilarity of a certain coalgebra corresponding to the belief-
state transformer. What is missing there, and in all related work, is an explanation of the
relationship of the belief-state transformer to the the original PA. Clarifying the foundations
of the belief-state transformer and the distribution bisimilarity is our initial motivation.
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3 Convex Algebras

By C we denote the signature of convex algebras

n

C={(p)io |n€N,p; €[0,1],Y pi=1}.
=0

The operation symbol (p;), has arity (n + 1) and it will be interpreted by a convex
combination with coefficients p; for i = 0,...,n. For p € [0,1] we write p =1 —p.

» Definition 5. A convex algebra X is an algebra with signature C, i.e., a set X together with
an operation Y ., p;(—); for each operational symbol (p;)_, € C, such that the following
two axioms hold:

Projection: > o px; = x; if p; = 1.

Barycenter: Y2 p; (Z;”':o qz',jxj) =20 (im0 pidig) ;-
A convex algebra homomorphism h from X to Y is a convexr (synonymously, affine) map,
ie, h: X — Y with the property h (Y} i, pixi) = > o pih(2;). o

» Remark 6. Let X be a convex algebra. Then (for p, # 1)

n n—1
__ Dj
Zpixi = Pn Z :ij + PnTn (1)
i=0 j=o Pn

Hence, an (n + 1)-ary convex combination can be written as a binary convex combination
using an n-ary convex combination. As a consequence, if X is a set that carries two convex
algebras X; and X, with operations Y"1 p;(—); and @, p;(—);, respectively (and binary
versions + and @, respectively) such that pz + py = px @ py for all p, z,y, then X; = Xo.

One can also see (1) as a definition, see e.g. [60, Definition 1]. We make the connection
explicit with the next proposition, cf. [60, Lemma 1-Lemma 4]*.

» Proposition 7. Let X be a set with binary operations px + py for x,y € X and p € (0,1).
Forz,y,z € X and p,q € (0,1), assume

Idempotence: pxr + pxr = x,

Parametric commutativity: px + py = py + pz,

Parametric associativity: p(qr + qy) + pz = pgx + pg (izgy + %z) ,
and define n-ary conver operations by the projection axiom and the formula (1). Then X
becomes a convex algebra. |

Hence, it suffices to consider binary convex combinations only, whenever more convenient.

» Definition 8. Let X be a convex algebra, with carrier X and C' C X. C is convez if it is
the carrier of a subalgebra of X, i.e., if px + py € C for z,y € C and p € (0,1). The convez
hull of a set S C X, denoted conv(S), is the smallest convex set that contains S. o

Clearly, a set C C X for X being the carrier of a convex algebra X is convex if and
only if C = conv(C). Convexity plays an important role in the semantics of probabilistic
automata, for example in the definition of convex bisimulation, Definition 3.

1 Stone’s cancellation Postulate V is not used in his Lemma 1-Lemma 4.
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4 Coalgebras

In this section, we briefly review some notions from (co)algebra which we will use in the rest
of the paper. This section is written for a reader familiar with basic category theory. We
have included an expanded version of this section in the full version that also includes basic
categorical definitions and more details than what we do here.

Coalgebras provide an abstract framework for state-based systems. Let C be a base
category. A coalgebra is a pair (5, ¢) of a state space S (object in C) and an arrow ¢: S — F'S
in C where F': C — C is a functor that specifies the type of transitions. We will sometimes
just say the coalgebra c¢: S — F'S, meaning the coalgebra (S,¢). A coal-
gebra homomorphism from a coalgebra (S,¢) to a coalgebra (T,d) is an S o7
arrow h: S — T in C that makes the diagram on the right commute. é
Coalgebras of a functor I’ and their coalgebra homomorphisms form a cat- Fs_Eh prp
egory that we denote by Coalgs (F'). Examples of functors on Sets which
are of interest to us are:

1. The constant exponent functor (—)¥ for a set L, mapping a set X to the set X% of all
functions from L to X, and a function f: X — Y to f¥: X* — YL with fX(g) = fog.
2. The powerset functor P mapping a set X to its powerset PX = {S | S C X} and on

functions f: X — Y given by direct image: Pf: PX — PY, P(f)(U) = {f(uv) |u € U}.
3. The finitely supported probability distribution functor D is defined, for a set X and a

function f: X =Y, as
DX = {p: X = [0,1]| Y ¢(z) =1, supp(y) is finite} ~ Df(p)(y) = D> o).

reX z€f~1(y)

The support set of a distribution ¢ € DX is defined as supp(p) = {z € X | ¢(x) # 0}.
4. The functor C [43, 28, 63] maps a set X to the set of all nonempty convex subsets of

distributions over X, and a function f: X — Y to the function PDf.

We will often decompose P as P, + 1 where P, is the nonempty powerset functor and
(=) + 1 is the termination functor defined for every set X by X +1 =X U {x} with «x ¢ X
and every function f: X - Y by f+ 1(x) =xand f+ 1(z) =« for z € X.

Coalgebras over a concrete category are equipped with a generic behavioural equival-
ence, which we define next. Let (5,¢) be an F-coalgebra on a concrete category C, with
U: C — Sets being the forgetful functor. An equivalence relation R C US x US is a
kernel bisimulation (synonymously, a cocongruence) [57, 36, 67] if it is the kernel of a ho-
momorphism, i.e., R = kerUUh = {(s,t) € US x US | Uh(s) = Uh(t)} for some coalgebra
homomorphism h: (S,¢) — (T,d) to some F-coalgebra (T,d). Two states s,t of a coal-
gebra are behaviourally equivalent notation s = t iff there is a kernel bisimulation R with
(s,t) € R. A simple but important property is that if there is a functor from one category
of coalgebras (over a concrete category) to another that preserves the state space and is
identity on morphisms, then this functor preserves behavioural equivalence: if two states
are equivalent in a coalgebra of the first category, then they are also equivalent in the image
under the functor in the second category.

We are now in position to connect probabilistic automata to coalgebras.

» Proposition 9 ([4, 54]). A probabilistic automaton M = (S, L,—) can be identified with a
(PD)%-coalgebra cpr: S — (PDS)E on Sets, where s % & in M iff € € cpr(s)(a) in (S, car).
Bisimilarity in M equals behavioural equivalence in (S, cpr), i.e., for two states s,t € S we
have s ~t & s~ t. |

It is also possible to provide convex bisimilarity semantics to probabilistic automata via
coalgebraic behavioural equivalence, as the next proposition shows.
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» Proposition 10 ([43]). Let M = (S, L,—) be a probabilistic automaton, and let (S,¢nr) be
a (C + 1)E-coalgebra on Sets defined by cpr(s)(a) = conv(cpr(s)(a)) where cyr is as before,
if ear(s)(a) = {€ | s 5 €} # 0; and epr(s)(a) = * if cp(s)(a) = 0. Convex bisimilarity in
M equals behavioural equivalence in (S, Cpr). |

The connection between (5, cpr) and (5, ¢ps) in Proposition 10 is the same as the con-
nection between M and M, in Section 2. Abstractly, it can be explained using the following
well known generic property.

» Lemma 11 ([46, 4]). Let o: F = G be a natural transformation from F: C — C to
G:C — C. Then T: Coalgg (F) — Coalgg (G) given by T(S 5 FS) = (S 5 FS 23 GS)
on objects and identity on morphisms is a functor that preserves behavioural equivalence. If
o is injective, then T also reflects behavioural equivalence. |

» Example 12. We have that conv: PD = C + 1 given by conv(f)) = % and conv(X)
is the already-introduced convex hull for X C DS, X # () is a natural transformation.
Therefore, convl: (PD)F = (C + 1)F is one as well, defined pointwise. As a consequence
from Lemma 11, we get a functor Teony: Coalggess ((PD)E) — Coalggess ((C + 1)F) and
hence bisimilarity implies convex bisimilarity in probabilistic automata.

Also, an injective natural transformation ¢: C' + 1 = PD is given by ¢(X) = X and
t(¥) = 0 yielding an injective x: (C + 1)* = (PD)~. As a consequence, convex bisimilarity
coincides with strong bisimilarity on the “convex-closed” probabilistic automaton M., i.e.,
the coalgebra (.5, ¢ys) whose transitions are all convex combinations of M-transitions.

4.1 Algebras for a Monad

The behaviour functor F' often is, or involves, a monad M, providing certain computational
effects, such as partial, non-deterministic, or probabilistic computations.

More precisely, a monad is a functor M: C — C together with two natural trans-
formations: a unit 7: idc = M and multiplication pu: M? = M that satisfy the laws
ponm =1id=poMnand popup = poMu.

An example that will be pivotal for our exposition is the finitely supported distribution
monad. The unit of D is given by a Dirac distribution n(z) = d; = (z + 1) for x € X and
the multiplication by u(®)(z) = Y.  ®(p) - ¢(z) for € DDX.

p€Esupp(®P)
With a monad M on a category C one associates the Eilenberg-Moore category EM(M)

of Eilenberg-Moore algebras. Objects of EM(M) are pairs A = (4, a) of an object A € C
and an arrow a: MA — A, satisfying a on =id and a o Ma = a o p.

A homomorphism from an algebra A = (A, a) to an algebra B = (B,b)isamap h: A — B
in C between the underlying objects satisfying hoa = bo Mh.

A category of Eilenberg-Moore algebras which is particularly relevant for our exposition
is described in the following proposition. See [61] and [51] for the original result, but
also [16, 17] or [29, Theorem 4] where a concrete and simple proof is given.

» Proposition 13 ([61, 16, 17, 29]). Eilenberg-Moore algebras of the finitely supported dis-
tribution monad D are exactly convex algebras as defined in Section 3. The arrows in the
FEilenberg-Moore category EM(D) are convex algebra homomorphisms. <

As a consequence, we will interchangeably use the abstract (Eilenberg-Moore algebra)
and the concrete definition (convex algebra), whatever is more convenient. For the latter,
we also just use binary convex operations, by Proposition 7, whenever more convenient.

23:7
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4.2 The Generalised Determinisation

We now recall a construction from [53], which serves as source of inspiration for our work.
A functor F: EM(M) — EM(M) is said to be a lifting of a functor F: C — C if and
only if Y o F = F o U. Here, U is the forgetful functor «: EM(M) — C mapping an
algebra to its carrier. It has a left adjoint F, mapping an object X € C to the (free) algebra
(MX, ux). We have that M =U o F.
Whenever F': C — C has a lifting F: EM(M) — EM(M), one has the following functors
between categories of coalgebras.

= Coalggyi( 1) (F) -
/ \
Coalgg (FM) Coalgc (F)

The functor F transforms every coalgebra c: S — FMS over the base category into a
coalgebra cf: FS — FFS. Note that this is a coalgebra on EM(M): the state space carries
an algebra, actually the freely generated one, and ¢ is a homomorphism of M-algebras.
Intuitively, this amounts to compositionality: like in GSOS specifications, the transitions of
a compound state are determined by the transitions of its components.

The functor U simply forgets about the algebraic structure: c¢f is mapped into

Ut MS=UFS - UFFS = FUFS = FMS.

An important property of I is that it preserves and reflects behavioural equivalence. On the
one hand, this fact usually allows to give concrete characterisation of ~ for F-coalgebras. On
the other, it allows, by means of the so-called up-to techniques, to exploit the M-algebraic
structure of FS to check ~ on Uct.

By taking F' = 2 x (—)* and M = P, one transforms c¢: S — 2 x (PS)F into Uck: PS —
2 x (PS)L. The former is a non-deterministic automaton (every c of this type is a pairing
(0,t) of 0: S — 2, defining the final states, and t: S — P(S)%, defining the transition
relation) and the latter is a deterministic automaton which has PSS as states space. In [53],
see also [32], it is shown that, for a certain choice of the lifting F', this amounts exactly to
the standard determinisation from automata theory. This explains why this construction is
called the generalised determinisation.

In a sense, this is similar to the translation of probabilistic automata into belief-state
transformers that we have seen in Section 2. Indeed, probabilistic automata are coalgebras
c: S — (PDS)L and belief state transformers are coalgebras of type DS — (PDS)L. One
would like to take F' = PX and M = D and reuse the above construction but, unfortunately,
PL does not have a suitable lifting to EM(D). This is a consequence of two well known facts:
the lack of a suitable distributive law p: DP = PD [64] ? and the one-to-one correspondence
between distributive laws and liftings, see e.g. [32]. In the next section, we will nevertheless
provide a “powerset-like” functor on EM(D) that we will exploit then in Section 6 to properly
model PA as belief-state transformers.

2 As shown in [64], there is no distributive law of the powerset monad over the distribution monad.
Note that a “trivial” lifting and a corresponding distributive law of the powerset functor over the
distribution monad exists, it is based on [11] and has been exploited in [32]. However, the corresponding
“determinisation” is trivial, in the sense that its distribution bisimilarity coincides with bisimilarity,
and it does not correspond to the belief-state transformer.
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5 Coalgebras on Convex Algebras

In this section we provide several functors on EM(D) that will be used in the modelling
of probabilistic automata as coalgebras over EM(D). This will make explicit the implicit
algebraic structure (convexity) in probabilistic automata and lead to distribution bisimilarity
as natural semantics for probabilistic automata in Section 6.

5.1 Convex Powerset on Convex Algebras

We now define a functor, the (nonempty) convex powerset functor, on EM(D). Let A
be a convex algebra. We define P.A to be A, = (A.,a.) where A, = {C C A | C #
(), C is convex} and a. is the convex algebra structure given by the following pointwise
binary convex combinations: pC + pD = {pc+ pd | ¢ € C,d € D}. It is important that we
only allow nonempty convex subsets in the carrier A. of P.A, as otherwise the projection
axiom fails.

For convex subsets of a finite dimensional vector space, the pointwise operations are
known as the Minkowski addition and are a basic construction in convex geometry, see
e.g. [48]. The pointwise way of defining algebras over subsets (carriers of subalgebras) has
also been studied in universal algebra, see e.g. [8, 7, 9].

Next, we define P, on arrows. For a convex homomorphism h: A — B, P.h = Ph. The
following property ensures that we are on the right track.

» Proposition 14. P_A is a convex algebra. If h: A — B is a convex homomorphism, then
s0 is Pch: PcA — P.B. P. is a functor on EM(D). <

» Remark 15. P, is not a lifting of C' to EM(D), but it holds that C = U o P, o F as
illustrated below on the left. P, is also not a lifting of P,,., the nonempty powerset functor,
but we have an embedding natural transformation e: & o P, = Py o U given by e(C) = C,
i.e., we are in the situation:

EM(D) — %~ EM(D) EM(D) — %~ EM(D)
]—'T lu ui S5 J/u
Sets ——— Sets Sets ——“ > Sets

The right diagram in Remark 15 simply states that every convex subset is a subset, but
this fact and the natural transformation e are useful in the sequel. In particular, using e we
can show the next result.

» Proposition 16. P, is a monad on EM(D), with n and p as for the powerset monad. <

5.2 Termination on Convex Algebras

The functor P, defined in the previous section allows only for nonempty convex subsets.
We still miss a way to express termination. The question of termination amounts to the
question of extending a convex algebra A with a single element x. This question turns out
to be rather involved, beyond the scope of this paper. The answer from [56] is: there are
many ways to extend any convex algebra A with a single element, but there is only one
natural functorial way. Somehow now mathematics is forcing us the choice of a specific
computational behaviour for termination!
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Given a convex algebra A, let A + 1 have the carrier A + {} for « ¢ A and convex
operations given by

pr+py, T,y€A,
(2)

ES3

px@ﬁy{
, X =% O0r Yy =*.

Here, the newly added * behaves as a black hole that attracts every other element of the
algebra in a convex combination. It is worth to remark that this extension is folklore [23].

» Proposition 17 ([56, 23]). A + 1 as defined above is a convex algebra that extends A by
a single element. The map h + 1 obtained with the termination functor in Sets is a convex
homomorphism if h: A — B is. The assignments (—) + 1 give a functor on EM(D). <

We call the functor (—) + 1 on EM(D) the termination functor, due to the following.
» Lemma 18. The functor (=) + 1 is a lifting of the termination functor to EM(D). <

» Remark 19. Note that we are abusing notation here: Our termination functor (—) + 1 on
EM(D) is not the coproduct (—) 4+ 1 in EM(D). The coproduct was concretely described in
[33, Lemma 4], and the coproduct X+ 1 has a much larger carrier than X + 1. Nevertheless,
we use the same notation as it is very intuitive and due to Lemma 18.

5.3 Constant Exponent on Convex Algebras

We now show the existence of a constant exponent functor on EM(D). Let L be a set of
labels or actions. Let A be a convex algebra. Consider A® with carrier AL = {f | f: L — A}
and operations defined (pointwise) by (pf + pg)(l) = pf(l) + pg(1).

The following property follows directly from the definitions.

» Proposition 20. A" is a convez algebra. If h: A — B is a convex homomorphism, then so
is ht: Al — B defined as in Sets. Hence, (—)* defined above is a functor on EM(D). <

We call (—)% the constant exponent functor on EM (D). The name and the notation is
justified by the following (obvious) property.

» Lemma 21. The constant exponent (—) on EM(D) is a lifting of the constant exponent
functor (—)F on Sets. <

» Example 22. Consider a free algebra FS = (DS, i) of distributions over the set S. By
applying first the functor P, then (—) + 1 and then (—)%, one obtains the algebra

; D ((CS+1)F)
(P.FS+1)" = o
(CS+1)E

where C'S is the set of non-empty convex subsets of distributions over S, and « corresponds
to the convex operations® Y p; f; defined by

(Zlh‘fi) (1) = { {*Zpifi | & e fil)}y fi(l)eCSforall i€ {l,...,n}

fi(l) = * for some i € {1,...,n}

3 In this case, for future reference, it is convenient to spell out the n-ary convex operations.
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5.4 Transition Systems on Convex Algebras

We now compose the three functors introduced above to properly model transition systems as
coalgebras on EM(D). The functor that we are interested in is (P.+1)Y: EM(D) — EM(D).
A coalgebra (S, ¢) for this functor can be thought of as a transition system with labels in L
where the state space carries a convex algebra and the transition function c: S — (P.S+1)% is
a homomorphism of convex algebras. This property entails compositionality: the transitions
of a composite state px, + pro are fully determined by the transitions of its components z
and z, as shown in the next proposition. We write z +» y for ,y € S, the carrier of S if

y € c(z)(a), and z & if c(z)(a) = *.

» Proposition 23. Let (S,c) be a (P, + 1)E-coalgebra, and let w1, x2,y1,y2, 2 be elements of
S, the carrier of S. Then, for allp € (0,1), anda € L

pr1 4 Pre ©> 2 iff 2 = py1 + Dy2, T1 *> Y1 and x2S Ya;

px1+ﬁx2>7%>i[fz1v7z>y1 07”1'2>7Z>y2. <

Transition systems on convex algebras are the bridge between PA and LTSs. In the next
section we will show that one can transform an arbitrary PA into a (P, + 1)¥-coalgebra and
that, in the latter, behavioural equivalence coincides with the standard notion of bisimilarity
for LTSs (Proposition 27).

6 From PA to Belief-State Transformers

Before turning our attention to PA; it is worth to make a further step of abstraction.
Recall from Remark 15 how P, is related to C' and P,.. The following definition is the
obvious generalisation.

» Definition 24. Let M: Sets — Sets be a monad and L£1,L5: Sets — Sets be two
functors. A functor H: EM(M) — EM(M) is
a quasi lifting of £, if the diagram on the left commutes.
a lax lifting of Ly if there exists an injective natural transformation e: f o H = Lo o U
as depicted on the right.
an (L1, Ls) quasi-lax lifting if it is both a quasi lifting of £; and a lax lifting of L.
H H

]-‘T lu ul 17 iu
Sets - Sets Sets 2 Sets o

So, for instance, P. is a (C, Pne) quasi-lax lifting. From this fact, it follows that (P. + 1)
isa ((C+ 1)L, (Pne + 1)F) quasi-lax lifting. Another interesting example is the generalised
determinisation (Section 4.2): it is easy to see that F is a (FM, F)-quasi-lax lifting. Indeed,
like in the generalised powerset construction, one can construct the following functors.

- Coalgpy ) (H) 7
/ \
Coalgges (£1) Coalgges (£2)
We first define F. Take an Lj-coalgebra (S,c) and recall that FS is the free algebra
w: MMS — MS. The left diagram in Definition 24 entails that HFS is an algebra

a: ML1S — £1S. We call Uet the composition UFS = MS M5 ML£,S —% £, =
UHFS. The next lemma shows that c*: F.S — HFS is a map in EM(M).

23:11

CONCUR 2017



23:12

The Power of Convex Algebras

» Lemma 25. There is a 1-1 correspondence between Lq-coalgebras on Sets and H-coalgebras
on EM(M) with carriers free algebras:

c: S — L5 in Sets
#: FS = HFS in EM(M)

given ¢, we have Uc# = o o Mc for a = HFS,

given ¢, we have ¢ =Uc* o).
The assignment F(S,c) = (FS,c#) and F(h) = Mh gives a functor F: Coalgges (L1) —
Coalggyi(a) (H)- <

Now we can define U : Coalggyag) (H) — Coalggets (L2) as mapping every coalgebra
(S, ¢) with ¢: S — HS into

U(S, ) = (US, es o Uc) where US LS UHS <55 LoUS

and every coalgebra homomorphism h: (S,¢) — (T,d) into Uh = Uh. Routine computations
confirm that I/ is a functor.

Since U is a functor that keeps the state set constant and is identity on morphisms, every
kernel bisimulation on (S, c) is also a kernel bisimulation on U(S,c). The converse is not
true in general: a kernel bisimulation R on U(S, ¢) is a kernel bisimulation on (S, ¢) only if
it is a congruence with respect to the algebraic structure of S.

Formally, R is a congruence if and only if the set US/R of equivalence classes of R carries
an Eilenberg-Moore algebra and the function U[—|g: US — US/R mapping every element
of US to its R-equivalence class is an algebra homomorphism.

» Proposition 26. The following are equivalent:
R is a kernel bisimulation on (S, c),
R is a congruence of S and a kernel bisimulation of U(S,c). <

In particular, Proposition 26 and the following result ensure that the functor
U: Coalggy(py (Pe + 1) — Coalggeys PE preserves and reflect a.

» Proposition 27. Let (S,c) be a (P. + 1)L-coalgebra. Behavioural equivalence on U(S, c)
is a convex congruence*. Hence, U preserves and reflects behavioural equivalence.. |

This means that ~ for (P, + 1)¥-coalgebras, called transition systems on convex algebras in
Section 5.4, coincides with the standard notion of bisimilarity for LTSs.

Table 1 summarises all models of PA: from the classical model M being a PD*-coalgebra
(S,enr) on Sets, via the convex model M, obtained as Teonv(S, car), to the belief state
transformer My,. The latter coincides with U o F o Teony (S, car).

» Theorem 28. Let (S, cpr) be a probabilistic automaton. For all ,¢ € DS,
deC < 5%4 m Ho?o%onv(‘g,CM)- |

Hence, distribution bisimilarity is indeed behavioural equivalence on the belief-state
transformer and it coincides with standard bisimilarity.

4 Convex congruences are congruences of convex algebras, see e.g. [55]. They are convex equivalences,
i.e., closed under componentwise-defined convex combinations.
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Table 1 The three PA models, their corresponding Sets-coalgebras, and relations to M.

M= (S, L,—) M. = (S,L,—¢) Mys = (DS, L, )
(S,ear: S = (PD)Y) | (S,em: S — (C+1)F) (DS, én: DS — (PDS)Y)
(S, em) (S,em) = Toonv(S,ear) | (S, én) =U o F o Teonv(S, car)
cm v = conv o ey ey = (ers +1)F OZ/IE%

7 Bisimulations Up-To Convex Hull

As we mentioned in Section 4.2, the generalised determinisation allows for the use of up-
to techniques [42, 45]. An important example is shown in [6]: given a non-deterministic
automaton c: S — 2 x P(S)L, one can reason on its determinisation Uct: P(S) — 2 x
P(S)Y up-to the algebraic structure carried by the state space P(S). Given a probabilistic
automaton (S, L, —), we would like to exploit the algebraic structure carried by D(S) to
prove properties of the corresponding belief states transformer (D(S), L, ). Unfortunately,
the lack of a suitable distributive law [64] makes it impossible to reuse the abstract results
in [5]. Fortunately, we can redo all the proofs by adapting the theory in [45] to the case of
probabilistic automata.

Hereafter we fix a PA M = (S, L,—) and the corresponding belief states transformer
Mys = (D(S), L,~). We denote by Relp(g) the lattice of relations over D(S) and define the
monotone function b: Relp(sy — Relp(s) mapping every relation R € Relp(g) into

b(R) == {(¢1,&) | VYa€L, V¢ st. G5, 3¢ st G ¢ and (¢, ¢) €R,
V(i st G > G, 3T st G ¢ and ((f,¢5) € R}

A bisimulation is a relation R such that R C b(R). Observe that these are just regular
bisimulations for labeled transition systems and that the greatest fixpoint of b coincides
exactly with ~g. The coinduction principle informs us that to prove that (3 ~g4 (5 it is
enough to exhibit a bisimulation R such that ({1,({2) € R.

» Example 29. Consider the PA in Figure 1 (left) and the belief-state transformer generated
by it (right). It is easy to see that the (Dirac distributions of the) states z2 and y, are in
~a: the relation {(z2,v2)} is a bisimulation. Also {(x3,%3)} is a bisimulation: both x5 %
and y3 % More generally, for all ¢, € € D(S), p,q € [0,1], p¢ + px3 ~q g€ + qys since both

pC+ prs b and € + qys b (3)

Proving that x¢ ~g4 yo is more complicated. We will show this in Example 32 but, for the
time being, observe that one would need an infinite bisimulation containing the following
pairs of states.

a a a a
Xt X1t %$1+%,’E2}—>%$1+%$2|—>...

Yo =ty + Syo b Ty 4+ Sy b Ly + Ty B0

Indeed, all the distributions depicted above have infinitely many possible choices for
but, whenever one of them executes a depicted transition, the corresponding distribution is
forced, because of (3), to also choose the depicted transition.

23:13

CONCUR 2017



23:14

The Power of Convex Algebras

An up-to technique is a monotone map f: Relpsy — Relp(s), while a bisimulation up-to f
is a relation R such that R C bf(R). An up-to technique f is said to be sound if, for all
R € Relp(gy, R C bf(R) entails that R C ~y. It is said to be compatible if f b(R) C bf(R).
In [45], it is shown that every compatible up-to technique is also sound.

Hereafter we consider the convex hull technique conv: Relps)y — Relp(s)y mapping every
relation R € Relp(g) into its convex hull which, for the sake of clarity, is

conv(R) = {(pC1 + p&1,pC2 + P2) | (C1,C2) € R, (€1,€2) € R and p € [0,1]}.
» Proposition 30. conv is compatible. <

This result has two consequences: First, conv is sound® and thus one can prove ~y
by means of bisimulation up-to conv; Second, conv can be effectively combined with other
compatible up-to techniques (for more details see [45] or the full version). In particular,
by combining conv with up-to equivalence — which is well known to be compatible — one
obtains up-to congruence cgr: Relp(s)y — Relp(s). This technique maps a relation R into
its congruence closure: the smallest relation containing R which is a congruence.

» Proposition 31. cgr is compatible. <
Since cgr is compatible and thus sound, we can use bisimulation up-to cgr to check ~y.

» Example 32. We can now prove that, in the PA depicted in Figure 1, ¢ ~q4 yo. It is easy
to see that the relation R = {(z2,92), (23,¥3), (z1, 3¥1 + 3¥2), (20, y0)} is a bisimulation
up-to cgr: consider (z1, %yl + %yg) (the other pairs are trivial) and observe that

a a
ry —— %xl + %xg Ty — %xg + %xg
R cgr(R) R cgr(R)

1 1 1 3
Y1t a2 st Y i+ Sy b gys U2

Since all the transitions of z; and %yl + %yg are obtained as convex combination of
the two above, the arriving states are forced to be in cgr(R). In symbols, if (=
p(3z1 + 1) + p(3a3 + 22), then Sy1 + Lyo > € = p(3u1 + 3y2) + P(3ys + 3y2) and
(¢, €) € cgr(R).

Recall that in Example 29, we showed that to prove zg ~4 yo without up-to techniques
one would need an infinite bisimulation. Instead, the relation R in Example 32 is a finite

bisimulation up-to cgr. It turns out that one can always check ~4 by means of only finite
bisimulations up-to. The key to this result is the following theorem, recently proved in [55].

» Theorem 33. Congruences of finitely generated convex algebras are finitely generated. <

This result informs us that for a PA with a finite state space S, ~g C D(S) x D(S5) is
finitely generated (since ~g4 is a congruence, see Proposition 27). In other words there exists
a finite relation R such that cgr(R) = ~g4. Such R is a finite bisimulation up-to cgr:

R C cgr(R) =~g= b(~q) = b(cgr(R)).

» Corollary 34. Let (S,L,—) be a finite PA and let (1, (s € D(S) be two distributions such
that ¢4 ~q (2. Then, there exists a finite bisimulation up-to cgr R such that ((1,(3) € R. <

5 In [47] a similar up-to technique called “up-to lifting" is defined in the context of probabilistic A-calculus
and proven sound.



F. Bonchi, A. Silva, and A. Sokolova

8 Conclusions and Future Work

Belief-state transformers and distribution bisimilarity have a strong coalgebraic foundation
which leads to a new proof method — bisimulation up-to convex hull. More interestingly,
and somewhat surprisingly, proving distribution bisimilarity can be achieved using only finite
bisimulation up-to witness. This opens exciting new avenues: Corollary 34 gives us hope
that bisimulations up-to may play an important role in designing algorithms for automatic
equivalence checking of PA, similar to the one played for NDA. Exploring their connections
with the algorithms in [26, 20] is our next step.

From a more abstract perspective, our work highlights some limitations of the bialgebraic
approach [62, 3, 34]. Despite the fact that our structures are coalgebras on algebras, they
are not bialgebras: but still &~ is a congruence and it is amenable to up-to techniques. We
believe that lax bialgebra may provide some deeper insights.
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