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Abstract
We present a goal-oriented algorithm that can synthesise k-bounded Petri nets (k ∈ N+) from
hyper modal transition systems (hMTS), an extension of labelled transition systems with op-
tional and required behaviour. The algorithm builds a potential reachability graph of a Petri
net from scratch, extending it stepwise with required behaviour from the given MTS and over-
approximating the result to a new valid reachability graph. Termination occurs if either the MTS
yields no additional requirements or the resulting net of the second step shows a conflict with
the behaviour allowed by the MTS, making it non-sythesisable.
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1 Introduction

Petri net synthesis, or more precisely, the problem of finding an unlabelled Petri net imple-
menting a given labelled transition system, goes back to Ehrenfeucht and Rozenberg [13] and
was recently comprehensively presented by Badouel, Bernardinello and Darondeau [5]. Petri
net synthesis not only yields implementations which are correct by design, but also allows to
extract concurrency and distributability information from a sequential specification [6, 8, 21].

Modal transition systems (MTS) are a well-known and useful method for specifying
systems [17, 1, 9, 16]. They are an extension of labelled transition systems (LTS) that can
distinguish between required behaviour (must edges) and optional behaviour (may edges).
Hyper MTS (called disjunctive MTS in [18]) are a further extension, where must edges are
defined as hyper edges, requiring at least one out of (possibly) several actions. An LTS
implements a (hyper) MTS if it allows the required behaviour and disallows any not specified
(optional or required) behaviour, i.e. there may be more than one LTS implementing the
same MTS.

Since modal transition systems are extensions of labelled transition systems, it has been
suggested to extend Petri net synthesis to cover modal transition systems [12, 5]. The
question here is if a given modal transition system can be realised by a Petri net, which
means that the reachability graph of a Petri net can implement the modal transition system,
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6:2 k-Bounded Petri Net Synthesis from Modal Transition Systems

and if this is answered positively, to produce such a Petri net. Recent results show that
this question is undecidable even when asking for pure Petri nets [14] or for bounded Petri
nets [20].

We will easily see that for a given k ∈ N+ the synthesis of a k-bounded Petri net from
some MTS (or some other specification) is decidable, since there is only a finite number of
different reachability graphs available for k-bounded Petri nets with a fixed set of transitions.
This is, to our knowledge, the first general positive decidability result for Petri net synthesis
from modal specifications. Such a brute force approach is not advisable, though, due to the
state space explosion with growing k and number of transitions.

Instead, we introduce a goal-oriented algorithm for synthesising k-bounded Petri nets
from hyper MTS, where the value k is an input to the algorithm. Our algorithm iteratively
applies two operations until a fixed point is reached. The first operation adds missing edges
so that its input implements a given modal transition system. The second operation produces
minimal Petri net solvable over-approximations of otherwise Petri net unsolvable labelled
transition systems. The algorithm will construct all minimal Petri net realisations of a given
modal transition system, where minimality is defined with respect to an LTS homomorphism
preorder, similar to the simulation preorder. This preorder implies language inclusion, which
means that the algorithm also calculates minimal realisations with respect to language
inclusion.

The paper is organised as follows: In Section 2 we present the basic terminology regarding
LTS and Petri nets, including LTS homomorphisms, the construction of k-bounded regions,
and the synthesis of k-bounded Petri nets from such regions. In Section 3 we introduce
(hyper) MTS and their relation to LTS. Section 4 contains our main algorithm including some
examples. In Section 5 we prove termination and correctness of our algorithm. Section 6
contains some thought on the algorithmic complexity of the algorithm and how to implement
it.

2 Petri Net Synthesis

I Definition 1. A labelled transition system (LTS) A is a structure A = (Q,Σ,→, q0) where
Q is a set of states, Σ is a set of actions, q0 ∈ Q is the initial state and→ ⊆ Q×Σ×Q is a set
of (action-)labelled edges. A tuple (q, a, q′) ∈ → is also written as q a−→ q′ and q a−→ expresses
that some q′ with q a−→ q′ exists. This notation is canonically extended to words w ∈ Σ∗ by
inductively defining q ε−→ q for all q ∈ Q and q wa−−→ q′ ⇐⇒ ∃q′′ : q w−→ q′′ ∧ q′′ a−→ q′. An LTS
is deterministic if it satisfies ∀(q, a, q′), (q, a, q′′) ∈ → : q′ = q′′. It is called totally reachable if
∀q ∈ Q : ∃w ∈ Σ∗ : q0

w−→ q. It is called finite if Q and Σ (and hence also →) are finite. The
language L(A) of an LTS A is L(A) := {w ∈ Σ∗ | q0

w−→ }.
Given two LTS Ai = (Qi,Σ,→i, q0i) with i ∈ {1, 2}, an LTS homomorphism from A1 to

A2 is a function f : Q1 → Q2 with f(q01) = q02 such that q a−→ q′ implies f(q) a−→ f(q′) for
all q, q′ ∈ Q1 and a ∈ Σ. If such a homomorphism f exists we write A1 v A2 (via f). v is
reflexive (with the identity homomorphism id) and transitive (as homomorphisms are closed
under composition). A bijection f is an isomorphism if both, f and f−1, are homomorphisms,
in which case we abstract from state names of the isomorphic LTS A1 and A2 and identify
them, writing A1 = A2.

I Remark. Unless given explicitly, the components of an LTS A will be named canonically as
A = (QA,ΣA,→A, q0,A). The same notation will be used for other structures. For example,
the set of places of a Petri net N , which will be defined later, is referred to as PN . For
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Figure 1 Example of a Petri net and its reachability graph. In the Petri net, places are drawn
as circles containing tokens indicating the initial marking. Transitions are drawn as rectangles
containing the name of the transition. The reachability graph has states shown as circles where the
initial state is indicated by an arrow tip. Edges are drawn as arrows with the edge label next to it.

simplicity, the subscript will be left out if it is clear from the context. This last point will
mainly be used for edges, e.g. for (q, a, q′) ∈ →A we might write q a−→ q′ instead of q a−→A q′.

I Lemma 2. Let A and B be LTS so that A v B via f and A v B via f ′. If A is totally
reachable and B is deterministic, then f = f ′.

Proof. We prove by induction on the length of words w ∈ L(A) that if q0,A
w−→ q, then

f(q) = f ′(q). Since A is totally reachable, we reach all states of A in this way, showing that
f(q) = f ′(q) for all q ∈ QA. The induction basis shows the conclusion for the initial state by
applying the definition of v: f(q0,A) = q0,B = f ′(q0,A).

For the induction step, assume that q0,A
w−→ q with f(q) = f ′(q) and consider any q a−→ q′.

Since A v B via f and f ′, we have f(q) a−→ f(q′) and f ′(q) a−→ f ′(q′). However, because B is
deterministic, there cannot be two different states that are reached from f(q) = f ′(q) via
label a. We conclude f(q′) = f ′(q′). J

I Lemma 3. Let A and B be totally reachable and deterministic LTS so that A v B via fA

and B v A via fB. Then A = B.

Proof. Consider A v A (via id) and A v B v A via fB ◦fA. Since Lemma 2 is applicable, we
conclude fB ◦ fA = id, making fA injective and fB surjective. With an analogous argument
for fA ◦ fB = id we see that fA and fB are both bijective homomorphisms with f−1

A = fB,
i.e. they are isomorphisms. Abstracting from state names for the isomorphic A and B, we
may write A = B. J

I Definition 4. A Petri net is a tuple N = (P, T, F,M0) where P and T are finite and disjoint
sets of places and transitions, respectively, and F : ((P ×T )∪ (T ×P ))→ N is a flow relation
specifying arc weights. M0 is the initial marking where a marking is a mapping P → N.
A transition t ∈ T is enabled in a marking M iff ∀p ∈ P : F (p, t) ≤ M(p). An enabled
transition can fire leading to the marking M ′ defined by M ′(p) = M(p)− F (p, t) + F (t, p).
We write M [t〉M ′ and this syntax is inductively extended to label sequences σ ∈ T ∗. The
set of reachable markings of a Petri net N is E(N) = {M | ∃σ ∈ T ∗ : M0[σ〉M}. A Petri net
is called k-bounded by k ∈ N if ∀M ∈ E(N), p ∈ P : M(p) ≤ k. There is a self-loop around
p ∈ P and t ∈ T if F (p, t) > 0 ∧ F (t, p) > 0. A Petri net is called pure if it does not contain
any self-loops. The reachability graph of N is the LTS RG(N) = (E(N), T,→,M0) with
→ = {(M, t,M ′) ∈ E(N)× T × E(N) |M [t〉M ′}. An LTS A is called Petri net solvable if a
Petri net N exists with A = RG(N). In this situation, N solves A.

An example of a Petri net and its reachability graph is shown in Figure 1. The following
lemma can easily be verified:
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6:4 k-Bounded Petri Net Synthesis from Modal Transition Systems

I Lemma 5. For a Petri net N , RG(N) is totally reachable and deterministic. If N is
k-bounded (for some k ∈ N+), RG(N) is finite.

The next lemma shows that there are only finitely many LTS solvable via k-bounded Petri
nets. As an immediate consequence, if we can decide whether the reachability graph of a
specific k-bounded Petri net “implements” some specification, we can also decide whether
any k-bounded Petri net fulfils this, i.e. brute force decisions are possible.

I Lemma 6. For any given k ∈ N+ and finite set of transitions T , the number of structurally
different reachability graphs of k-bounded Petri nets with transitions from T is finite.

Proof. A weight F (p, t) > k or F (t, p) > k in a k-bounded Petri net means that the transition
t can never fire (or the bound would be violated). With weights in {0, . . . , k}, a place can
only be connected in finitely many ways to all the transitions. Exact duplicates of places do
not have an effect on the structure of the reachability graph. J

A place p of a Petri net has a number of tokens M(p) in each reachable marking M . The next
definition formalises this concept on the reachability graph as a so-called region [7, 10, 11].

I Definition 7. Let k ∈ N+. A k-bounded region of a finite1 LTS A is a function r : QA →
{0, 1, . . . , k} satisfying ∀a ∈ ΣA : ∀q a−→ q′, q′′

a−→ q′′′ : r(q′) − r(q) = r(q′′′) − r(q′′), which
means that edges with the same label have the same gradient, where the gradient of a ∈ ΣA

is ∆r(a) = r(q′) − r(q) for any edge q a−→ q′. The value µr(a) = min{r(q) | q a−→ } is the
minimum value r(q) of a state q with an outgoing edge with label a (generally assuming that
every a ∈ ΣA occurs as a label of some edge).

A region corresponds to a possible place p of a Petri net with initial marking M0(p) = r(q0)
and flow relation F (p, t) = µr(t), F (t, p) = ∆r(t)+µr(t). This correspondence allows to define
the Petri net N(R) generated by a set R of regions of an LTS A via N(R) = (R,ΣA, F,M0)
with M0 and F as above.

This definition adds the maximum possible number of self-loops to the generated place
p, because this restricts the behaviour of the Petri net the most. Thus, places with fewer
self-loops cannot be generated in this setting, but also will not be needed.

I Lemma 8. Let A and B be finite LTS so that A v B via f . If r is a region of B, then
r′ = r ◦ f is a region of A.

Proof. Let q a−→ q′ and q̃ a−→ q̃′ be two edges of A. Then, f(q) a−→ f(q′) and f(q̃) a−→ f(q̃′) are
edges in B and by the uniqueness of the gradient we get r′(q′)− r′(q) = r(f(q′))− r(f(q)) =
r(f(q̃′))− r(f(q̃)) = r′(q̃′)− r′(q̃). J

While r and r′ have the same gradient ∆r = ∆r′ , the values for µr and µr′ may differ, i.e.
the places of a Petri net constructed from these regions may have different self-loops.

By definition, there are only a finite number of k-bounded regions. We can use all of
them and define a Petri net:

I Definition 9. For a finite LTS A and a number k ∈ N+, let SNk(A) be the Petri net
generated from all k-bounded regions of A.

1 We exclude infinite LTS since they lead to unbounded Petri nets, for which the synthesis from modal
transition systems is known to be undecidable [14].
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Figure 2 Example for SNk(A) and the resulting reachability graph (on the right).

An example for this construction with k = 1 is shown in Figure 2. The LTS A has only four
regions r1 to r4. We identify a region r with the vector (r(q0), r(q1), r(q2), r(q3)):

r1 = (0, 0, 0, 0) r2 = (0, 0, 0, 1) r3 = (1, 1, 1, 0) r4 = (1, 1, 1, 1)

We also identify the gradient ∆r and minimum values µr of r with the vector (∆r(a),∆r(b)),
respectively (µr(a), µr(b)):

∆r1 = (0, 0) ∆r2 = (0, 1) ∆r3 = (0,−1) ∆r4 = (0, 0)
µr1 = (0, 0) µr2 = (0, 0) µr3 = (1, 1) µr4 = (1, 1)

The event a always has a gradient of ∆r(a) = 0, since otherwise at least one of the values
r(q0), r(q1), or r(q2) would need to be outside of {0, 1}. For the event b, we can have
∆r(b) ∈ {−1, 0, 1}. Altogether, A has four regions which correspond to the places of the
Petri net shown in the middle of Figure 2. As can be seen in the reachability graph, the
event a forms a loop around the initial state.

I Lemma 10. For any k ∈ N+ and finite LTS A, the Petri net SNk(A) is k-bounded.

Proof. Assume a reachable marking M where some place p contains more than k tokens,
i.e. M(p) > k. We use the well-known idea of complement places: With r being the region
corresponding to p, define a new region r′ via r′(q) = k − r(q). Clearly, r′ is also a region of
A and corresponds, by definition, to some place p′ of SNk(A), which is built from all regions
of A. Also, for every event a ∈ ΣA we have ∆r(a) + ∆r′(a) = 0 and for every state q we have
r(q) + r′(q) = k. This also holds for the corresponding places: for any reachable marking
M ′, M ′(p) +M ′(p′) = k. Since M(p) > k we find M(p′) < 0. This contradicts M being a
(reachable) marking. J

Next, we want to show that SNk(A) is the smallest Petri net over-approximation of A.
This means that any other Petri net which is an over-approximation of A will also be an
over-approximation of the reachability graph of SNk(A).

I Theorem 11. Given a number k ∈ N+ and a finite LTS A, we have that A v RG(SNk(A))
and for all k-bounded Petri nets N with A v RG(N), also RG(SNk(A)) v RG(N).

Proof. It is clear that A v RG(SNk(A)), because SNk(A) is defined in such a way that it
does not prevent edges present in A (q t−→ ⇒ r(q) ≥ µr(t) = F (p, t)).

Then, for any N with A v RG(N) via f , each place of N corresponds to a region r

on RG(N). This region can be translated into a region r ◦ f of A via Lemma 8, which by
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Figure 3 Three different hMTS. Initial states are marked with an arrow tip. Must edges are
drawn as solid lines and also indicate may edges as required by the definition. For example,
(s0, {(a, s1), (b, s1)}) ∈ for M2. Non-must may edges are shown with dashed lines. M1 is a
deterministic MTS, M2 a deterministic hMTS, M3 a non-deterministic hMTS.

definition corresponds to a place of SNk(A), yielding a mapping of places2 α : PN → PSNk(A).
We can now define a function β that maps markings of SNk(A) to markings of N via
β(M)(p) = M(α(p)), i.e. a place p of N is assigned the same number of tokens as its
corresponding place α(p) of SNk(A) has inM . We can easily verifyM [t〉M ′ ⇒ β(M)[t〉β(M ′),
i.e. we have RG(SNk(A)) v RG(N) via β. J

3 Modal Transition Systems

Hyper modal transition systems [18] represent classes of LTS. They allow for multiple initial
states and have two different classes of edges. May edges allow an action while must edges
require an action. Compared to classical modal transition systems [17], must edges are hyper
edges that require at least one out of several possible actions, while in a standard modal
transition system no such logical combinations are expressible. A hyper modal transition
system is similar to an acceptance specification [19], but its must edges can be considered to
be in conjunctive normal form while an acceptance specification uses the disjunctive normal
form.

I Definition 12. A hyper modal transition system (hMTS) M is a structure M = (S,Σ,
, , S0) where S is a finite set of states, Σ is a set of actions, ∅ 6= S0 ⊆ S is the set of

initial states, ⊆ S × Σ × S is the set of may edges and ⊆ S × (2Σ×S \ ∅) is the set
of must edges satisfying ∀(s,D) ∈ : ∀(a, s′) ∈ D : (s, a, s′) ∈ . The syntax s w

s′ is
defined just like q w−→ q′ was defined for LTS. An hMTS is called deterministic iff S0 = {s0}
is a singleton and the LTS (S,Σ, , s0) is deterministic. A modal transition system (MTS)
is an hMTS with |S0| = 1 and ∀(s,D) ∈ : |D| = 1.

As an example, three hMTS are shown in Figure 3. In M1, the lower path forms a bac-loop
that can be terminated after an a, the upper path requires abc, after which anything is
allowed. M2 contains two hyper edges requiring at least either an a or a b, but not necessarily
both. In an LTS meeting the specification of M3, the three must edges at s0 demand that
both a and b must be available actions, while the hyper edge at s1 only requires that one of
a and b is possible.

The following definition introduces how an LTS implements an hMTS. This implementa-
tion relation is similar to a bisimulation, but may and must edges are not treated the same.

2 A mapped place α(p) has the same initial marking and transitions of SNk(A) have the same effect
∆r = ∆r◦f on it as on p, but self-loops might be added (if µr◦f (t) > µr(t) due to edges not existing in
RG(SNk(A)) but in RG(N)).
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Figure 4 Implementations of the hMTS from Figure 3: A1 implements M1, A3 implements M3,
and the four LTS in the middle are minimal implementations of M2. A1 is solved by N1 from
Figure 1. States are named according to the implementation relation R from Definition 13.

A must edge specifies a disjunction of edges, at least one of which must be present, while a
may edge defines that some edge is allowed.

I Definition 13. An LTS A is an implementation via R ⊆ QA×SM of an hMTS M if there
is an s0 ∈ S0,M with (q0,A, s0) ∈ R and for all (q, s) ∈ R:
∀q a−→ q′ : ∃s a

s′ : (q′, s′) ∈ R,
∀(s,D) ∈ : ∃(a, s′) ∈ D, q a−→ q′ : (q′, s′) ∈ R.

If A is an implementation of M via some relation R, we call R an implementation relation
and write A |= M (via R). If RG(N) is an implementation of M for some Petri net N , we
also say that N realises M .

Examples for this definition are given in Figure 4. The LTS A1 is an implementation
of M1 from Figure 3. An implementation relation R can be built as follows. Initially,
({s0, s3}, s0) ∈ R. The lower path of M1 adds first ({s3, s4}, s4) and then ({s2, s3, s5}, s5) to
R. The must edges of the upper path require ({s1, s3}, s1), ({s2, s3, s5}, s2), and ({s0, s3}, s3).
In the state s3, all edges are allowed and loop back to s3, i.e. all states reachable from {s0, s3}
must also be related to s3: ({s1, s3}, s3), ({s3, s4}, s3), ({s2, s3, s5}, s3) ∈ R. Thus, the state
names of the LTS A1 show exactly the implementation relation for A1 |= M1. If we remove
in M1 the may edge labelled with c at s5, A1 would not be an implementation any more:
{s2, s3, s5} must admit a c (forced by the upper path in M1) and forbid a c (using the lower
path) at the same time. We could split up the state {s2, s3, s5} into {s2, s3} and {s5}, but
then no Petri net could solve the LTS, since the paths ab and ba from the initial state must
lead to the same marking3.

The four LTS in the middle of Figure 4 are all valid implementations of M2, and they are
all minimal according to the LTS homomorphism v, which is a partial order for deterministic
and totally reachable LTS according to Lemma 3. There are larger implementations admitting
a and b at either s0 or s1 (or both).

The LTS A3 is a minimal implementation of M3. The states s1, s3, and s5 are forced
by the implementation relation; the hyper edge at s1 allows a choice: at least one of the
targets of the hyper edge must exist. Here, we chose s2. Note that the states s1 and s3
cannot be identified in spite of the non-deterministic a-edges with the same source s0. The
implementation relation would contain a pair ({s1, s3}, s3) which would in consequence – due
to the edge {s1, s3}

a−→ s2 – require s3 to have at least a may edge in M3. Since reachability
graphs of Petri nets are deterministic, no LTS implementing M3 can be solved by a Petri

3 This is due to the well-known Petri net state equationM [w〉M ′ ⇒M ′ = M+C ·Ψ(w) where C ∈ ZP×N

with C(p, t) = F (t, p)− F (p, t). This equation only considers the number of times Ψ(w)(t) that event
t ∈ T occurs in the word w ∈ T ∗, and not the order of appearances.
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6:8 k-Bounded Petri Net Synthesis from Modal Transition Systems

net. However, if we omit the edge (s0, {(a, s3)}) ∈ in M3, Petri net realisations become
possible. There are (up to isomorphism) nine different deterministic LTS implementing the
modified M3, five of which can be solved by Petri nets. They differ in whether a, b, or both
are possible in s1, and in the number of states without outgoing edges.

4 Goal-oriented Synthesis

In this section, we will introduce the algorithm that calculates Petri net realisations for
hyper modal transition systems. The algorithm works by iteratively adding unimplemented
must edges to an LTS and doing minimal Petri net over-approximations. For identifying
unimplemented must edges, another kind of relation is needed, which we will define next.

I Definition 14. Let A be an LTS and M be an hMTS. A relation R ⊆ QA × SM is called
an expansion relation if there is a state s0 ∈ S0,M with (q0,A, s0) ∈ R and for all (q, s) ∈ R
and all q a−→ q′, there is an s′ with s a

s′ and (q′, s′) ∈ R.
Let RE(A,M) be the set of all expansion relations of A and M . Given LTS A and B,

an expansion relation R ∈ RE(A,M), and an LTS homomorphism f witnessing A v B, the
relation f(R) is defined as f(R) = {(f(q), s) ∈ QB × SM | (q, s) ∈ R}.

Expansion relations are a weaker variant of implementation relations, i.e. any implementation
relation is an expansion relation with an additional condition for the must edges.

Our algorithm for realising an hMTS is Algorithm 1. The idea behind the algorithm is to
iteratively enlarge a current LTS towards becoming an implementation. The first operation
for this is to add edges to the LTS so that currently unimplemented must edges become
implemented (Expand). The second operation is the minimal Petri net over-approximation
(PNApprox). The algorithm begins in the procedure RealiseMTS, which gets as input
the bound k ∈ N+ for the Petri nets and the hMTS M to be realised. The first LTS to be
considered is the minimal LTS which only has an initial state and no edges. This state is
related to each possible initial state of M and the procedure Recurse is called for each such
combination.

Recurse identifies unimplemented must edges by negating the corresponding formula
in the definition of an implementation relation. If no must edge is missing, a solution is
found and returned. Otherwise, the procedure Expand is invoked which will add new states
and edges to implement the missing must edges. This procedure returns a set, because,
for example, for m = {(q, {(a, s1), (b, s2)})}, two LTS are created: In one of them, an edge
q

a−→ qnew is created, while the other one gets the new edge q b−→ qnew. In the first case,
(qnew, s1) is added to the expansion relation RA while in the second case (qnew, s2) is added.
This means the relation RA is enlarged to keep note on which state of the hMTS the new state
should implement. Expand is invoked recursively to obtain all combinations of selections
for the missing must edges. In MTS must edges allow no choice, therefore Expand will
return one unique result; in hMTS a high number of choices in must edges could lead to an
exponential growth, though.

For each result of Expand, the procedure PNApprox is called, yielding a minimal Petri
net over-approximation of its argument. As was seen in Figure 2, this can greatly influence
the shape of the LTS under consideration. The relation RA has to be updated to this new
LTS. To do so, PNApprox computes a homomorphism witnessing A v B in line 23. Such a
homomorphism exists by Theorem 11. It is unique by Lemma 2, because A is totally reachable
by construction and B is deterministic by Lemma 5. This homomorphism f is then used
to produce the relation f(RA) which relates B to M . The set E of all expansion relations
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Algorithm 1 Algorithm for finding Petri net realisations for an hMTS.
1: procedure RealiseMTS(k,M) . k ∈ N+ and M is an hMTS
2: Let A be the LTS consisting of just an initial state q0
3: return

⋃
s0∈S0,M

Recurse(k,A, {(q0, s0)},M)
4: end procedure
5: procedure Recurse(k,A,RA,M) . RA is an expansion relation
6: m =

⋃
(q,s)∈RA

mq,s where . m collects missing must edges
7: mq,s = {(q,D) ∈ QA × (2Σ×SM \ ∅) | (s,D) ∈ M ,∀(a, s′) ∈ D :
8: ¬∃q′ ∈ QA : (q a−→ q′ ∧ (q′, s′) ∈ RA)}
9: if m = ∅ then return {(A,RA)} end if
10: return

⋃
(B,RB)∈Expand(A,RA,m)

⋃
(C,RC)∈PNApprox(k,B,RB ,M) Recurse(k,C,RC ,M)

11: end procedure
12: procedure Expand(A,RA,m)
13: if m = ∅ then return {(A,RA)} end if
14: Select some (q,D) ∈ m, add a new state qnew to A and set result← ∅
15: for (a, s′) ∈ D do . Implement missing must edge
16: Let B be a copy of A with an additional edge q a−→ qnew

17: result← result ∪ Expand(B,RA ∪ {(qnew, s
′)},m \ {(q,D)})

18: end for
19: return result
20: end procedure
21: procedure PNApprox(k,A,RA,M)
22: B = RG(SNk(A)) . Minimal over-approximation
23: f = homomorphism witnessing A v B
24: E = {RB ∈ RE(B,M) | f(RA) ⊆ RB} . All expansion relations containing f(RA)
25: return {(B,RB) | RB ∈ E ∧ ¬∃R′ ∈ E : R′ ( RB} . Select minimal relations
26: end procedure

containing f(RA) is computed and the minimal relations are returned. It is possible that this
produces several different minimal relations, or none at all. In the latter case, PNApprox
returns the empty set and this branch of the algorithm fails to find any realisation of the
hMTS M .

4.1 Examples
As our first example, we will use M1 from Figure 3 and realise it with a 1-bounded Petri net.

The call RealiseMTS(1,M1) begins by creating an LTS A consisting of just an initial
state q0 which gets related to the initial state s0 of M1. In Recurse(1, A, {(q0, s0)},M1),
the set m = {(q0, {(a, s1)}), (q0, {(b, s4)})} is calculated. Therefore, q0 needs an outgoing
edge with label a and another edge with label b. The invocation Expand(A, {(q0, s0)},m)
produces just the pair (A1, R1) where A1 is shown in Figure 5. The same figure also visualises
R1 by labelling a state q in the LTS with s if (q, s) ∈ R1. The following call to PNApprox
does not modify this LTS and Recurse calls itself recursively with (A1, R1).

The next call to Expand produces the LTS Ã1 from Figure 5. This LTS cannot be solved
by a Petri net, because if both sequences ab and ba are enabled in a marking, they must lead
to the same state. Thus, PNApprox produces the LTS A2. The relation that is indicated
by its labelling is f(R̃1), i.e. no additional entries need to be added to produce an expansion
relation.

This expansion procedure continues for some iterations until the LTS Ã5 from Figure 5
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Figure 5 Intermediate LTS from the Petri net synthesis of the deterministic MTS M1 from
Figure 3. Some intermediate results are shown. To visualise a relation R, the states of an LTS are
labelled with the states of M1 that they have to implement.

is created by Expand. This LTS cannot be solved by a 1-bounded Petri net. As we have
already seen in Figure 2, when some firing sequence ww ∈ Σ∗ is possible in a 1-bounded
Petri net, then it has twice the effect of the sequence w on the marking, i.e. it cannot have
an effect at all. Thus, it forms a loop in the reachability graph. The same thing happens now
with the sequence abc. The minimal over-approximation produces the LTS A6. The relation
returned by PNApprox is just R6 = f(R̃5). At this point all must edges are implemented
and we have found a realisation.

As another example, consider RealiseMTS(2,M2) where M2 is shown in Figure 3. This
produces the four LTS that are displayed in the middle of Figure 4.

If one considers RealiseMTS(1,M2) instead, i.e. k = 1 instead of k = 2, then only the
LTS corresponding to the words ab and ba are generated. This is because, for example, aa
cannot be generated by one-bounded Petri nets without also allowing aaa to occur. This
extra behaviour is not allowed by M2 and so the algorithm will end up with E = ∅ in line 24
and this aa-branch of the recursion does not find any realisations.

When applying the algorithm to M3 of Figure 3, we get an LTS with states corresponding
to s0, s1, s3, and s5 in the first expansion phase. The over-approximation will then combine
s1 and s3 to {s1, s3} since both a-edges must have the same effect on the marking of the Petri
net. In the second expansion phase, one of the edges to s4, s2, or s6 is added to the LTS,
yielding three LTS to over-approximate. While the over-approximations exist, no expansion
relation can be built for them. For the pair ({s1, s3}, s3), the LTS state {s1, s3} has an edge
now (the newly added a or b), but s3 in M3 has no may edge at all. Thus, E = ∅ and
PNApprox returns the empty set in all cases. The realisation of M3 by a Petri net has
failed (correctly).

5 Termination and Correctness

In this section, three results will be shown: The algorithm terminates; the algorithm is
correct in the sense that it really produces realisations of the hMTS M ; and the algorithm is
complete in the sense that it always finds a realisation if one exists.

I Lemma 15. For an hMTS M and a k ∈ N+, a call to RealiseMTS(k,M) terminates.
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Proof. If the algorithm does not terminate, it must be due to Recurse because PNApprox
contains only finite constructions and Expand has a recursion depth of |m|. Since the unions
in line 10 of the algorithm are always finite, there must be an infinite recursion of Recurse
with arguments (Ai)i∈N. All arguments to Recurse are Petri net solvable by construction.
Also, by Lemma 6, there are only finitely many LTS (abstracting state names) over a fixed
alphabet which are k-bounded Petri net solvable. Thus, the Ai are all elements of a finite set
and form an infinite chain with Ai v Ai+1 for i ∈ N, i.e. some LTS A (up to isomorphism)
will occur infinitely often. Let Aj and Aj′ be any two instances of A with j < j′, so Aj = Aj′ .
For j < n < j′ then Aj v An v Aj′ and Lemma 3 can be applied since all Ai are reachability
graphs and thus by Lemma 5 totally reachable and deterministic. We conclude Aj = An (up
to isomorphism), i.e. the infinite chain (Ai)i∈N becomes stationary.

Consider now some i ≥ j. Let Ãi be the LTS resulting from applying Expand to
Ai, possibly adding one (or more) states qnew to Ai. Then, Ai v Ãi via the identity
homomorphism id, where the new state(s) qnew do not occur as an image. Now, PNApprox
recreates the original LTS, i.e. Ãi v Ai+1 = Ai via some homomorphism f . Overall,
Ai v Ãi v Ai via f ◦ id, which is uniquely determined according to Lemma 2. Thus, f ◦ id
must be the identity mapping, and f also must be the identity on all states except the new
one(s), qnew.

If Expand would add an edge q a−→ qnew to Ai, then f(q) a−→ f(qnew) would also be an
edge in Ai = Ai+1. PNApprox maps f(q) = q and f(qnew) = q′ ∈ QAi . The new element of
the expansion relation added by Expand, (qnew, s̃) where s̃ is determined by M , is mapped
to (q′, s̃) ∈ RAi+1 . Note that (q′, s̃) /∈ RAi

, otherwise Expand would not have added an
edge in the first place. Therefore, |RAi | < |RAi+1 |. Since the chain (Ai)i≥j is stationary, the
maximal size of an expansion relation is |QAj

×SM |, i.e. at some point in the chain, Expand
cannot add any further edges. Therefore, the to-be-implemented set m will be empty and
Recurse terminates. J

The following lemma shows that RealiseMTS only produces realisations of its input:

I Lemma 16. For an hMTS M and a k ∈ N+, every (A,RA) ∈ RealiseMTS(k,M)
satisfies A |= M via RA and A can be solved by a k-bounded Petri net.

Proof. For (A,RA) to appear in the result of RealiseMTS, it must satisfy m = ∅ in line 9
of the algorithm. This means that there are no unimplemented must edges, which shows the
first half of A |= M via RA. The other half, that all edges in A are allowed by may-edges,
holds, because every value of RA in the algorithm is an expansion relation: Initially, A
only has an initial state and RA relates this state to an initial state of M . When Expand
adds new edges to an LTS, the relation RA is updated accordingly. Here, (s, a, s′) is a may
edge, because every must edge must also be a may edge by definition of an hMTS. Finally,
PNApprox explicitly only returns expansion relations.

It remains to be shown that A can be solved by a k-bounded Petri net. This is the case,
because every LTS A given to Recurse is either the trivial LTS having no edges or was
generated by PNApprox as a minimal Petri net over-approximation. J

In the remainder of the section, we will show that RealiseMTS(k,M) = ∅ can only occur
if there are no realisations of M . For this we need the following preorder on LTS enriched
with a relation:

I Definition 17. Let S be an arbitrary set. For two LTS A and B assume relations
RA ⊆ QA × S and RB ⊆ QB × S. We write (A,RA) v (B,RB) if there is an LTS
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Figure 6 Illustration for part (2) of the proof of Lemma 18.

homomorphism f witnessing A v B so that ∀(q, s) ∈ RA : (f(q), s) ∈ RB , i.e. f(RA) ⊆ RB

(cf. Definition 14).

I Lemma 18. Let M be an hMTS, k ∈ N+, and N be a Petri net with RG(N) |= M via some
relation RN . There is an (A,RA) ∈ RealiseMTS(k,M) so that (A,RA) v (RG(N), RN ).

Proof. We proof inductively that there is always an (A,RA) in the current state of the
algorithm that satisfies (A,RA) v (RG(N), RN ).

By RG(N) |= M via RN , there must be an s0 ∈ S0,M with (M0, s0) ∈ RN (M0 being the
initial marking of N). Since RealiseMTS tries all initial states of M , the same s0 will be
picked at some point, i.e. Recurse(k,A,RA,M) will be called with A being the LTS having
just a single state and the relation RA = {(q0, s0)}. Here, (A,RA) v (RG(N), RN ) holds.

Next, assume that Recurse is called with arguments A and RA satisfying (A,RA) v
(RG(N), RN ) via some homomorphism f . We have to show two things: (1) One of the
pairs (B,RB) generated by Expand(A,RA,m) satisfies (B,RB) v (RG(N), RN ) and (2)
the same applies to one of the pairs (C,RC) which are generated by the following call of
PNApprox(k,B,RB ,M) in line 10. Since the algorithm always terminates by Lemma 15,
eventually m = ∅ in line 9 will cause a suitable (A,RA) to be returned. All recursive calls
to Recurse pass this on and in the end the pair (A,RA) is returned by RealiseMTS,
completing the proof.

For (1) consider any unimplemented (q,D) ∈ m. By construction of m there must be
a (q, s) ∈ RA so that (q,D) ∈ mq,s and (s,D) ∈ M . By (A,RA) v (RG(N), RN ) via f ,
we have (f(q), s) ∈ RN . By (s,D) ∈ M , (f(q), s) ∈ RN and RG(N) |= M via RN , there
must be some (a, s′) ∈ D and M̃ with f(q) a−→ M̃ and (M̃, s′) ∈ RN . Thus, on our way to B
we can pick that LTS generated in the iteration of line 15 of the algorithm which handles the
same (a, s′) ∈ D. We define a new function f ′ that is identical to f , except that its domain is
extended by qnew via f ′(qnew) = M̃ . Having done this for all unimplemented must edges, the
final function f ′ witnesses (B,RB) v (RG(N), RN ): Most of this property is inherited from
f and for any new edge q a−→ qnew, we constructed f ′ so that f ′(q) a−→ f ′(qnew) is satisfied.

For (2) we assume that we have (B,RB) v (RG(N), RN ) via some function fB . We have
to find some (C,RC) ∈ PNApprox(k,B,RB ,M) with (C,RC) v (RG(N), RN ). The LTS
relations are illustrated in Figure 6. From the algorithm we know C = RG(SNk(B)). From
the assumption we get B v RG(N) via fB. Applying Theorem 11 to B, we can deduce
C = RG(SNk(B)) v RG(N) via some function fC and B v C via some function f . We
have B v C v RG(N) via fC ◦ f by transitivity of v. Since B is totally reachable by
construction and RG(N) is deterministic by Lemma 5, we can apply Lemma 2 stating that
the homomorphism witnessing B v RG(N) is unique. We conclude fB = fC ◦ f .

Consider the expansion relation R′C defined by R′C = {(q, s) ∈ QC × SM | (fC(q), s) ∈
RN}. This relation inherits the expansion property from RN , i.e. if (q, s) ∈ R′C and
(q, a, q′) ∈ →C , then (fC(q), s) ∈ RN and (fC(q), a, fC(q′)) ∈ →RG(N), which means that
there is a suitable s′ ∈ SM with s a

s′ and (fC(q′), s′) ∈ RN , so (q′, s′) ∈ R′C . By definition
we have (C,R′C) v (RG(N), RN ) via fC . Consider any element (f(q), s) ∈ f(RB). By
definition of f(RB), we have (q, s) ∈ RB. By (B,RB) v (RG(N), RN ) via fB, we have
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Figure 7 An LTS that can be solved exactly, but only if non-minimal regions are considered.

(fB(q), s) ∈ RN . By fB = fC ◦ f , we have (fC(f(q)), s) ∈ RN . By definition of R′C , we
have (f(q), s) ∈ R′C . Thus, f(RB) ⊆ R′C , which means that R′C is an element of the set
E inside the algorithm, i.e. there is a relation RC ∈ E with f(RB) ⊆ RC ⊆ R′C so that
(C,RC) ∈ PNApprox(k,B,RB ,M). Since (C,R′C) v (RG(N), RN ) via fC and RC ⊆ R′C ,
we also have (C,RC) v (RG(N), RN ) by the definition of v, which needed to be shown. J

I Corollary 19. For an hMTS M and a k ∈ N+, if RealiseMTS(k,M) = ∅ then there is
no k-bounded Petri net N with RG(N) |= M .

6 Some final thoughts

An aspect of the algorithm that is still open is its complexity. This depends a lot on the
complexity of the Petri net over-approximation. The question of whether for a given LTS
A any 1-bounded and pure Petri net N exists with A = RG(N) is NP-complete [4]. The
same question can be answered in polynomial time when asking for bounded Petri nets,
but without picking a bound k ∈ N+ a priori [3]. We do not know about any complexity
results for the synthesis of k-bounded Petri nets with a given k, nor for the k-bounded
over-approximation that is needed in our present setting.

When looking at some algorithms for this problem, we can see that the brute force
computation of all regions will certainly be exponential (checking (k + 1)|Q| functions) in the
size of the LTS, but not all regions might be necessary. Attempts to reduce this problem
have been made, e.g. in [10, 11], but this procedure does not guarantee success. It only
computes minimal regions, where a region r is minimal if there is no other region r′ 6= 0
with r′ ≤ r (pointwise). Figure 7 contains an LTS which cannot be solved when just using
minimal regions. The following list contains all six minimal regions of this LTS, where a
region r is identified with the vector (r(q0), r(q1), . . . , r(q6)) and a gradient ∆r with the
vector (∆r(a),∆r(b)):

r1 = (1, 0, 1, 2, 1, 0, 0) ∆r1 = (−1, 1) r2 = (2, 2, 1, 0, 0, 0, 1) ∆r2 = (0,−1)
r3 = (1, 2, 1, 0, 1, 2, 2) ∆r3 = (1,−1) r4 = (0, 2, 1, 0, 2, 4, 3) ∆r4 = (2,−1)
r5 = (0, 1, 1, 1, 2, 3, 2) ∆r5 = (1, 0) r6 = (0, 0, 1, 2, 2, 2, 1) ∆r6 = (0, 1)

It can easily be verified that for all of these regions we have r(q6) ≥ µr(b) = F (r, b), which
means that none of these regions prevents transition b in state q6. However, the region
r7 = (3, 2, 2, 2, 1, 0, 1) does prevent b in q6 (r7(q6) = 1 < 2 = µr7(b)). This region is not
minimal since r1 ≤ r7, but only with this region can the LTS from Figure 7 be solved.

In the general setting of bounded Petri net synthesis without k given a priori, there are
polynomial algorithms based on solving so-called separation problems (see e.g. [3, 5]). These
algorithms seem to be quite efficient in our experiments, but so far there do not seem to
be variants where k is given a priori nor for computing a minimal over-approximation. If
further research finds such an algorithm, another optimisation becomes possible: When a
must edge is present, the corresponding event does not need to be prevented even if this is
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possible. Thus, instead of computing the minimal over-approximation, the Expand-step
could be integrated with the synthesis to make it faster.

Coming back to the problem of finding a Petri net realisation of an MTS, the brute force
approach would be the construction of all k-bounded Petri nets with a fixed set of transitions.
This also requires the computation of all possible regions (places), but afterwards we have to
walk through the power set of the places, construct the according reachability graphs, and
check if they implement our MTS. As long as the Petri net over-approximation is not used
too often, our algorithm will probably be faster.

Still, Expand and PNApprox are independent procedures, so it might be feasible to
reduce the number of over-approximations in favour of the Expand step. We can modify
our algorithm, doing as many consecutive Expand steps as possible (e.g. until a cycle in the
MTS becomes fully implemented) and only then applying one over-approximation.

Of course, with general hMTS, the Expand step can itself create exponentially many
LTS, but we might expect that true hyper edges (defining algorithmic points of choice) occur
with low frequency in at least human-made hMTS. For MTS (without true hyper edges),
every Expand step only computes a single LTS. If an hMTS is deterministic, it can easily be
shown that there is at most one expansion relation and so PNApprox would also compute
at most a single result. Thus, the algorithm does not branch when given a deterministic
MTS.

Overall, we obtain a goal-oriented algorithm and thus a decision procedure for the
realisability of hMTS by k-bounded Petri nets with hopefully much lower run times than
the brute force approach by enumeration of all candidate nets. We are already close to the
barrier of undecidability here, since for bounded Petri nets (without the fixed k ∈ N+), the
realisability of even MTS is known to be undecidable [20].

Our approach can easily handle restricted Petri net classes such as plain Petri nets (arc
weights at most 1) or pure Petri nets (see Definition 4). Instead of constructing SNk(A) from
all k-bounded regions, simply only regions corresponding to plain, respectively pure, places
are considered.

Further research effort can be put into investigating more expressive specifications than
hMTS. We would like to have a similar algorithm for finding Petri net realisations of formulas
of the modal µ-calculus [15, 2]. The general approach of the algorithm would stay the same,
but a suitable replacement for the Expand step is needed.
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