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Abstract
A flow network is a directed graph in which each edge has a capacity, bounding the amount
of flow that can travel through it. Flow networks have attracted a lot of research in computer
science. Indeed, many questions in numerous application areas can be reduced to questions about
flow networks. This includes direct applications, namely a search for a maximal flow in networks,
as well as less direct applications, like maximal matching or optimal scheduling. Many of these
applications would benefit from a framework in which one can formally reason about properties
of flow networks that go beyond their maximal flow.

We introduce Flow Logics: modal logics that treat flow functions as explicit first-order objects
and enable the specification of rich properties of flow networks. The syntax of our logic BFL?

(Branching Flow Logic) is similar to the syntax of the temporal logic CTL?, except that atomic
assertions may be flow propositions, like > γ or ≥ γ, for γ ∈ IN, which refer to the value of the
flow in a vertex, and that first-order quantification can be applied both to paths and to flow
functions. For example, the BFL? formula E((≥ 100) ∧ AG(low → (≤ 20)) states that there is
a legal flow function in which the flow is above 100 and in all paths, the amount of flow that
travels through vertices with low security is at most 20.

We present an exhaustive study of the theoretical and practical aspects of BFL?, as well
as extensions and fragments of it. Our extensions include flow quantifications that range over
non-integral flow functions or over maximal flow functions, path quantification that ranges over
paths along which non-zero flow travels, past operators, and first-order quantification of flow
values. We focus on the model-checking problem and show that it is PSPACE-complete, as it is
for CTL?. Handling of flow quantifiers, however, increases the complexity in terms of the network
to PNP, even for the LFL and BFL fragments, which are the flow-counterparts of LTL and CTL.
We are still able to point to a useful fragment of BFL? for which the model-checking problem
can be solved in polynomial time.
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1 Introduction

A flow network is a directed graph in which each edge has a capacity, bounding the amount
of flow that can travel through it. The amount of flow that enters a vertex equals the amount
of flow that leaves it, unless the vertex is a source, which has only outgoing flow, or a target,
which has only incoming flow. The fundamental maximum-flow problem gets as input a flow
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9:2 Flow Logic

network and searches for a maximal flow from the source to the target [10, 18]. The problem
was first formulated and solved in the 1950’s [16, 17]. It has attracted much research on
improved algorithms [12, 11, 19, 32] and applications [1].

The maximum-flow problem can be applied in many settings in which something travels
along a network. This covers numerous application domains, including traffic in road or rail
systems, fluids in pipes, currents in an electrical circuit, packets in a communication network,
and many more [1]. Less obvious applications involve flow networks that are constructed
in order to model settings with an abstract network, as in the case of scheduling with
constraints [1] or elimination in partially completed tournaments [36]. In addition, several
classical graph-theory problems can be reduced to the maximum-flow problem. This includes
the problem of finding a maximum bipartite matching, minimum path cover, maximum
edge-disjoint or vertex-disjoint path, and many more [10, 1]. Variants of the maximum-flow
problem can accommodate further settings, like circulation problems [38], multiple source
and target vertices, costs for unit flows, multiple commodities, and more [14].

All the above applications reduce the problem at hand to the problem of finding a
maximal flow in a network. Often, however, one would like to reason about properties of
flow networks that go beyond their maximal flow. This is especially true when the vertices
or edges of the network attain information to which the properties can refer. For example,
the vertices of a network may be labeled by their security level, and we may want to check
whether all legal flow functions are such that the flow in every low-security vertex is at most
20, or check whether there is a flow function in which more than 100 units of flow reach
the target and still the flow in every low-security vertex is at most 20. As another example,
assume that each vertex in the network is labeled by the service provider that owns it, and
we want to find a maximal flow under the constraint that flow travels through vertices owned
by at most two providers.

The challenge of reasoning about properties of systems has been extensively studied in
the context of formal verification. In particular, in temporal-logic model checking [8, 34],
we check whether a system has a desired property by translating the system into a labeled
state-transition graph, translating the property into a temporal-logic formula, and deciding
whether the graph satisfies the formula. Model checking is one of the notable success stories
of theoretical computer science, with exciting theoretical research that is being transformed
into industrial applications [9, 7]. By viewing networks as labeled state-transition graphs, we
can use existing model-checking algorithms and tools in order to reason about the structural
properties of networks. We can check, for example, that every path from the source to the
target eventually visits a check-sum vertex. Most interesting properties of flow networks,
however, refer to flows and their values, and not just to the structural properties of the
network. Traditional temporal logics do not support the specification and verification of
such properties.

We introduce and study Flow Logics: modal logics that treat flow functions as explicit
first-order objects and enable the specification of rich properties of flow networks. The syntax
of our logic BFL? (Branching Flow Logic) is similar to the syntax of the temporal logic CTL?,
except that atomic assertions are built from both atomic propositions and flow propositions,
like > γ or ≥ γ, for γ ∈ IN, which refer to the value of the flow in a vertex, and that first-
order quantification can be applied both to paths and to flow functions. Thus, in addition to
the path quantifiers A (“for all paths”) and E (“there exists a path”) that range over paths,
states formulas may contain the flow quantifiers A (“for all flow functions”) and E (“there
exists a flow function”). For example, the BFL? formula E((≥ 100) ∧ AG(low → (≤ 20)))
states the property discussed above, namely that there is a flow function in which the value
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of the flow is at least 100, and in all paths, the value of flow in vertices with low security is
at most 20.

We study the theoretical aspects of BFL? as well as extensions and fragments of it.
We demonstrate their applications in reasoning about flow networks, and we examine the
complexity of their model-checking problem. Below we briefly survey our results. (1) We
show that while maximal flow can always be achieved by integral flows [16], in the richer
setting of flow logic, restricting attention to integral flows may change the satisfaction value
of formulas. Accordingly, our semantics for BFL? considers two types of flow quantification:
one over integral flows and another over non-integral ones. (2) We prove that bisimulation
[33] is not a suitable equivalence relation for flow logics, which are sensitive to unwinding. We
relate this to the usefulness of past operators in flow logic, and we study additional aspects
of the expressive power of BFL?. (3) We consider extensions of BFL? by path quantifiers
that range over paths on which flow travels (rather than over all paths in the network), and
by first-order quantification on flow values. (4) We study the model-checking complexity of
BFL?, its extensions, and some natural fragments. We show that algorithms for temporal-
logic model-checking can be extended to handle flow logics, and that the complexity the
BFL? model-checking problems is PSPACE-complete. We study also the network complexity
of the problem, namely the complexity in terms of the network, assuming that the formula
is fixed [29, 27], and point to a fragment of BFL? for which the model-checking problem can
be solved in polynomial time.

Related Work. There are three types of related works: (1) efforts to generalize the maximal-
flow problem to richer settings, (2) extensions of temporal logics by new elements, in partic-
ular first-order quantification over new types, and (3) works on logical aspects of networks
and their use in formal methods. Below we briefly survey them and their relation to our
work.

As discussed early in this section, numerous extensions to the classical maximal-flow
problems have been considered. In particular, some works that add constraints on the
maximal flow, like capacities on vertices, or lower bounds on the flow along edges. Closest
to flow logics are works that refer to labeled flow networks. For example, [20] considers
flow networks in which edges are labeled, and the problem of finding a maximal flow with a
minimum number of labels. Then, the maximal utilization problem of capacitated automata
[26] amounts to finding maximal flow in a labeled flow network where flow is constrained
to travel only along paths that belong to a given regular language. Our work suggests a
formalism that embodies all these extensions, as well as a framework for formally reasoning
about many more extensions and settings.

The competence of temporal-logic model checking initiated numerous extensions of tem-
poral logics, aiming to capture richer settings. For example, real-time temporal logics include
clocks with a real-time domain [2], epistemic temporal logics include knowledge operators
[21], and alternating temporal logics include game modalities [3]. Closest to our work is
strategy logic [6], where temporal logic is enriched by first-order quantification of strategies
in a game. Beyond the theoretical interest in strategy logic, it was proven useful in synthes-
izing strategies in multi-agent systems and in the solution of rational synthesis [15].

Finally, network verification is an increasingly important topic in the context of protocol
verification [23]. Tools that allow verifying properties of network protocols have been de-
veloped [40, 31]. These tools support verification of network protocols in the design phase
as well as runtime verification [22]. Some of these tools use a query language called Network
Datalog in order to specify network protocols [30]. Verification of Software Defined Net-
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9:4 Flow Logic

works has been studied widely, for example in [24, 28, 5]. Verification of safety properties
in networks with finite-state middleboxes was studied in [39]. Network protocols describe
forwarding policies for packets, and are thus related to specific flow functions. However, the
way traffic is transmitted in these protocols does not correspond to the way flow travels in
a flow network. Thus, properties verified in this line of work are different from these we can
reason about with flow logic.

Due to the lack of space, some details and proofs are omitted, and can be found in the
full version, in the authors’ URLs.

2 The Flow Logic BFL?

A flow network is N = 〈AP, V,E, c, ρ, s, T 〉, where AP is a set of atomic propositions, V
is a set of vertices, s ∈ V is a source vertex, T ⊆ V is a set of target vertices, E ⊆
(V \ T )× (V \ {s}) is a set of directed edges, c : E → IN is a capacity function, assigning to
each edge an integral amount of flow that the edge can transfer, and ρ : V → 2AP assigns
each vertex v ∈ V to the set of atomic propositions that are valid in v. Note that no edge
enters the source vertex or leaves a target vertex. We assume that all vertices t ∈ T are
reachable from s and that each vertex has at least one target vertex reachable from it. For
a vertex u ∈ V , let Eu and Eu be the sets of incoming and outgoing edges to and from u,
respectively. That is, Eu = (V × {u}) ∩ E and Eu = ({u} × V ) ∩ E.

A flow is a function f : E → IN that describes how flow is directed in N . The capacity of
an edge bounds the flow in it, thus for every edge e ∈ E, we have f(e) ≤ c(e). All incoming
flow must exit a vertex, thus for every vertex v ∈ V \ ({s} ∪ T ), we have

∑
e∈Ev f(e) =∑

e∈Ev
f(e). We extend f to vertices and use f(v) to denote the flow that travels through v.

Thus, for v ∈ V \({s}∪T ), we define f(v) =
∑

e∈Ev f(e) =
∑

e∈Ev
f(e), for the source vertex

s, we define f(s) =
∑

e∈Es
f(e), and for a target vertex t ∈ T , we define f(t) =

∑
e∈Et f(e).

Note that the preservation of flow in the internal vertices guarantees that f(s) =
∑

t∈T f(t),
which is the amount of flow that travels from s to all the target vertices together. We say
that a flow function f is maximal if for every flow function f ′, we have f ′(s) ≤ f(s). A
maximal flow function can be found in polynomial time [17]. The maximal flow for N is
then f(s) for some maximal flow function f .

The logic BFL? is a Branching Flow Logic that can specify properties of networks and
flows in them. As in CTL?, there are two types of formulas in BFL?: state formulas, which
describe vertices in a network, and path formulas, which describe paths. In addition to the
operators in CTL?, the logic BFL? has flow propositions, with which one can specify the
flow in vertices, and flow quantifiers, with which one can quantify flow functions universally
or existentially. When flow is not quantified, satisfaction is defined with respect to both a
network and a flow function. Formally, given a set AP of atomic propositions, a BFL? state
formula is one of the following:
(S1) An atomic proposition p ∈ AP .
(S2) A flow proposition > γ or ≥ γ, for an integer γ ∈ IN.
(S3) ¬ϕ1 or ϕ1 ∨ ϕ2, for BFL? state formulas ϕ1 and ϕ2.
(S4) Aψ, for a BFL? path formula ψ. A is a path quantifier.
(S5) Aϕ, for a BFL? state formula ϕ. A is a flow quantifier.
A BFL? path formula is one of the following:
(P1) A BFL? state formula.
(P2) ¬ψ1 or ψ1 ∨ ψ2, for BFL? path formulas ψ1 and ψ2.
(P3) Xψ1 or ψ1Uψ2, for BFL? path formulas ψ1 and ψ2.
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We say that a BFL? formula ϕ is closed if all flow propositions appear in the scope of a
flow quantifier. The logic BFL? consists of the set of closed BFL? state formulas. We refer
to state formula of the form Aϕ as a flow state formula.

The semantics of BFL? is defined with respect to vertices in a flow network. Be-
fore we define the semantics, we need some more definitions and notations. Let N =
〈AP, V,E, c, ρ, s, T 〉. For two vertices u and w in V , a finite sequence π = v0, v1, . . . , vk ∈ V ∗
of vertices is a (u,w)-path in N if v0 = u, vk = w, and 〈vi, vi+1〉 ∈ E for all 0 ≤ i < k. If
w ∈ T , then π is a target u-path.

State formulas are interpreted with respect to a vertex v in N and a flow function
f : E → IN. When the formula is closed, satisfaction is independent of the function f and
we omit it. We use v, f |= ϕ to indicate that the vertex v satisfies the state formula ϕ when
the flow function is f . The relation |= is defined inductively as follows.

(S1) For an atomic proposition p ∈ AP , we have that v, f |= p iff p ∈ ρ(v).
(S2) For γ ∈ IN, we have v, f |=> γ iff f(v) > γ and v, f |=≥ γ iff f(v) ≥ γ.
(S3a) v, f |= ¬ϕ1 iff v, f 6|= ϕ1.
(S3b) v, f |= ϕ1 ∨ ϕ2 iff v, f |= ϕ1 or v, f |= ϕ2.
(S4) v, f |= Aψ iff for all target v-paths π, we have that π, f |= ψ.
(S5) v, f |= Aϕ iff for all flow functions f ′, we have v, f ′ |= ϕ.

Path formulas are interpreted with respect to a finite path π in N and a flow function
f : E → IN. We use π, f |= ϕ to indicate that the path π satisfies the path-flow formula
ψ when the flow function is f . The relation |= is defined inductively as follows. Let π =
v0, v1, . . . , vk. For 0 ≤ i ≤ k, we use πi to denote the suffix of π that starts at vi, thus
πi = vi, vi+1, . . . , vk.
(P1) For a state formula ϕ, we have that π, f |= ϕ iff v0, f |= ϕ.
(P2a) π, f |= ¬ψ iff π, f 6|= ψ.
(P2b) π, f |= ψ1 ∨ ψ2 iff π, f |= ψ1 or π, f |= ψ2.
(P3a) π, f |= Xψ1 iff k > 0 and π1, f |= ψ1.
(P3b) π, f |= ψ1Uψ2 iff there is j ≤ k such that πj , f |= ψ2, and for all 0 ≤ i < j, we have

πi, f |= ψ1

For a network N and a closed BFL? formula ϕ, we say that N satisfies ϕ, denoted N |= ϕ,
iff s |= ϕ (note that since ϕ is closed, we do not specify a flow function).

Additional Boolean connectives and modal operators are defined from ¬, ∨, X, and U
in the usual manner; in particular, Fψ = trueUψ and Gψ = ¬F¬ψ. We also define dual
and abbreviated flow propositions: < γ = ¬(≥ γ), ≤ γ = ¬(> γ), and γ = (≤ γ) ∧ (≥ γ), a
dual path quantifier: Eψ = ¬A¬ψ, and a dual flow quantifier: Eϕ = ¬A¬ϕ.

I Example 1. Consider a network N in which target vertices are labeled by an atomic pro-
position target, and low-security vertices are labeled red. The BFL? formula EEF (target∧20)
states that there is a flow in which 20 units reach a target vertex, and the BFL? formula
A((≥ 20) → AX(≥ 4)) states that in all flow functions in which the flow at the source is
at least 20, all the successors must have flow of at least 4. Finally, E((≥ 100) ∧ AG(red →
(≤ 20))) states that there is a flow of at least 100 in which the flow in every low-security
vertex is at most 20, whereas A((> 200) → EF (red ∧ (> 20))) states that when the flow
is above 200, then there must exist a low-security vertex in which the flow is above 20. As
an example to a BFL? formula with an alternating nesting of flow quantifiers, consider the
formula EAG(< 10 → A < 15), stating that there is a flow such that wherever the flow is
below 10, then in every flow it would be below 15. J
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9:6 Flow Logic

I Remark. Note that while the semantics of CTL? and LTL is defined with respect to infinite
trees and paths, path quantification in BFL? ranges over finite paths. We are still going
to use techniques and results known for CTL? and LTL in our study. Indeed, for upper
bounds, the transition to finite computations only makes the setting simpler. Also, lower-
bound proofs for CTL? and LTL are based on an encoding of finite runs of Turing machines,
and apply also to finite paths.

Specifying finite paths, we have a choice between weak and strong semantics for the
X operator. In the weak semantics, the last vertex in a path satisfies Xψ, for all ψ. In
particular, it is the only vertex that satisfies Xfalse. In the strong semantics, the last vertex
does not satisfy Xψ, for all ψ. In particular, it does not satisfy Xtrue. We use the strong
semantics.

3 Properties of BFL?

3.1 Integral vs. non-integral flow functions
Our semantics of BFL? considers integral flow functions: vertices receive integral incoming
flow and partition it to integral flows in the outgoing edges. Integral-flow functions arise
naturally in settings in which the objects we transfer along the network cannot be partitioned
into fractions, as is the case with cars, packets, and more. Sometimes, however, as in the case
of liquids, flow can be partitioned arbitrarily. In the traditional maximum-flow problem, it
is well known that the maximum flow can be achieved by integral flows [16]. We show that,
interestingly, in the richer setting of flow logic, restricting attention to integral flows may
change the satisfaction value of formulas.

I Proposition 2. Allowing the quantified flow functions in BFL? to get values in IR changes
its semantics.
Proof. Consider the network on the right. The BFL? formula
ϕ = E(1∧AX(> 0)) states that there is a flow function in which
the flow that leaves the source is 1 and the flow of both its suc-
cessors is strictly positive. It is easy to see that while no integral
flow function satisfies the requirement in ϕ, a flow function in
which 1 unit of flow in s is partitioned between u and v does
satisfy it. J

Proposition 2 suggests that quantification of flow functions that allow non-integral flows
may be of interest. In Section 4.3 we discuss such an extension.

3.2 Sensitivity to unwinding
For a network N = 〈AP, V,E, c, ρ, s, T 〉, let Nt be the unwinding of N into a tree. Formally,
Nt = 〈AP, V ′, E′, ρ′, s, T ′〉, where V ′ ⊆ V ∗ is the smallest set such that s ∈ V ′, and for
all w · v ∈ V ′ with w ∈ V ∗ and v ∈ V \ T , and all u ∈ V such that E(v, u), we have that
w·v·u ∈ V ′, with ρ′(w·v·u) = ρ(u). Also, 〈w·v, w·v·u〉 ∈ E′, with c′(〈w·v, w·v·u〉) = c(〈v, u〉).
Finally, T ′ = V ′ ∩ (V ∗ · T ). Note that Nt may be infinite. Indeed, a cycle in N induces
infinitely many vertices in Nt.

The temporal logic CTL? is insensitive to unwinding. Indeed, N and Nt are bisimilar,
and for every CTL? formula ϕ, we have N |= ϕ iff Nt |= ϕ [33]. We show that this is not
the case for BFL?.

I Proposition 3. The value of the maximal flow is sensitive to unwinding.
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Figure 1 The flow network N and its unwinding Nt.

Figure 2 Assigning workers to jobs.

Proof. Consider the network N appearing in Figure 1, and its unwinding Nt which appears
in its right. It is easy to see that the value of the maximal flow in N is 7 and the value of
the maximal flow from s to T ′ in Nt is 8. J

I Corollary 4. The logic BFL? is sensitive to unwinding.

The sensitivity of BFL? to unwinding suggests that extending BFL? with past operators
can increase its expressive power. In Section 4.4, we discuss such an extension.

4 Extensions and Fragments of BFL?

In this section we discuss useful extensions and variants of BFL?, as well as fragments of
it. As we shall show in the sequel, while the extensions come with no computational price,
their model checking requires additional techniques.

4.1 Positive path quantification
Consider a network N = 〈AP, V,E, c, ρ, s, T 〉 and a flow function f : E → IN. We say that
a path π = v0, v1, . . . , vk is positive if the flow along all the edges in π is positive. Formally,
f(vi, vi+1) > 0, for all 0 ≤ i < k. Note that it may be that f(vi) > 0 for all 0 ≤ i < k and
still π is not positive. It is sometimes desirable to restrict the range of path quantification
to paths along which flow travels. This is the task of the positive path quantifier A+, with
the following semantics (dually, E+ψ = ¬A+¬ψ).

v, f |= A+ψ iff for all positive target v-paths π, we have that π, f |= ψ.

I Example 5. Let W be a set of workers and J be a set of jobs. Each worker w ∈ W can
be assigned to perform jobs from a subset Jw ⊆ J . It is required to perform all jobs by
assigning exactly one worker to each job and at most two jobs to each worker. This problem
can be solved using a flow network. Indeed, a flow of k units in the network described in
Figure 2 corresponds to a legal assignment in which k jobs are performed (in the figure,
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9:8 Flow Logic

edges with no specified capacity have capacity 1). Now assume that some jobs should be
processed in Location a and the others in Location b. A worker can process jobs only in
a single location, a or b. By labeling the job-vertices by their location, the existence of
a legal assignment in which k jobs are processed can be expressed by the BFL? formula
E(k ∧AX(A+Xa ∨A+Xb)), which uses positive path quantification. J

4.2 Maximal flow quantification
It is sometimes desirable to restrict the range of flow quantification to maximal flow func-
tions. This is the task of the maximal-flow quantifier Amax , with the following semantics
(dually, Emaxϕ = ¬Amax¬ϕ).

v, f |= Amaxϕ iff for all maximal-flow functions f ′, we have that v, f ′ |= ϕ.

In a similar manner, it is sometimes helpful to relate to the maximal flow in the network.
The max-flow constant γmax ∈ N maintains the value of the maximal flow from s to T . We
also allow arithmetic operations on γmax .

I Example 6. Recall the job-assignment problem from Example 5. The formula Emax(AX(A+Xa∨
A+Xb)) states that the requirements about the locations do not reduce the number of jobs
assigned without this requirement. Then, the formula E((≥ γmax−4)∧AX(A+Xa∨A+Xb))
states that the requirements about the locations may reduce the number of jobs performed
by at most 4. J

4.3 Non-integral flow quantification
As discussed in Section 3.1, letting flow quantification range over non-integral flow functions
may change the satisfaction value of a BFL? formula. We extend BFL? with a non-integral
flow quantifier AIR, with the following semantics (dually, E IRϕ = ¬AIR¬ϕ).

v, f |= AIRϕ iff for all flow functions f ′ : E → IR, we have that v, f ′ |= ϕ.

4.4 Past operators
As discussed in Section 3.2, while temporal logics are insensitive to unwinding, this is not
the case for BFL?. Intuitively, this follows from the fact that the flow in a vertex depends on
the flow it gets from all its predecessors. This dependency suggests that an explicit reference
to predecessors is useful, and motivates the extension of BFL? by past operators.

Adding past to a branching logic, one can choose between a linear-past semantics –
one in which past is unique (technically, the semantics is with respect to an unwinding
of the network), and a branching-past semantics – one in which all the possible behaviors
that lead to present are taken into an account (technically, the semantics is dual to that
of future operators, and is defined with respect to the network) [25]. For flow logics, the
branching-past approach is the suitable one, and is defined as follows.

For a path π = v0, v1, . . . , vk ∈ V ∗, a vertex v ∈ V , and index 0 ≤ i ≤ k, we say that π
is a source-target (v, i)-path if v0 = s, vi = v, and vk ∈ T . We add to BFL? two past modal
operators, Y (“Yesterday”) and S (“Since"), and adjust the semantics as follows. Defining
the semantics of logics that refer to the past, the semantics of path formulas is defined with
respect to a path and an index in it. We use π, i, f |= ψ to indicate that the path π satisfies
the path formula ψ from position i when the flow function is f . For state formulas, we
adjust the semantics as follows.
(S4) v, f |= Aψ iff for all source-target (v, i)-paths π, we have that π, i, f |= ψ.
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Then, for path formulas, we have the following (the adjustment to refer to the index i in
all other modalities is similar).

π, i, f |= Y ψ1 iff i > 0 and π, i− 1, f |= ψ1.
π, i, f |= ψ1Sψ2 iff there is 0 ≤ j < i such that π, j, f |= ψ2, and for all j + 1 ≤ l ≤ i, we
have π, l, f |= ψ1.

I Example 7. Recall the job-assignment problem from Example 5. Assume we want to
apply the restriction about the location only to jobs that can be assigned only to workers
with no car. Thus, if all the predecessors of a job-vertex are labeled by car, then this job
can be served in either locations. Using past operators, we can specify this property by
E(k ∧AX(A+X(a ∨AY car) ∨A+X(b ∨AY car))). J

As proven in [25], adding past to CTL? with a branching-past semantics strictly increases
its expressive power. The same arguments can be used in order to show that BFL? with
past operators is strictly more expressive than BFL?.1

4.5 First-Order quantification on flow values
The flow propositions in BFL? include constants. This makes it impossible to relate the
flow in different vertices other than specifying all possible constants that satisfy the relation.
In BFL? with quantified flow values we add flow variables X = {x1, . . . , xn} that can be
quantified universally or existentially and specify such relations conveniently. We also allow
the logic to apply arithmetic operations on the values of variables in X.

For a set of arithmetic operators O (that is, O may include +, ∗, etc.), let BFL?(O) be
BFL? in which Rule S2 is extended to allow expressions with variables in X constructed by
operators in O, and we also allow quantification on the variables in X. Formally, we have
the following:
(S2) A flow proposition > g(x1, . . . , xk) or ≥ g(x1, . . . , xk), where x1, . . . , xk are variables

in X and g is an expression obtained from x1, . . . , xk by applying operators in O, possibly
using constants in IN. We assume that g : INk → IN. That is, g leaves us in the domain
IN.

(S6) ∀xϕ, for x ∈ X and a BFL?(O) formula ϕ in which x is free.

For a BFL?(O) formula ϕ in which x is a free variable, and a constant γ ∈ IN, let
ϕ[x ← γ] be the formula obtained by assigning γ to x and replacing expressions by their
evaluation. Then, v, f |= ∀xϕ′ iff for all γ ∈ IN, we have that v, f |= ϕ′[x← γ].

I Example 8. The logic BFL?(∅) includes the formula EAG∀x((split ∧ x ∧ > 0) → EX(>
0 ∧ < x)), stating that there is a flow in which all vertices that are labeled split and with
a positive flow x have a successor in which the flow is positive but strictly smaller than x.
Then, BFL?(div) includes the formula EAG∀x(x→ EX(≥ x div 2)), stating that there is a
flow in which all vertices have a successor that has at least half of their flow.

Finally, BFL?(+) includes the formula ∃x∃yEmaxAG(¬(source∨target)→ x∨y∨(x+y)),
stating that there are values x and y, such that it is possible to attain the maximal flow
by assigning to all vertices, except maybe source and target vertices, values in {x, y, x+ y}.

J

1 We note that the result from [25] does not immediately imply the addition of expressive power, as it
is based on the fact that only CTL? with past operators is sensitive to unwinding (and, as we prove
in Section 3.2, BFL? is sensitive to unwinding). Still, since the specific formula used in [25] in order
to prove the sensitivity of CTL? with past to unwinding does not refer to flow, it is easy to see that it
has no equivalent BFL? formula.
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4.6 Fragments of BFL?

For the temporal logic CTL?, researchers have studied several fragments, most notably LTL
and CTL. In this section we define interesting fragments of BFL?.

Flow-CTL? and Flow-LTL

The logics Flow-CTL? and Flow-LTL are extensions of CTL? and LTL in which atomic state
formulas may be, in addition to AP s, also the flow propositions > γ or ≥ γ, for an integer
γ ∈ IN. Thus, no quantification on flow is allowed, but atomic formulas may refer to flow.
The semantics of Flow-CTL? is defined with respect to a network and a flow function, and
that of Flow-LTL is defined with respect to a path in a network and a flow function.

Linear Flow Logic

The logic LFL is the fragment of BFL? in which only one external universal path quanti-
fication is allowed. Thus, an LFL formula is a BFL? formula of the form Aψ, where ψ is
generated without rule S4.

Note that while the temporal logic LTL is a “pure linear” logic, in the sense that sat-
isfaction of an LTL formula in a computation of a system is independent of the structure
of the system, the semantics of LFL mixes linear and branching semantics. Indeed, while
all the paths in N have to satisfy ψ, the context of the system is important. To see this,
consider the LFL formula ϕ = AA((≥ 10)→ X(≥ 4)). The formula states that in all paths,
all flow functions in which the flow at the first vertex in the path is at least 10, are such that
the flow at the second vertex in the path is at least 4. In order to evaluate the path formula
A((≥ 10) → X(≥ 4)) in a path π of a network N we need to know the capacity of all the
edges from the source of N , and not only the capacity of the first edge in π. For example,
ϕ is satisfied in networks in which there are two successors to the source, each connected
by an edge with capacity 4, 5, or 6. Consider now the LFL formula ϕ′ = AE(10 ∧X(≥ 4)).
Note that ϕ′ is not equal to the BFL? formula θ = E(10 ∧AX(≥ 4)). Indeed, in the latter,
the same flow function should satisfy the path formula X(≥ 4) in all paths.

No nesting of flow quantifiers

The logic BFL?
1 contains formulas that are Boolean combinations of formulas of the form

Eϕ and Aϕ, for a Flow-CTL? formula ϕ. Of special interest are the following fragments of
BFL?

1:
∃BFL?

1 and ∀BFL?
1, where formulas are of the form Eϕ and Aϕ, respectively, for a Flow-

CTL? formula ϕ.
∃LFL1 and ∀LFL1, where formulas are of the form EAψ and AAψ, respectively, for a
Flow-LTL formula ψ, and LFL1, where a formula is a Boolean combination of ∃LFL1
and ∀LFL1 formulas.

Conjunctive-BFL?

The fragment Conjunctive-BFL? (CBFL?, for short) contains BFL? formulas whose flow
state sub-formulas restrict the quantified flow in a conjunctive way. That is, when we
“prune” a CBFL? formula into requirements on the network, atomic flow propositions are
only conjunctively related. This would have a computational significance in solving the
model-checking problem.
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Consider an ∃BFL?
1 formula ϕ = Eθ. We say that an operator g ∈ {∨,∧, E,A,X, F,G,U}

has a positive polarity in ϕ if all the occurrences of g in θ are in a scope of an even number
of negations. Dually, g has a negative polarity in ϕ if all its occurrences in θ are in a scope
of an odd number of negations.

The logic ∃CBFL?
1 is a fragment of ∃BFL?

1 in which the only operators with a positive
polarity are ∧, A, X, and G, and the only operators with a negative polarity are ∨, E,
X, and F . Note that U is not allowed, as its semantics involves both conjunctions and
disjunctions. Note that by pushing negations inside, we make all operators of a positive
polarity; that is, we are left only with ∧, A, X, and G.

Then, since all requirements are universal and conjunctively related, we can push con-
junctions outside so that path formulas do not have internal conjunctions – for example,
transform AX(ξ1 ∧ ξ2) into AXξ1 ∧ AXξ2, and can get rid of universal path quantifica-
tion that is nested inside another universal path quantification – for example, transform
AXAXξ1 into AXXξ. Finally, since we use the strong semantics to X, we can replace
formulas that have X nested inside G by false.

The logic ∀CBFL?
1 is the dual fragment of ∀BFL?

1. In other words, Aθ is in ∀CBFL?
1

iff E¬θ is in ∃CBFL?
1. The logic CBFL? is then obtained by going up a hierarchy in which

formulas of lower levels serve as atomic propositions in higher levels.
We now define the syntax of CBFL? formally. For simplicity, we define it in a normal

form, obtained by applying the rules described above. A CBFL?
0 formula is a Boolean

assertion over AP . For i ≥ 0, a CBFL?
i+1 formula is a Boolean assertion over CBFL?

i

formulas and formulas of the form E(Aψ1 ∧ · · · ∧ Aψn), where ψj is of the form Xkjξj or
XkjGξj , where kj ≥ 0 and ξj is a CBFL?

i formula or a flow proposition (that is, > γ, < γ,
≥ γ, or ≤ γ, for an integer γ ∈ IN). Then, a CBFL? formula is a CBFL?

i formula for some
i ≥ 0. Note that both ∃CBFL?

1 and ∀CBFL?
1 are contained in CBFL?

1.

I Example 9. Recall the job-assignment problem from Example 5. The CBFL?
1 formula

A(< 10 → EX ≤ 0) ∧ E(15 ∧ AX ≥ 1) states that if less than 10 jobs are processed, then
at least one worker is unemployed, but it is possible to process 15 jobs and let every worker
process at least one job.

BFL

The logic BFL is the fragment of BFL? in which every modal operator (X,U) is preceded
by a path quantifier. That is, it is the flow counterpart of CTL.

5 Model Checking

In this section we study the model-checking problem for BFL?. The problem is decide, given
a flow network N and a BFL? formula ϕ, whether N |= ϕ.

I Theorem 10. BFL? model checking is PSPACE-complete.

Proof. Consider a network N and a BFL? formula ϕ. The idea behind our model-checking
procedure is similar to the one that recursively employs LTL model checking in the process
of CTL? model checking [13]. Here, however, the setting is more complicated. Indeed, the
path formulas in BFL? are not “purely linear”, as the flow quantification in them refers to
flow in the (branching) network. In addition, while the search for witness paths is restricted
to paths in the network, which can be guessed on-the-fly in the case of LTL, here we also
search for witness flow functions, which have to be guessed in a global manner.
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Let {ϕ1, . . . , ϕk} be the set of flow state formulas in ϕ. Assume that ϕ1, . . . , ϕk are
ordered so that for all 1 ≤ i ≤ k, all the subformulas of ϕi have indices in {1, . . . , i}. Our
model-checking procedure labels N by new atomic propositions q1, . . . , qk so that for all
vertices v and 1 ≤ i ≤ k, we have that v |= qi iff v |= ϕi (note that since ϕi is closed,
satisfaction is independent of a flow function).

Starting with i = 1, we model check ϕi, label N with qi, and replace the subformula ϕi

in ϕ by qi. Accordingly, when we handle ϕi, it is an ∃BFL?
1 or a ∀BFL?

1 formula. That is,
it is of the form Eξ or Aξ, for a Flow-CTL? formula ξ. Assume that ϕi = Eξ. We guess
a flow function f : E → IN, and perform CTL? model-checking on ξ, evaluating the flow
propositions in ξ according to f . Since guessing f requires polynomial space, and CTL?

model checking is in PSPACE, so is handling of ϕi and of all the subformulas.
Hardness in PSPACE follows from the hardness of CTL? model checking [37]. J

Since BFL? contains CTL?, the lower bound in Theorem 10 is immediate. One may
wonder whether reasoning about flow networks without atomic propositions, namely when
we specify properties of flow only, is simpler. Theorem 11 below shows that this is not
the case. Essentially, the proof follows from our ability to encode assignments to atomic
propositions by values of flow.

I Theorem 11. BFL? model checking is PSPACE-complete already for ∀LFL1 formulas
without atomic propositions.

We also note that when the given formula is in BFL, we cannot avoid the need to guess
a flow function, yet once the flow function is guessed, we can verify it in polynomial time.
Accordingly, the model-checking problem for BFL is in PNP. We discuss this point further
below.

In practice, a network is typically much bigger than its specification, and its size is the
computational bottleneck. In temporal-logic model checking, researchers have analyzed the
system complexity of model-checking algorithms, namely the complexity in terms of the
system, assuming the specification is of a fixed length. There, the system complexity of LTL
and CTL? is NLOGSPACE-complete [29, 27]. We prove that, unfortunately, this is not the
case of BFL?. That is, we prove that while the network complexity of the model-checking
problem, namely the complexity in terms of the network, does not reach PSPACE, it does
require polynomially many calls to an NP oracle. Essentially, each evaluation of a flow
quantifier requires such a call. Formally, we have the following.

I Theorem 12. The network complexity of BFL? is in ∆P
2 (namely, in PNP).

Proof. Fixing the length of the formula in the algorithm described in the proof of The-
orem 10, we get that k is fixed, and so is the length of each subformula ϕi. Thus, evaluation
of ϕi involves a guess of a flow and then model checking of a fixed size Flow-CTL? formula,
which can be done in time polynomial in the size of the network. Hence, the algorithm from
Theorem 10 combined with an NP oracle gives the required network complexity. J

While finding the exact network complexity of model checking BFL? and its fragments is
interesting from a complexity-theoretical point of view, it does not contribute much to our
story. Here, we prove NP and co-NP hardness holds already for very restricted fragments.
As good news, in Section 7 we point that for the conjunctive fragment, model checking can
be performed in polynomial time.2

2 A possible tightening of our analysis is via the complexity class BH, which is based on a Boolean
hierarchy over NP. Essentially, it is the smallest class that contains NP and is closed under union,
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I Theorem 13. The network complexity of ∃BFL?
1 and ∀BFL?

1 is NP-complete and co-
NP-complete, respectively. Hardness applies already to ∃LFL1 and ∀LFL1 without atomic
propositions, and to BFL.

Proof. For the upper bound, it is easy to see that one step in the algorithm described in
the proof of Theorem 10 (that is, evaluating ϕi once all its flow state subformulas have been
evaluated), when applied to ϕi of a fixed length is in NP for ϕi of the form Eξ and in co-NP
for ϕi of the form Aξ.

For the lower bound, we prove NP-hardness for ∃LFL1. Co-NP-hardness for ∀LFL1 fol-
lows by dualization. We describe a reduction from CNF-SAT. Let θ = C1∧. . .∧Cm be a CNF
formula over the variables x1 . . . xn. We assume that every literal in x1, . . . , xn, x̄1, . . . , x̄n

appears exactly in k clauses in θ. Indeed, every CNF formula can be converted to such a
formula in polynomial time and with a polynomial blowup.
We construct a flow network N and an ∃LFL1 for-
mula EAψ such that θ is satisfiable iff N |= EAψ.
The network N is constructed as demonstrated on
the right Let Z = {x1, . . . , xn, x̄1, . . . , x̄n}. For a lit-
eral z ∈ Z and a clause Ci, the network N contains
an edge 〈z, Ci〉 iff the clause Ci contains the literal
z. Thus, each vertex in Z has exactly k outgoing
edges. The capacity of each of these edges is 1. The
flow-LTL formula ψ = kn∧XX(k∨0)∧XXX(≥ 1).
In the full version, we prove that θ is satisfiable iff
N |= EAψ.

Finally, note that ψ does not contain atomic propositions. Also, the same proof holds
with the BFL formula ψ = kn ∧AXEXk ∧AXAXAX(≥ 1). J

5.1 Flow synthesis
In the flow-synthesis problem, we are given a network N and an ∃BFL?

1 formula Eϕ, and
we have to return a flow function f with which ϕ is satisfied in N , or declare that no such
function exists. The problem is clearly at least as hard as CTL? model checking. Also,
by guessing f , its complexity does not go beyond CTL? model-checking complexity. The
network complexity of the problem coincides with that of ∃BFL?

1 model checking. Thus, we
have the following.

I Theorem 14. The flow-synthesis problem for ∃BFL?
1 is PSPACE-complete, and its net-

work complexity is NP-complete.

6 Model Checking Extensions of BFL?

In Section 4, we define several extensions of BFL?. In this section we study the model-
checking complexity for each of the extensions, and show that they do not require an increase

intersection, and complement. The levels of the hierarchy start with BH1 = NP, and each level adds
internal intersections as well as intersection with a co-NP (even levels) or an NP (odd levels) language
[41]. BH is contained in ∆P

2 . It is not hard to prove that the network complexity of the fragment
of BFL?

1 that contains at most k flow quantifiers is in BHk+1∩ co-BHk+1. Indeed, the latter contain
problems that are decidable in polynomial time with k parallel queries to an NP oracle [4]. A BHk

lower bound can also be shown.
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in the complexity. The techniques for handling them are, however, richer: For positive
path quantification, we have to refine the network and add a path-predicate that specifies
positive flow, in a similar way fairness is handled in temporal logics. For maximal-flow
quantification, we have to augment the model-checking algorithm by calls to a procedure
that finds the maximal flow. For non-integral flow quantification, we have to reduce the
model-checking problem to a solution of a linear-programming system. For past operators,
we have to extend the model-checking procedure for CTL? with branching past. Finally,
for first-order quantification over flow values, we have to first bound the range of relevant
values, and then apply model checking to all relevant values.

Positive path quantification

Given a networkN , it is easy to generate a networkN ′ in which we add a vertex in the middle
of each edge, and in which the positivity of paths correspond to positive flow in the new
intermediate vertices. Formally, assuming that we label the new intermediate vertices by an
atomic proposition edge, then the BFL? path formula ξpositive = G(edge →> 0) characterizes
positive paths, and replacing a state formula Aψ by the formula A(ξpositive → ψ) restricts
the range of path quantification to positive paths. Now, given a BFL? formula ϕ, it is easy
to generate a BFL? formula ϕ′ such that N |= ϕ iff N ′ |= ϕ′. Indeed, we only have to
(recursively) modify path formulas so that vertices labeled edge are ignored: Xξ is replaced
by XXξ, and ξ1Uξ2 is replaced by (ξ1 ∨ edge)U(ξ2 ∧ ¬edge). Hence, the complexity of
model-checking is similar to BFL?.

Maximal flow quantification

The maximal flow γmax in a flow network can be found in polynomial time. Our model-
checking algorithm for BFL? described in the proof of Theorem 10 handles each flow state
subformula Eϕ by guessing a flow function f : E → IN with which the Flow-CTL? formula
ϕ holds. For an Emax quantifier, we can guess only flow functions for which the flow leaving
the source vertex is γmax . In addition, after calculating the maximal flow, we can substitute
γmax , in formulas that refer to it, by its value. Hence, the complexity of model-checking is
similar to that of BFL?.

Non-integral flow quantification

Recall that our BFL? model-checking algorithm handles each flow state subformula Eϕ by
guessing a flow function f : E → IN with which the Flow-CTL? formula holds. Moving to
non-integral flow functions, the guessed function f should be f : E → IR, where we cannot
bound the size or range of guesses.

Accordingly, in the non-integral case, we guess, for every vertex v ∈ V , an assignment
to the flow propositions that appear in ϕ. Then, we perform two checks. First, that ϕ is
satisfied with the guessed assignment – this is done by CTL? model checking, as in the case
of integral flows. Second, that there is a non-integral flow function that satisfies the flow
constraints that appear in the vertices. This can be done in polynomial time by solving a
system of inequalities [35] (see Lemma 16 for the details in the case of vertex-constrained
integral flow functions). Thus, as in the integral case, handling each flow state formula Eϕ
can be done in PSPACE, and so is the complexity of the entire algorithm.
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Past operators

Recall that our algorithm reduces BFL? model checking to a sequence of calls to a CTL?

model-checking procedure. Starting with a BFL? formula with past operators, the required
calls are to a model-checking procedure for CTL? with past. By [25], model checking CTL?

with branching past is PSPACE-complete, and thus so is the complexity of our algorithm.

First-Order quantification on flow values

For a flow network N = 〈AP, V,E, c, ρ, s, T 〉, let CN = 1 + Σe∈Ec(e). Thus, for every flow
function f for N and for every vertex v ∈ V , we have f(v) < CN . We claim that when we
reason about BFL? formulas with quantified flow values, we can restrict attention to values
in {0, 1, . . . , CN}.

I Lemma 15. Let N be a flow network and let θ = ∀x1ϕ be a BFL?({+, ∗}) formula over
the variables X = {x1, . . . , xn}, and without free variables. Then, N |= θ iff N |= ϕ[x1 ← γ],
for every 0 ≤ γ ≤ CN .

By Lemma 15, the model-checking problem for BFL?({+, ∗}) is PSPACE-complete.

7 A Polynomial Fragment

In this section we show that the model-checking problem for CBFL? (see Section 4.6) can
be solved in polynomial time.

Our model-checking algorithm reduces the evaluation of a CBFL? formula into a sequence
of solutions to the vertex-constrained flow problem. In this problem, we are given a flow
network N = 〈AP, V,E, c, ρ, s, T 〉 in which each vertex v ∈ V is attributed by a range
[γl, γu] ∈ IN × (IN ∪ {∞}). The problem is to decide whether there is a flow function
f : E → IR such that for all vertices v ∈ V , we have γl ≤ f(v) ≤ γu.

I Lemma 16. The vertex-constrained flow problem can be solved in polynomial time. If
there is a solution that is a non-integral flow function, then there is also a solution that is
an integral flow function, and the algorithm returns such a solution.

I Theorem 17. CBFL? model checking can be solved in polynomial time.

Proof. Let N = 〈AP, V,E, c, ρ, s, T 〉, and consider a CBFL? formula ϕ. If ϕ is in CBFL?
0,

we can clearly label in linear time all the vertices in N by a fresh atomic proposition pϕ

that maintains the satisfaction of ϕ. That is, in all vertices v ∈ V , we have that pϕ ∈ ρ(v)
iff v |= ϕ. Otherwise, ϕ is a CBFL?

i+1 formula for some i ≥ 0. We show how, assuming
that the vertices of N are labeled by atomic propositions that maintain satisfaction of the
subformulas of ϕ that are CBFL?

i formulas, we can label them, in polynomial time, by a
fresh atomic proposition that maintains the satisfaction of ϕ.

Recall that ϕ is a Boolean assertion over CBFL?
i formulas and flow formulas of the form

E(Aψ1∧· · ·∧Aψn), where each ψj is of the form Xkjξj or XkjGξj , where kj ≥ 0 and ξj is a
CBFL?

i formula or a flow proposition (that is, > γ, < γ, ≥ γ, or ≤ γ, for an integer γ ∈ IN).
Since CBFL?

i subformulas have already been evaluated, we describe how to evaluate
subformulas of the form θ = E(Aψ1 ∧ · · · ∧Aψn). Intuitively, since the formulas in θ include
no disjunctions, they impose constraints on the vertices of N in a deterministic manner.
These constraints can be checked in polynomial time by solving a vertex-constrained flow
problem. Recall that for each 1 ≤ j ≤ n, the formula ψj is of the form Xkjξj or XkjGξj ,
for some kj ≥ 0, and a CBFL?

i formula or a flow proposition ξj . In order to evaluate θ in

CONCUR 2017



9:16 Flow Logic

a vertex v ∈ V , we proceed as follows. For each 1 ≤ j ≤ n, the formula ξj imposes either
a Boolean constraint (in case ξj is a CBFL?

i formula) or a flow constraint (in case ξj is a
flow proposition) on a finite subset V v

j of V . Indeed, if ψj = Xkjξj , then V v
j includes all

the vertices reachable from v by a path of length kj , and if ψj = XkjGξj , then V v
j includes

all the vertices reachable from v by a path of length at least kj . We attribute each vertex
by the constraints imposes on it by all the conjuncts in θ. If one of the Boolean constrains
does not hold, then θ does not hold in v. Otherwise, we obtain a set of flow constraints for
each vertex in V . For example, if θ = E(AXXp ∧ AXX > 5 ∧ AG ≤ 8), then in order to
check whether θ holds in s, we assign the flow constraint ≤ 8 to all the vertices reachable
from s, and assign the flow constraint > 5 to all the successors of the successors of s. If
one of these successors of successors does not satisfy p, we can skip the check for a flow and
conclude that s does not satisfy θ. Otherwise, we search for such a flow, as described below.

The flow constrains for a vertex induce a closed, open, or half-closed range. The upper
bound in the range may be infinity. For example, the constrains > 6, < 10, ≤ 8 induce the
half-closed range (6, 8]. Note that it may be that the induced range is empty. For example,
the constraints ≤ 6 and > 8 induce an empty range. Then, θ does not hold in v. Since
we are interested in integral flows, we can convert all strict bounds to non-strict ones. For
example, the range (6, 8] can be converted to [7, 8]. Note that since we are interested in
integral flow, a non-empty open range may not be satisfiable, and we refer to it as an empty
range. For example, the range (6, 7) is empty. Hence, the satisfaction of θ in v is reduced to
an instance of the vertex-constrained flow problem. By Lemma 16, deciding whether there
is a flow function that satisfies the constraints can be solved in polynomial time. J

I Remark. Note that the same algorithm can be applied when we consider non-integral
flow functions, namely in CBFL? with the AIR flow quantifier. There, the induced vertex-
constrained flow problem may include open boundaries. The solution need not be integral,
but can be found in polynomial time by solving a system of inequalities [35].
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